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Abstract— This work provides an interpretation of the neces-
sity and possibility fuzzy modal operators based on quantum
computing. Moreover, we model these connectives on a quantum
computing environment, using quantum registers and qubits
in the IBM Qiskit software. The simulations enable a better
comprehension of the evolution of quantum circuits modeling
fuzzy sets generated by modal operators.

I. INTRODUCTION

Fuzzy Logic (FL) is a powerful and handful tool, mathe-
matically modeling the vagueness and uncertainty of infor-
mation inherent to human thinking through the Fuzzy Set
Theory (FST) with huge technological applications. The FL
representability is greater than the classic logic (restricted to
the binary set 0,1) since each element of a fuzzy set may
belong to all sets, with an associated membership degree
(MD) leveraging by the entire unit interval [0,1].

Additionally, Quantum Computing (QC) provides an ex-
ponential advantage to processing and storing fuzzy data
by mapping MD related to single attributes to qubit states
and multi-attribute objects as tensor products of qubit states.
Thus, the quantum simulation of fuzzy systems seems at-
tractive for future research, by taking the fuzzy complement,
intersection, and union operations, respectively, modeled
by the notions of fuzzy negations, triangular norms, and
triangular conorms, on the related MD. Also, their quan-
tum interpretation is formalized by performing projective
measures over multivalued quantum transformations, mainly
considering Controlled Not and Toffoli gates. By demanding
the fuzzy connectives’ interpretation to potentialize the mea-
sure operations’ action, we apply the quantum superposition
and entangled states in the MD interpretation of fuzzy data.
The interpretation of the modal-like necessity and possibility
fuzzy operators, as effective operators in modeling and
reasoning, involves contexts of uncertainty. These modal
operators may be used in various applications, from classical
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to multivalued logic, interpreting the truth-stressing or truth-
depressing hedges depending on whether they fortify or
soften a proposition’s meaning. Then, based on different
approaches for the necessity and possibility operators, we in-
terpret fuzzy modal operators based on quantum computing,
which are the quantum interpretation of ρ-possibility and η-
necessity fuzzy modal connectives. Moreover, we apply this
theoretical approach in case studies addressing the simulation
of quantum circuits modeling such fuzzy algorithms on a
quantum computing environment, using quantum registers
and qubits in the IBM Qiskit software. The simulations
enable a better comprehension of the evolution of quantum
circuits modeling fuzzy modal operators.

The paper is organized as follows. Section II brings the
main concepts used in the paper, which are relevant to its
comprehension. Fuzzy modal operators are introduced in
Section III, and in Sect. IV, their modeling in QC is provided.
The quantum simulation of the fuzzy modal connectives is
discussed in Sect. V, including an application by agents’
interactivity. Finally, the last section outlines our concluding
remarks and future works.

II. PRELIMINARIES

To highlight the synergy between QC and FST, the main
concepts are recalled in the following subsections.

A. Quantum Computing

In QC, the qubit is the basic information unit, being the
simplest quantum system, defined by a unitary and bi-
dimensional state vector. Qubits are generally described, in
Dirac’s notation [9], by the expression: |ψ⟩ = α|0⟩ + β|1⟩,
where the coefficients α and β are complex numbers for the
amplitudes of the corresponding states in the computational
basis (state space), respecting the condition |α|2 + |β|2 = 1,
which guarantees the unitary of the quantum system state
vectors, represented by (α,β)t [7].

The quantum system state space with multiple qubits is
obtained by the tensor product of the space states of its
subsystems. Considering a quantum system with two qubits,
|ψ⟩ = α|0⟩ + β|1⟩ and |φ⟩ = γ|0⟩ + δ|1⟩, the state space
comprehends the tensor product given by |S⟩ = |ψ⟩⊗ |φ⟩ =
α · γ|00⟩ + α · δ|01⟩ + β · γ|10⟩ + β · δ|11⟩. A quantum
system state transition is performed by controlled and unitary
transformations associated with orthogonal matrices of 2N -
order, with N being the number of qubits within the system,
preserving norms, and thus, probability amplitudes [6]. Simi-
larly, a Quantum Transformation (QT) of multiple qubits can



be obtained by the tensor product performed over unitary
QT. For instance, the NOT operator (Pauli-X QT) and its
application over 1-dimensional quantum system is given as:

X|ψ⟩ =
(

0 1
1 0

)(
α
β

)
=

(
β
α

)
.

The tensor product defined by the Hadamard QT (H⊗H)
generates a superposition mathematically described by:

H ⊗H=
1√
2

(
1 1
1 −1

)
⊗ 1√

2

(
1 1
1 −1

)
.

