Sup-T composition of fuzzy implications from different families

Pravallika Kolluru $^{[0009-0005-7833-980X]}$ Nageswara Rao Vemuri $^{*[0000-0003-3806-0669]}$

School of Mathematics and Statistics, University of Hyderabad, India - 500 046. 19immm12@uohyd.ac.in, nrvemuriz@uohyd.ac.in

Fuzzy implications extend the classical implication from $\{0, 1\}$ to the multivalued setting. They are defined as binary functions $I: [0, 1]^2 \rightarrow [0, 1]$ that decrease in the first variable, increase in the second variable and satisfy the boundary conditions I(0, 0) = 1, I(1, 1) = 1 and I(1, 0) = 0.

Fuzzy implications, along with other fuzzy logic connectives, play a significant role both in the theory and applications of fuzzy logic connectives. Among the various applications, the following composition of fuzzy implications is used simultaneously both in theory and applications [1, 2]: Let I, J be two fuzzy implications and * be a t-norm. Then sup-* composition of I, J is given as follows:

$$(I \circ J)(x, y) = \sup_{t \in [0, 1]} (I(x, t) * J(t, y)), \qquad x, y \in [0, 1] .$$
(COMP)

Note that $I \stackrel{*}{\circ} J$ is a fuzzy implication if and only if $(I \stackrel{*}{\circ} J)(1,0) = 0$ (see Theorem 6.4.4 in [2]).

Since the sup-* composition of fuzzy implications does not always give a fuzzy implication and due to its applicational demand, it is always essential to investigate the triples (I, J, *) for which the composition is a fuzzy implication.

In this work, we investigate the necessary and sufficient conditions on fuzzy implications such that their sup-* composition becomes a fuzzy implication. Towards this, we restrict the investigations to some well established families of fuzzy implications. Further, we explore the subsemigroups of these families of fuzzy implications.

Acknowledgment

The second author acknowledges the financial support from the grant UoH-IoE-RC2-21-015 of the Institute of Eminence scheme, UoH.

References

- Baczyński, M., Drewniak, J., Sobera, J.: Semigroups of fuzzy implications. Tatra Mount Math Publishers 21 (2001), 61-71.
- Baczyński, M., Jayaram, B.: Fuzzy implications (Studies in Fuzziness and Soft Computing, vol. 231), Springer, Berlin 2008.

^{*} Corresponding Author