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Abstract. It is well-established that quantum probability does not fol-
low classical Kolmogorov probability calculus. Various approaches have
been developed to loosen the axioms, of which the use of signed measures
is the most successful (e.g. the Wigner quasiprobability distribution). As
part of our larger effort Assumptions of Physics, we have been consid-
ering the various roles of measures, which are used in physics not only
for probability, but also to quantify the count of possible states and con-
figurations. These measures play a crucial role in classical mechanics, as
they effectively define its geometric structure. If one tries to construct
a parallel in quantum mechanics, the measure to quantify the count of
states turns out to be non-additive. The idea, then, is that the proper
extension of probability calculus may require the use of non-additive
measures, which is something that, to our knowledge, has not yet been
explored.
The purpose of this paper is to present the general idea and the open
problems to an audience that is knowledgeable of the subject of non-
additive set functions, though not necessarily in quantum physics, in the
hope that it will spark helpful discussions. We will go through the moti-
vation in simple terms, which stems from the link between the entropy S
of a uniform distribution ρU and the logarithm of the measure µ associ-
ated to its support U (i.e. S(ρU ) = log(µ(U))). If one extends this notion
to quantum mechanics, the associated measure µ is non-additive. We will
explore some properties of this “quantum measure”, its reasonableness
in terms of the physics, but its peculiarity on the math side. We will ex-
plore the need for a set of properties that can properly characterize the
measure and a generalization of the Radon-Nikodym derivative to define
a properly extended probability calculus that reduces to the standard
additive one on sets of physically distinguishable cases (i.e. orthogonal
measurement outcomes).
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1 Introduction

It is well-established that quantum probability does not follow classical Kol-
mogorov probability calculus. Various approaches have been developed to loosen
the axioms, of which the use of signed measures is the most successful (e.g. the
Wigner quasiprobability distribution).[3–8, 10, 11] On the other hand, the use of
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non-additive measures (i.e. set functions) has received little attention, which is
striking for two reasons. First, we have found that non-additive measures emerge
quite naturally in quantum mechanics when looking for a quantum analogue of
count of states[2], which plays a fundamental role in statistical mechanics. Sec-
ond, there has been an increased use of quantum probability in non-classical
decision making (see e.g. Ref. [9]), an area where non-additive measure theory
is widely used.

The aim of this article is to introduce the problem for those that work on non-
additive set functions but are not familiar with quantum mechanics. The overall
goal is to find experts in the field that are interested in collaborating or helping.
The general idea is that, in classical mechanics, one is provided with two additive
measures, a Liouville measure to quantify states and a measure of probability,
and the Radon-Nikodym derivative of the two returns the probability density.
The goal is to find a quantum analogue for the two measures and the derivative,
thus providing a full “measure theoretic” generalization.

2 Measures in classical mechanics

In classical mechanics, an ensemble is given by a probability measure p over
the Borel algebra of phase space X (i.e. the symplectic manifold charted by
the position qi and momentum ki of all particles of the system). The space of
classical ensembles EC (i.e. the space of probability measures over X) is a convex
space as a convex combination λp1 + (1− λ)p2 with λ ∈ [0, 1] of two probability
measures p1 and p2 is also a probability measure.

The space is also equipped with a measure µ(U) =
∫
U

∏
i dq

idki that quan-

tifies states in a volume U . Given an ensemble p, the probability density ρ = dp
dµ

is the Radon-Nikodym derivative and its entropy is S(ρ) = −
∫
X
ρ log ρdµ.1 For

a uniform distribution over a set U , S(ρU ) = logµ(U). Note that we will assume
all logarithms to be in base 2, as is customary in information theory.

3 Finding measures in quantum mechanics

In quantum mechanics, the space of (pure) states X is the projective space
P (H) of a Hilbert space H. An ensemble (or mixed state) is given by a positive
semi-definite Hermitian operator ρ of trace one acting on the Hilbert space H
of the system. The details of Hilbert spaces are not essential for our discussion;
what is important is that the space of quantum ensembles EQ is also a convex
space as a convex combination λρ1 + (1 − λ)ρ2 with λ ∈ [0, 1] of two positive
semi-definite Hermitian operators ρ1 and ρ2 of trace one is also a positive semi-
definite Hermitian operator of trace one. A pure state is an extreme point of the
convex set (i.e. an ensemble that cannot be further decomposed into a convex
combination of other ensembles) and any ensemble ρ can be expressed as a convex

1 The density and entropy must be computed with the Liouville measure µ or one
does not recover the correct physics.
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combination of countably many pure states. To each ensemble is associated an
entropy S(ρ) = −tr(ρ log ρ).

