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Abstract. Information aggregation process is a fundamental procedure
when combining or aggregating different information structures into a
single one, through of an aggregation function that performs this task. In
this perspective, Paiva et al. [2] introduced the notions of Quasi-overlap
functions on bounded lattices as a particular instance of aggregation
functions that express the overlapping degree between two lattice values
and in which the continuity condition is not required.
Until now different approaches that extend the concept of the Quasi-
overlap functions have been introduced for aggregating different struc-
tures, such as on finite chains setting [3], bounded posets [4] and set-based
extended settings [5].
However, there are situations in wich the data considered for aggregation
are vectors, which store n-dimensional information. An example of an
application where vector information is used are Long Short-Term Mem-
ories (LSTM) [6] which are a type of recurrent neural networks and a
powerful tool for modeling sequential data, such as time series [7, 8] and
natural data language [9, 10]. In this context, in [11] the authors pro-
posed the Vector Choquet Integral (VCI): an n-dimensional extension of
the discrete Integral shock-type, such that the inputs are n-dimensional
vectors and retrieving an n-dimensional vector as output, introducing in
this way a VCI-LSTM architecture to deal with two problems: sequential
image classification and text classification.
Inspired by this, in this work, we generalize the notion of Quasi-overlap
functions to admit an input of arity m composed by n-dimensional vec-
tors, which produces an n-dimensional vector output. Moreover, we study
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some vital properties and construction methods of n-dimensional vector
m-ary quasi-overlap functions.
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