
Nontrivial intermediate syllogisms suggest way
to solution of problems of non-monotonic logic
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In earlier publications, we focused on a special group of the validity non-
trivial syllogisms related to the property of contrarary in the gradad Peterson
square of opposition [1]. Non-trivial logical syllogisms are certain types of logi-
cal assertions, where premises containing intermediate quantifiers, e.g. “Most”,
“Several”, “Almost all”, etc. pf which we are able to derive a new conclusion.
The problem concerning nonmonotonic logic brought us to the idea of also deal-
ing with validity of non-trivial syllogisms, which are related to the property of
sub-contrary in graded Peterson’s square of opposition [2]. In recent years, there
has been a growing acknowledgment that standard logics often overlook a cru-
cial aspect of ordinary common reasoning: its nonmonotonic nature. A classic
example often cited to illustrate this point is the following: if we are aware that
Tweety is a bird, we typically infer, in the absence of contradictory evidence,
that Tweety can fly. If, however, we later learn that Tweety is a penguin, we will
withdraw our prior assumption. Recently, there have been several approaches to
formalize this type of non-monotonic reasoning. The inference that birds can fly
is handled by having the rule that says that: for any A, “A can fly′′ is a theorem
if “A is a bird′′ and “A cannot fly′′ is not a theorem. As we can observe, this is
a certain form of logical inferences and at the same time an invalid form of logical
syllogism. Furthermore, this idea leads to properties that are fulfilled in Aristo-
tle’s square of opposition. Mainly contradicotry property between the formulas
(∀x)A(x)⇒⇒⇒ Fly(x) and (∃x)A(x)∧∧∧¬¬¬Fly(x). The use of intermediate quantifiers,
which were formally and semantically processed in other publications (see [3])
to preserve the monotonic behavior of the theory under consideration. A similar
approach without the mathematical formulation of intermediate quantifiers was
proposed in [4].
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2. P. Murinová, V. Novák, Analysis of generalized square of opposition with interme-
diate quantifiers, Fuzzy Sets and Systems 242 (2014) 89–113.

3. V. Novák, On fuzzy type theory, Fuzzy Sets and Systems 149 (2005) 235–273.



2 Petra Murinová et al.

4. C. Moore, R., Semantical considerations on nonmonotonic logic, Proceedings of the
18th Intarnational Join Conference on Artificial Intelligence, Germany, August 8-12,
1983 (1983).