And, the action of a Toffoli QT, described as a controlled
operation for a 3-dimensional quantum system is given by:

T|S0⟩ =
(

Id 0
0 X

)
(ψ ⊗ φ⊗ σ) = ψ ⊗ φ⊗X(σ).

So, it applies the NOT operator to the third qubit |σ⟩ if the
current states of the first two qubits are both |1⟩.

The information from a quantum system is provided by
measurement operators, defined by a set of linear operators
(Mm) called projections. The index m refers to the possible
measurement results. If the state of a 1-dimensional quantum
system is |ψ⟩ immediately before the measurement, the
probability of an outcome occurrence is given by

p(|ψ⟩) = Mm|ψ⟩√
⟨ψ|M†

mMm|ψ⟩
.

Measuring a qubit |ψ⟩ with α,β ̸=0, the related probability
of observing |0⟩ and |1⟩ are given by:

p(0)= ⟨ϕ|M†
0M0|ϕ⟩ = ⟨ϕ|M0|ϕ⟩ = |α|2;

p(1)= ⟨ϕ|M†
1M1|ϕ⟩ = ⟨ϕ|M1|ϕ⟩ = |β|2.

After the measuring process, the quantum state |ψ⟩ has
|α|2 probability of being in state |0⟩ and |β|2 probability
of being in state |1⟩. And, in multidimensional systems, the
operators Mn

m and pN (m) denote the m-projection and the
corresponding probability measure, over the n-qubit.
B. Fuzzy Set Theory

A fuzzy set A concerning the universe of discourse
χ ̸= ∅ is given as: A = {(x, fA(x)) : x ∈ χ}, con-
sidering fA : χ → [0, 1] as its membership function [11].
In addition, the complement of a fuzzy set A, defined as
A′ = {(x, fA′(x)) : x ∈ χ}, has the membership function
fA′ : χ→ [0, 1], fA′(x) = 1− fA(x), ∀x ∈ χ.

The fuzzy set can be defined by fuzzy connectives. Here,
we study fuzzy negations together with modal operators.

Definition 1: Let N : [0, 1] → [0, 1] be a fuzzy negation,
so N satisfies, for all x, y ∈ [0, 1], N1: N(0) = 1 and
N(1) = 0; and N2: x ≤ y ⇒ N(x) ≥ N(y). Additionally,
a strong fuzzy negation is involutive, i.e. N3: N(N(x)) = x.

III. FUZZY MODAL OPERATORS

In this section, we seek to obtain the fuzzy modal pos-
sibility, necessity, and impossibility connectives, discussing
their algebraic expressions and main prooperties.

Definition 2: [5] Let N1,N2 : [0, 1] → [0, 1] be involutive
fuzzy negations. The functions ρ, η : [0, 1] → [0, 1] verifying

the corresponding properties, for all x, y ∈ [0, 1]:
ρ1: ρ(0) = 0; η1: η(1) = 1;
ρ2: x ≤ y ⇒ ρ(x) ≤ ρ(y); η2: x ≤ y ⇒ η(x) ≤ η(y);
ρ3: x ≤ ρ(x); η3: η(x) ≤ x;
ρ4: N1(ρ(N1(x))) = η(x); η4: N2(η(N2(x))) = ρ(x).

are called fuzzy modal possibility and fuzzy modal necessity
operators, respectively.

Let A : [0, 1] → [0, 1] be an aggregation function [2].
Additional properties can be demanded, such as:
ρ5: ρ(η(x)) = x; η5: η(ρ(x)) = x;
ρ6: ρ(η(x)) = η(x); η6: η(ρ(x)) = ρ(x);
ρ7: ρ(1) = 1; η7: η(0) = 0.
ρ8: A(ρ(x), ρ(y))=ρ(A(x, y));η8: A(η(x), η(y))=η(A(x, y)).

Proposition 1: Let N1(x) = 1−xn and N2(x) = 1− n
√
x

be fuzzy negations. The functions ηn, ρn : [0, 1] → [0, 1],

ηn(x) = xn and ρn(x) = n
√
x,∀n ∈ N,∀x ∈ [0, 1]. (1)

define the possibility and necessity fuzzy connectives
which verify the 5th and 7th properties. And, when A ∈
{max,min,TP } are aggregation functions, with TP (x, y) =
x · y then ρn-modal and ηn-modal fuzzy connectives verify
the distributive properties, i.e., ρ8: and η8, respectively.