The goal is to characterize a quantum ensemble ρ as a set function p over
the Borel algebra of the pure states X in the same way a classical ensemble is
a probability measure over phase space. Additionally, we want a set function µ
that quantifies quantum states, similarly to the classical Liouville measure, and
to define the equivalent to the probability density dp

dµ . Finally, we want to make

sure that classical distributions (i.e. additive measures) are recovered for each
quantum observable.2

3.1 First attempt for a quantum state-quantifying measure

As a first attempt[2], we imposed the same relationship between measure and
entropy one has in classical mechanics. That is, given a set U ⊆ X of pure states,
we consider the ensemble ρU constructed with a uniform convex combination3,
and we define µ(U) = 2S(ρU ).

Since the entropy of a pure state is zero in quantum mechanics, we have
µ({ψ}) = 1. For a set of two pure states U = {ψ, ϕ}, we have

S(ρU ) = −
1 +

√
p

2
log

1 +
√
p

2
−

1−√
p

2
log

1−√
p

2
. (1)

where p = |⟨ψ|ϕ⟩|2 is given by the square of the inner product, and can be
physically understood as the probability of measuring one state given that the
other was prepared. Since 0 ≤ p ≤ 1, we have 1 ≤ S(ρU ) ≤ 2, which means that
µ is not additive.

Physically, the measure is additive only when the two states are perfectly
distinguishable through a measurement or, equivalently, when they can be pre-
pared in the same physical conditions. We can therefore understand µ as counting
states at-all-else-being-equal, and we have arguments as to why this is physically
appropriate.

There is, however, an additional property of µ that make it less appealing: it
is non-monotone. That is, the entropy of a uniform distribution over three states
can have lower entropy than the uniform distribution of a subset of two. On
physical grounds, saying that a bigger set of states has fewer states at-all-else-
being-equal does not seem right. On mathematical grounds, as we learned from
discussing the topic with experts in non-additive measure theory, generalizations
such as the Choquet integral require monotone measures. This led us to revise
the approach.

2 The idea is that the Borel algebra will contain the lattice of closed subspaces, and
therefore we simply need to recover some key results on that sub-lattice.

3 The set of pure states X is equipped with a measure invariant under unitary trans-
formation, which can be used to define uniform convex combinations over a Borel
set of X.
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3.2 Second attempt for quantum measures

Our second approach, still being finalized[1], defines µ(U) = sup(2S(hull(U)))
as the supremum of the entropy reachable with a convex combination of the
elements of the set.4 If U is a set of one or two pure states, the measure is the
same as what we already computed. Therefore the main findings of the previous
work carry over. For bigger sets, the measure is monotone because the supremum
as well as the hull are monotone functions. Moreover, µ can be shown to be sub-
additive.

Given a mixed state ρ, we can define pρ(U) = sup({λ ∈ [0, 1] | ∃ ρ1 ∈
hull(U), ρ2 ∈ EQ s.t. ρ = λρ1 + (1 − λ)ρ2}) as the biggest fraction of ρ that
can be expressed as a convex combination of U . This set function can also be
shown to be monotone and sub-additive.

When µ and pρ are restricted to the lattice of closed subspaces, they both
become additive on orthogonal subspaces. With this insight we should be able
to recover classical probability for quantum measurements.

4 Open questions

While we have identified possible candidates for our measures, there are many
questions that remain open. First of all, what is the proper notion of derivative,
and therefore of integral, that we should be using? Ideally, for every quantum
observable O we would like a function o : X → R of the pure states so that
integrating that function recovers the expectation value for a given mixed state.
That is, tr(ρO) =

∫
X
o
dpρ

dµ dµ. Similarly, we would like to express the entropy as
an integral. It is not clear to us whether these features are possible or not.

Additionally, it would be interesting to understand whether these non-additive
set functions have any relationship to the sorts of problems for which non-
additive set functions are used in decision theory or other areas. We look forward
to productive discussions in these areas.
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