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Abstract. Motion blur is an undesired effect in images where objects
in motion appear blurred due to the relative motion between the camera
and the scene. An effective way against noisy images involves the use of
GANs (Generative Adversarial Networks). In particular, the Encoding
Generative Adversarial Network (EGAN) enhances the traditional GAN
architecture by incorporating an encoder, which identifies the essential
features of an image, contributing to noise reduction, and thereby sim-
plifying the image classification task. This paper studies the effectiveness
of EGAN in the detection and correction of motion blur noise in images
so that it can improve the accuracy of a classifying model.
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1 Introduction

Motion blur is characterized by residual traces in images caused by the movement
of objects while the image is captured [5]. It can be characterized with two
parameters: the disturbance angle θ and the disturbance length l.

An effective deblurring strategy involves the use of GANs (Generative Ad-
versarial Networks) [3], while the Encoding Generative Adversarial Network
(EGAN) [4] enhances the traditional GAN architecture by incorporating an en-
coder [1]. The encoder plays a crucial role in identifying the essential features of
an image, aiding the generator network in generating an equivalent image. By
discerning and capturing key characteristics, the encoder contributes to noise
reduction, thereby simplifying the image classification task.

This paper aims to study the effectiveness of the EGAN model for the de-
tection and correction of motion blur noise in images such that it can improve
the accuracy of a classifying model. The proposed model is trained on the Modi-
fied National Institute of Standards and Technology (MNIST) dataset [2] which
contains a large number of handwritten digit images. To assess how well the
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EGAN [4] model defends against these noises, we will compare the pre-trained
classification model’s accuracy with and without the EGAN defense mechanism.

2 Methodology

First, our motion blur model for vision sensors is presented. The linear motion
can be defined as a pair (l, θ), where l signifies the magnitude of the displacement
and θ denotes the direction of displacement. Starting with a clear, original image,
we can create blurred versions of it by first taking its Fourier transform and then
followed by applying a motion blur degradation calculated from the parameter
vector (l, θ) [5]. Regarding the EGAN architecture, it contains a GAN that
produces an image from a latent vector, and an encoder that produces a latent
vector from an image [4].

3 Experiments and results

The dataset used for our experiments is the MNIST database [2]. It consists of
a set of 28x28 grayscale images of handwritten digits from 0 to 9. The dataset
comprises 70,000 images divided into two sets: the training set (consisting of
60,000 images), and the validation set (with 10,000 images). Initially, we train
the EGAN model through two stages: GAN training and encoder training. The
GAN training takes 300 epochs with a batch size of 128 images, resulting in
trained generator and discriminator models. We selectively choose only the gen-
erator from these models. For the encoder training, a 5-fold cross-validation is
performed. In each fold, the training process involves 20 epochs, with model val-
idation at the end of each epoch. The goal is to iteratively minimize the encoder
error until it can effectively encode an input image, leading to the generator
producing an output image with minimal error concerning the input. Then, we
validate the classifier previously trained on the dataset. We measure its per-
formance on the original validation set without any data alterations, using the
accuracy metric as our measure of success. The result of the classifier validation
is an accuracy rate of 98.42%. Finally, we validate the EGAN model creating a
set of images generated from the validation set using the EGAN. This process is
carried out with the aim of observing how effective our encoder and generator
are. We evaluate the EGAN model by the accuracy of the classification model
over the validation set previously modified by the EGAN model. The result of
the validation of the EGAN model is an accuracy rate of 95.99%.

3.1 Results of the noise add process

We add noise at validation time, applying motion blur with various combinations
of its two parameters: the angle θ and the length l. We study all combinations of
lengths l ∈ {0.01, 0.02, 0.03, 0.04, 0.05} and angles θ ∈ {0◦, 15◦, 30◦, 45◦}. Table 1
shows the accuracy of the classifier after the noisy add process for the images in
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the validation dataset, for different combinations of the motion blur parameters.
The results obtained in the performance of the noise only take into account those
images that had been correctly classified in the validation phase of the classifier.
We assume an image that has not been correctly classified without having been
altered will not be correctly classified if noise is applied to it; therefore, in order
to reduce the execution time of the validations of the noise, when the classifier
fails its prediction for the original image, it moves on to the next image, without
applying noise to it. The results obtained from the noise add process are surpris-
ing. Initially, we expected that for any value of disturbance length, increasing
the disturbance angle would result in decreased accuracy rates. However, it is
observed the opposite situation: increased disturbance angles results in better
accuracy rates. We attribute this counterintuitive result to the relatively small
size of the images (28x28). With such size, the effects of noise produced by the
θ parameter are not as strong as those of the length parameter, being more
prevalent as the value of the θ parameter gets closer to zero.

3.2 Results of the denoising process

Now, the noisy images created in the previous step are fed to the EGAN model,
and it generates images with similar characteristics to those of the training set,
reducing the noise. This image is then fed to the classification model to check how
this pre-processing affects predictions. Table 2 shows the accuracy rate of each
noise parameters combination in the denoising process with the EGAN model.
An analysis of the results shows that they can be divided into two different
categories: lower intensity noise (l ≤ 0.02), where the accuracy rate obtained
without the EGAN model is higher than the accuracy rate obtained using the
EGAN model to thwart the noise add; and higher intensity noise (l > 0.02),
where the accuracy rate obtained using the EGAN model to thwart the noise
add is higher than the accuracy rate obtained without the EGAN model.

4 Conclusions

Our validations and results analysis underscore the impact of noise add on the
studied model. While we observed a clear inverse correlation between the inten-
sity of the disturbance length and the accuracy rates, we also observed a cor-
relation between the intensity of the disturbance angle and the accuracy rates.
Comparing results from noise add processes and our proposed denoising strat-
egy using the EGAN model reveals both successes and failures in achieving
our initial research goals. In cases with low disturbance length, we encountered
less favorable outcomes, resulting in decreased accuracy rates. This can be at-
tributed to the operation of the generating network of the GAN, which deviated
from expected results in specific scenarios. Conversely, in situations with more
intense blur, the EGAN model was more successful in mitigating the noise. This
dual outcome highlights the intricate relationship between model robustness and
the intensity of adversarial perturbations. In essence, our study emphasizes the
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Length Epsilon

0◦ 15◦ 30◦ 45◦

0 98.42%

0.01 97.31% 97.35% 97.50% 97.70%

0.02 95.19% 95.31% 95.77% 96.47%

0.03 93.59% 93.72% 94.15% 94.98%

0.04 90.54% 91.14% 92.82% 93.85%

0.05 87.04% 87.60% 89.55% 92.69%
Table 1. Accuracy after noisy process.

Length Epsilon

0◦ 15◦ 30◦ 45◦

0 95.99%

0.01 95.29% 95.35% 95.41% 95.46%

0.02 94.84% 94.91% 95.04% 95.18%

0.03 93.89% 94.05% 94.35% 94.74%

0.04 91.89% 92.25% 93.12% 94.13%

0.05 89.17% 89.83% 91.14% 93.05%
Table 2. Accuracy after denoising.

importance of considering varying noise intensities when assessing a model’s
resilience against noise. A potential improvement to enhance the work is to fine-
tune the model for lower-intensity noise, where accuracy rates dropped. A more
detailed exploration of the generating network’s operations and fine-tuning re-
sponses to specific scenarios might enhance overall performance.
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Cabello, M.A., Thurnhofer-Hemsi, K., López-Rubio, E.: Encoding generative ad-
versarial networks for defense against image classification attacks. In: International
Work-Conference on the Interplay Between Natural and Artificial Computation. pp.
163–172. Springer (2022)
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