Proof: Straightforward.
Examples 1: Taking n = 2 in Eq. (1), and the fuzzy

negations N1(x) = 1 − x2 and N2(x) = 1 −
√
x. So, ρ2-

modal and η2-modal fuzzy connectives are given by ρ2(x) =√
x and η2(x) = x2.
Proposition 2: Let ρ, η : [0, 1] → [0, 1], n ∈ N∗. The

classes of functions given by the expressions:

ρ[n](x) =
x

n
and η[n](x) =

(n− 1) + x

n
, (2)

define the possibility and necessity operators, respectively.
Proof: Straightforward.

Examples 2: By Eq. (2) and taking n = 2, the necessity
and possibility operators can be expressed as:

ρ[2](x) =
x

2
and η[2](x) =

x+ 1

2
. (3)

Proposition 3: Let N1(x) = (1 − x)2 and N2(x) = 1 −√
x. The functions ρ, η : [0, 1] → [0, 1], expressed by

ρ(x) = 2x− x2 and η(x) = 1−
√
1− x, (4)

define the ρn-possibility and ηn-necessity fuzzy modal con-
nectives verifying the 5th and 7th properties.

IV. QUANTUM MODELING OF FUZZY MODAL
CONNECTIVES

The modeling of fuzzy sets based on quantum computing
was first introduced in [8]. Henceforth, many results to model
fuzzy connectives have been developed [1], [10], notably,
an application on interactive of humanoids agents describing
dilemmas of game theory as seen in [3] and [4].

The next propositions express the main conditions guaran-
teeing the quantum interpretation of the ρ-possibility fuzzy
operators. Analogously, such interpretation can be defined
for the other ones.



Proposition 4: Let |SfA⟩ =
√
1− fA(x)|0⟩+

√
fA(x)|1⟩

be a quantum register related to a fuzzy set A. The quantum
representation of the possibility fuzzy operator ρ[2], given in
Eq.(3-a) and related to A is given by the quantum register:

|Sρ[2]
⟩ = M1

3 ◦ T
1,2
3 (|SfA⟩ ⊗H|1⟩ ⊗ |0⟩) (5)

Proof: When |SfA⟩ =
√
1− fA(x)|0⟩+

√
fA(x)|1⟩ is

the quantum register related to a fuzzy set A, it holds:

|Sρ[2] ⟩ = M3
1 ◦ T1,2

3 (|SfA ⟩ ⊗H(|1⟩)⊗ |0⟩)

= M3
1 ◦ T1,2

3 ((
√

1− fA(x)|0⟩+
√

fA(x)|1⟩)⊗ (|0⟩+
√
2

2
(−|1⟩)⊗ |0⟩)

= M3
1 ◦ T1,2

3

√
2

2

(
−

√
fA(x)|110⟩+

√
fA(x)|100⟩−

√
(1− fA(x))|010⟩

+
√

(1− fA(x))|000⟩
)

= M3
1

√
2

2

(
−

√
fA(x)|111⟩+

√
fA(x)|100⟩−

√
(1− fA(x))|010⟩

+
√

(1− fA(x))|000⟩
)
.

So, when fA(x)=x, a measure M3
1, performed on |1⟩ at the

3rd qubit, returns the classical state |111⟩, with probability
p1 = fA(x)

2 = x
2 . It provides an interpretation of the

MD of an element x ∈ U in the fuzzy set A, obtained
by the necessity operator defined in Eq.(3-a). Analogously,
the measure performed on |0⟩ at the 3rd qubit returns the
probability p0 = 1− x

2 and the final state:
1√
2−x

(
√
x|100⟩−

√
(1− x)|010⟩+

√
(1− x)|000⟩).

Proposition 5: Let |SfA⟩ =
√
1− fA(x)|0⟩+

√
fA(x)|1⟩

be a quantum register related to a fuzzy set A. The quan-
tum representation of the fuzzy set defined by η-necessity
operator, given in Eq.(4-a), is given by the quantum register:

|Sρ⟩ = M3
1 ◦ T

1,2
3 ◦ CNot13 ◦ CNot23(|SfA⟩ ⊗ |SfA⟩ ⊗ |0⟩) (6)

