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Abstract. Aggregation functions are a common tool in Statistics for
constructing data summaries. One of the most prominent types of data
summaries are the so-called skewnesss coefficients, which measure the
degree of asymmetry of a probability distribution. In most cases, these
skewness coefficients may be used for defining a test of symmetry. In
the present work, some experiments are carried out comparing the per-
formance of the tests of symmetry associated with a popular family of
skewness coefficients introduced by Hinkley.
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1 Introduction

Aggregation functions [1] have been widely used in the field of Statistics for con-
structing different data summaries. Aside of direct applications of an (averaging)
aggregation function as an estimator of location, estimators of other population
parameters such as scale, skewness and kurtosis are usually constructed by means
of one or more aggregation functions. In this work, we deal with the use of aggre-
gation functions for the construction of skewness coefficients allowing to measure
the degree of asymmetry of the probability distribution of a real-valued random
variable [4]. In particular, the median and other Ordered Weighted Averaging
(OWA) operators are here used for constructing skewness coefficients.

For most choices of aggregation functions, the probability distribution of the
sample version of the associated skewness coefficient is proven to be asymp-
totically normal and centered around zero for symmetric probability distribu-
tions [3]. This implies that in such case one could easily define a natural test of
symmetry, assuming the asymptotic variance can be estimated. Here, we explore
the use of the bootstrap for such purpose and define several tests of symmetry
associated with different skewness coefficients constructed from popular aggre-
gation functions. In particular, we consider the family of skewness coefficients
introduced by Hinkley [2]. These tests of symmetry are compared in terms of
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preservation of the significance level under symmetric distributions, power under
asymmetric distributions and robustness in the presence of outliers.

2 Tests of symmetry

If X is a continuous random variable with a density function f , then X is said
to be symmetric about x0 if it holds that f(x0 − x) = f(x0 + x) for any x ∈ R.
Note that the median (if it is unique) and the mean (if it exists) of a symmetric
random variable coincide and are necessarily the point at which the symmetry
occurs.

Oja [4] introduced some desirable properties for a coefficient measuring the
degree of asymmetry of a random variable, thus resulting in the formalization of
the so-called skewness coefficients. More specifically, a skewness coefficient is any
function γ : F → R (where F denotes a set of random variables) that satisfies
the following properties:

(i) γ(X) = 0, if X is symmetric;
(ii) γ(aX + b) = γ(X), for any a > 0 and b ∈ R;
(iii) γ(−X) = −γ(X).

Due to property (i), any skewness coefficient can be used for constructing a sym-
metry test by establishing some hypothesis on the value of the chosen skewness
coefficient γ by considering H0 : γ(X) = 0 versus H1 : γ(X) ̸= 0. It is important
to remark that the null hypothesis actually is more general than that of symme-
try since there may exist distributions for which the skewness coefficient takes
the value zero but are not symmetric.

In order to construct the rejection region of the test of symmetry, it is nec-
essary to know the distribution of the chosen skewness coefficient under the null
hypothesis of symmetry. Luckily, for most skewness coefficients it holds that

√
n

γ̂ − γF√
V (γ, F )

⇝
L

N(0, 1) , (1)

where γ̂ is the sample version of the skewness coefficient γ, γF is the population
value for the skewness coefficient γ at the distribution F , and V (γ, F ) denotes
the asymptotic variance of γ at the distribution F . Note that γF = 0 for all
symmetric distributions, however the asymptotic variance V (γ, F ) is dependent
on the underlying distribution and may vary from one symmetric distribution
to another one.

If the asymptotic distribution in Equation (1) holds for the chosen skewness
coefficient, a rejection region for a test of symmetry associated with γ may be
defined as follows:

RR =

{
x ∈ Rn

∣∣∣∣∣ |γ(x)− γ0| >
√

V ∗(γ,x)√
n

z1−α/2

}
,

where z1−α/2 is the quantile of order 1−α/2 of a normal distribution and V ∗(γ,x)
is the bootstrap estimation of V (γ, F ), as proposed in [3].
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In the following, we compare the performance of the tests of symmetry as-
sociated with the skewness coefficients introduced by Hinkley [2], parameterized
by a given p ∈ ]0, 0.5[, as follows:

γp(X) =

(
C1−p(X)− C0.5(X)

)
−

(
C0.5(X)− Cp(X)

)
C1−p(X)− Cp(X)

,

where Cq(X) represents the quantile of order q of X for any q ∈ ]0, 1[. Note
that the sample version of the skewness coefficients in this family is obtained by
substituting population quantiles by sample quantiles.

3 Experimental analysis

In the following, we provide an experimental analysis of the power of the pro-
posed symmetry tests under different distributions. We consider the significance
level α = 0.05 and sample sizes n = 25 and n = 200. The power of the different
tests is estimated by using Monte Carlo simulation (104 replications), setting
the number of bootstrap replications to 103.