Proof: Firstly, let |S0⟩ = |SfA⟩ ⊗ |SfA⟩ ⊗ |0⟩. Then

|S0⟩ =(
√

1−fA(x)|0⟩+
√

fA(x)|1⟩)⊗(
√

1−fA(x)|0⟩+
√

fA(x)|1⟩)⊗|0⟩

=
√

(1−fA(x))2|000⟩+
√

(1−fA(x)fA(x)|010⟩+
√

fA(x)2|110⟩

−
√

fA(x)(1fA(x))|100⟩

|S1⟩ =
√

(1−fA(x))2|000⟩+
√

(1−fA(x)fA(x)|010⟩+
√

fA(x)2|111⟩

+
√

fA(x)(1−fA(x))|101⟩

|S2⟩ =
√

(1−fA(x))2|000⟩+
√

(1−fA(x)fA(x)|011⟩+
√

fA(x)2|110⟩

−
√

fA(x)(1−fA(x))|101⟩

|S3⟩ =
√

(1−fA(x))2|000⟩+
√

(1−fA(x)fA(x)|011⟩+
√

fA(x)2|111⟩

−
√

fA(x)(1−fA(x))|101⟩

So, if fA(x)=x, a measure M3
1 returns:

1

2x−x2
(
(x|111⟩+

√
x(1−x)|011⟩+

√
(1−x)x|101⟩

)
(7)

with probability p1 = 2x − x2, interpreting the MD of an
element x∈U in the fuzzy set A, obtained by the necessity
operator defined in Eq.(4-b). Finally, the measure performed
on |0⟩ in the 3rd qubit returns the superposition state |111⟩,
with probability p0 = 1−2x−x2 = (1−x)2. It interprets the
non-membership degree (nMD) in the fuzzy set A, defined
by the ρ-necessity operator, concluding this proof.

V. QUANTUM SIMULATION OF FUZZY MODAL
CONNECTIVES

Next, a case study depicts an implementation of a
quantum-fuzzy modal interpretation, considering the Qiskit
framework. Take |Sf2A

⟩ =
√
2
2 (|0⟩ + |1⟩), interpreting

fA(x) = 0.5 as the MD of an element x in the fuzzy set A,
generated by the action of a modal operator. In the Qiskit
simulator, input qubits are initialized as |0⟩.

Simulation based on the ρ[2] fuzzy modal operator
Based on results from Prop. 4, we have the states:

1. |Sρ[2]
⟩
1
= |111⟩, and probability p1 = 1

4 ;
2. |Sρ[2]

⟩
0
=

√
3
3 (|100⟩ − |010⟩+ |000⟩), and p0 = 3

4 .
These results are compatible with the graphical descrip-

tions in Figures 1 and 2, presenting the simulated circuit and
the histogram generated by the measure operations (1,000×
executions). So, p1 = 734

1000
∼= 3

4 and p0 = 266
1000

∼= 1
4 .

Fig. 1. ρ[2]-Circuit.

Fig. 2. ρ[2]-Histogram.

By Prop. 5, taking |Sf2A
⟩ in Eq. (7), the final states are:

1.|Sρ⟩
1
= 2

3 ((|111⟩+ |011⟩+|101⟩), and p1 = 3
4 = 0.75;

2. |Sρ⟩
0
=

√
3
3 (|111⟩+|011⟩+|101⟩), and p0 = 1− 3

4 = 0.25.

VI. CASE STUDY: PP-P INTERACTIVITY MODELING

The PP-P problem is a social dilemma considering two
police officers and one prisoner. This problem debates situ-
ations where two individuals can benefit from cooperation,
having the temptation to act in their interest. So, the fuzzy
sets represent the strategies related to a prisoner facing
the officer’s behavior, interpreted by quantum states and
operators in the quantum circuit model.

In this case study, the X1 officer humor is “possibly
friendly” and the X2 officer humor is “unfriendly”. For that,



let fA1
(X1) = x1, fA1

(X2) = x2 and f(Y ) = y be the
MD of the officers X1 and X2 and prisoner Y . The fuzzy
expression for the PP-P interaction, interpreted by the Xor
connective, is given by y = x1 + x2 − 2x1x2. By the
action of the fuzzy possibility operator on the agent X1,
ρ[2](x1) = x1

2 , then we have y = 1
2 (x1 + 2x2 − x1x2). In

particular, when x1 = 1
2 and x2 = 0, then ρ[2](x1) = 1

4
implying that y = 1

4 .
The input data are initialized as |0⟩. Then, FA1

|0⟩ =√
1− x1|0⟩+

√
x1|1⟩ and FA2

|0⟩ =
√
1− x2|0⟩+

√
x2|1⟩.

See in Fig. 3 the quantum circuit validated by Qiskit
simulations, and the corresponding histogram in Fig. 4.

Fig. 3. η2-Circuit in the PP-P interactivity.

Fig. 4. η2-Histogram in the PP-P interactivity.