Table 1 presents the power of the symmetry tests associated with different
members of the family of skewness coefficients introduced by Hinkley at four
symmetric distributions, eight asymmetric distributions and four contaminated
distributions of the form (1−ε)N(0, 1)+εN(5, 1). The experimental setup follows
that of [3], so we refer to said paper for more details. Note that for n = 25
there are empty cells for each distribution because bootstrap resampling leads to
samples in which many central values are repeated and the skewness coefficients
are not properly defined in such a case when considering values of p close to 0.5.

It should be pointed out that the higher the considered value of p is, the
lower the obtained powers are. This is because the focal point when considering
a value of p close to 0.5 is the central part of the distribution instead of the tails.
In summary, lower values of p result in more powerful but less robust tests in
the presence of outliers (contaminated distributions).

4 Conclusion

We have compared the power of different tests of symmetry based on the use of a
skewness coefficient constructed by using aggregation functions. In the future, we
will explore the use of different skewness coefficients constructed from different
aggregation functions.
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Distribution n γ0.05 γ0.10 γ0.15 γ0.20 γ0.25 γ0.30 γ0.35 γ0.45 γ0.45

Normal 25 0.0303 0.0226 0.0165 0.0095 0.0036 0.0003
200 0.0419 0.0435 0.0379 0.0371 0.0338 0.0294 0.0208 0.0073 0.0000

Cauchy 25 0.1188 0.0721 0.0494 0.0318 0.0105 0.0020
200 0.0682 0.0587 0.0549 0.0501 0.0408 0.0318 0.0203 0.0086 0.0000

Laplace 25 0.0501 0.0359 0.0256 0.0164 0.0045 0.0004
200 0.0471 0.0472 0.0427 0.0416 0.0374 0.0334 0.0212 0.0067 0.0000

Uniform 25 0.0447 0.0356 0.0259 0.0131 0.0038 0.0006
200 0.0584 0.0529 0.0500 0.0425 0.0390 0.0326 0.0223 0.0064 0.0001

Distribution n γ0.05 γ0.10 γ0.15 γ0.20 γ0.25 γ0.30 γ0.35 γ0.45 γ0.45

GLD7 25 0.2187 0.1363 0.0798 0.0382 0.0106 0.0023
200 0.9581 0.8092 0.6025 0.4000 0.2303 0.1211 0.0565 0.0164 0.0002

GLD8 25 0.6244 0.4109 0.2445 0.1184 0.0351 0.0059
200 1.0000 0.9994 0.9804 0.8657 0.6180 0.3350 0.1326 0.0304 0.0002

GLD9 25 0.2021 0.1209 0.0692 0.0308 0.0067 0.0007
200 0.9437 0.8190 0.6177 0.3986 0.2258 0.1144 0.0494 0.0122 0.0000

GLD10 25 0.3273 0.1998 0.1112 0.0494 0.0133 0.0017
200 0.9933 0.9530 0.8231 0.5929 0.3488 0.1770 0.0738 0.0156 0.0001

GLD11 25 0.0589 0.0358 0.0221 0.0143 0.0038 0.0006
200 0.1506 0.1195 0.0928 0.0681 0.0492 0.0356 0.0241 0.0075 0.0001

GLD12 25 0.1474 0.0889 0.0527 0.0266 0.0078 0.0012
200 0.7222 0.6029 0.4268 0.2720 0.1587 0.0876 0.0373 0.0096 0.0000

GLD13 25 0.7845 0.5790 0.3739 0.1866 0.0537 0.0084
200 1.0000 1.0000 0.9978 0.9626 0.7959 0.4835 0.2024 0.0418 0.0000

GLD14 25 0.8201 0.6229 0.4116 0.2141 0.0702 0.0112
200 1.0000 1.0000 0.9990 0.9743 0.8322 0.5259 0.2207 0.0456 0.0005

ε n γ0.05 γ0.10 γ0.15 γ0.20 γ0.25 γ0.30 γ0.35 γ0.45 γ0.45

0.01
25 0.0370 0.0237 0.0207 0.0104 0.0032 0.0008

200 0.0489 0.0454 0.0426 0.0367 0.0308 0.0285 0.0194 0.0077 0.0000

0.05
25 0.1569 0.0626 0.0307 0.0148 0.0047 0.0004

200 0.4221 0.1070 0.0793 0.0556 0.0430 0.0323 0.0224 0.0080 0.0000

0.10
25 0.4121 0.2307 0.1094 0.0414 0.0097 0.0016

200 0.9873 0.5615 0.2132 0.1351 0.0772 0.0435 0.0254 0.0070 0.0000

0.20
25 0.7327 0.6015 0.4218 0.2222 0.0619 0.0080

200 1.0000 0.9998 0.9746 0.7000 0.3170 0.1610 0.0586 0.0120 0.0002

Table 1. Power of the the symmetry tests associated with different skewness coefficients
at different distributions.