In this case, the input data is modelled as S0 = |00000⟩.
The resulting entangled state obtained from evolution from
S1 to S4 is given as follows: S4 = 1

2 (|00000⟩ − |01000⟩ +
|10000⟩−|11101⟩. Thus, the measure applied to the 5th qubit
returns state |11101⟩ and p1 = 1

4 . Therefore, the measure
applied to the 5th qubit on |1⟩ provides the interpretation at
the final stage, with 25% of probability for the prisoner’s
cooperative behavior.

Such analysis shows a direct influence of the quantum
superposition of the police officers, who are entangled with
the prisoner P . This case is modeling the modality applied
over the X1 officer behavior, interpreting the “possible
friendly” linguist term.

So, this interpretation can be extended for modeling the
interaction between multiple police agents and prisoners.

VII. CONCLUSION

This study introduces new fuzzy modal operations con-
cerning their main algebraic properties and considers fuzzy
negations and aggregation functions to construct such op-
erators. Besides, we provide the representation of fuzzy
modal classes through concepts of QC related to fuzzy
sets generated by such connectives, which are expressed by
quantum registers and composition among QT operations.

Therefore, the presented work provides new information
technologies based on the quantum-fuzzy approach, con-
solidating the modeling of fuzzy algorithms which can be
simulated over quantum computers.

This new approach deals with inaccurate data and the
imprecision inherent to rule-based systems, but it is per-
formed according to concepts from quantum mechanics,
taking advantage of the QC and modalities of FL.

Ongoing work includes further investigations on other
types of modalities, focusing on the applications integrated
into machine learning and artificial intelligence as the simu-
lations of emotion intensities of humanoid robots [4].

ACNOWLEDGEMENTS

This research was partially supported by Brazilian funding
agencies: CAPES, CNPq (309160/2019-7, 3305805/2021-
5, 150160/2023-2), PqG/ FAPERGS (21/ 2551-0002057-1),
FAPERGS/CNPq (23/2551-0000126-8), and PRONEX (16/
2551-0000488-9).

REFERENCES

[1] de Avila, A.B., Reiser, R., Pilla, M.L., Yamin, A.C.: Interpreting Xor
Intuitionistic Fuzzy Connectives from Quantum Fuzzy Computing.
In: Guervós, J.J.M., Garibaldi, J.M., Linares-Barranco, A., Madani,
K., Warwick, K. (eds.) Proc. of the 11th Int. Joint Conference on
Computational Intelligence, IJCCI 2019, Vienna, Austria, September
17-19, 2019. pp. 288–295. ScitePress (2019)

[2] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide
for Practitioners. Springer, Berlin (2007)

[3] Botelho, C., Ramires, G., Peruzzi, V., Cruz, A., Salles, H., Lucca, G.,
Yamin, A., Reiser, R.: An Extension Approach for the Qiskit Library:
Mapping Flexible Systems through Quantum Computation. In: Anais
do XX Encontro Nacional de Inteligência Artificial e Computacional,
ENIAC 2023, Porto Alegre, Brazil. vol. 1, pp. 640–652. Sociedade
Brasileira de Computação (2023)

[4] Botelho, C., Santos, H., Lucca, G., Cruz, A., Yamin, A., Reiser, R.: A
novel quantum fuzzy approach to interpret dilemmas of game theory.
In: Proc. of 2024 IEEE Int. Conference on Fuzzy Systems. Submitted

[5] Dombi, J., Jónás, T.: On a strong negation-based representation of
modalities. Fuzzy Sets and Systems 407, 142–160 (2021), knowledge
Representation and Logics

[6] Imre, S., Balázs, F.: Quantum Computing and Communications An
Engineering Approach. Johm Wiley & Sons, Ltd (2005)

[7] Kaye, P., Laflamme, R., Mosca, M.: An Introduction to Quantum
Computing. Oxford University Press (2007)

[8] Mannucci, M.: Quantum fuzzy sets: Blending fuzzy set theory and
quantum computation. CoRR abs/cs/0604064 (2006)

[9] Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum
Information. Cambridge University Press (2000)

[10] Reiser, R., Lemke, A., de Avila, A.B., Vieira, J., Pilla, M.L., Bois,
A.R.D.: Interpretations on Quantum Fuzzy Computing: Intuitionistic
Fuzzy Operations × Quantum Operators. In: Vizzotto, J.K. (ed.)
Third Workshop-School on Theoretical Computer Science, WEIT
2015, Porto Alegre, Brazil. Electronic Notes in Theoretical Computer
Science, vol. 324, pp. 135–150. Elsevier (2015)

[11] Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353
(1965)


