A note to pseudo-*n*-uninorms

Juraj Kalafut^[0009-0004-5373-3133)]

Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering Slovak University of Technology

Abstract. The paper presents an approach to characterize all pseudon-uninorms with continuous underlying functions, i.e., non-commutative counterparts of n-uninorms. This approach differs significantly from the approach of characterizing n-uninorms via z-ordinal sum, which is no longer suitable for general pseudo-n-uninorms. The size of n is reduced inductively through the set of one-sided annihilators of a pseudo-nuninorm. After this reduction, it is shown that each such reduced pseudon-uninorm is then only an ordinal sum of a pseudo-uninorm and a pseudo-n-uninorm, which can be further reduced.

Keywords: Pseudo-n-uninorm, n-uninorm, Annihilator, Pseudo-uninorm

The *n*-uninorms, which were proposed by Akkela in 2007 [1], unify the theory of both nullnorms and uninorms. The case of idempotent *n*-uninorms and *n*-uninorms with continuous underlying functions were completely characterized by Mesiarová-Zemánková in [4] and [5] respectively. For their characterization, she proposed a new construction method, which extends Clifford's ordinal sum, named *z*-ordinal sum.

Theorem 1 (*z*-ordinal sum, [4]). Let A and B be two index sets such that $A \cap B = \emptyset$ and $C = A \cup B \neq \emptyset$. Let $(G_{\alpha})_{\alpha \in C}$ with $G_{\alpha} = (X_{\alpha}, *_{\alpha})$ be a family of semigroups and let the set C be partially ordered by the binary relation \preceq such that (C, \preceq) is a meet semi-lattice, Further suppose that each semigroup G_{α} for $\alpha \in A$ possesses an annihilator z_{α} , and for all $\alpha, \beta \in C$ such that α and β is incomparable there is $\alpha \lor \beta \in A$. Assume that for all $\alpha, \beta \in C, \alpha \neq \beta$, the sets X_{α} and X_{β} are either disjoint or that $X_{\alpha} \cap X_{\beta} = \{x_{\alpha,\beta}\}$. In the second case suppose that for all $\gamma \in C$ which is incomparable with $\alpha \lor \gamma = \beta \lor \gamma$ and for each $\gamma \in C$ with $\alpha \lor \prec \gamma \prec \alpha$ or $\alpha \lor \beta \prec \gamma \prec \beta$ we have $X_{\gamma} = \{x_{\alpha,\beta}\}$. Further in the case that $\alpha \lor \beta \in A$ then $x_{\alpha,\beta} = z_{\alpha \lor \beta}$ is the annihilator of both G_{β}, G_{α} . And in the case that $\alpha \lor \beta = \alpha \in B$ then $x_{\alpha,\beta}$ is the annihilator of G_{β} and the neutral element of G_{α} .

Put $X = \bigcup_{\alpha \in C} X_{\alpha}$ then G = (X, *) is a semigroup if * is defined as follows

$$x * y = \begin{cases} x *_{\alpha} y & \text{if } (x, y) \in X_{\alpha} \times X_{\alpha} \\ x & \text{if } (x, y) \in X_{\alpha} \times X_{\beta}, \, \alpha \neq \beta \text{ and } \alpha \lor \beta = \alpha \in B \\ y & \text{if } (x, y) \in X_{\alpha} \times X_{\beta}, \, \alpha \neq \beta \text{ and } \alpha \lor \beta = \beta \in B \\ z_{\gamma} & \text{if } (x, y) \in X_{\alpha} \times X_{\beta}, \, \alpha \neq \beta \text{ and } \alpha \lor \beta = \gamma \in A \end{cases}$$

Later on, these results led to the complete characterization of commutative associative aggregation functions continuous around the main diagonal on the unit interval in [6].

A similar characterization of non-commutative associative aggregation functions continuous around the main diagonal on the unit interval is still missing. Therefore, the main intention of this contribution is to take a step further for such characterization. Thus we are now focused on the characterization of pseudo-*n*-uninorms which form non-commutative extensions of *n*-uninorms.

Definition 1. Let $P^n: [0,1]^2 \to [0,1]$ be a binary function then

- it posses an n-neutral element $\{e_1, \ldots, e_n\}_{z_1, \ldots, z_{n-1}}$ if for each $i \in \{1, \ldots, n\}$ and $x \in [z_{i-1}, z_i]$

$$P^n(x, e_i) = P^n(e_i, x) = x$$

holds, where $z_0 = 0$ and $z_n = 1$.

- it is called pseudo-n-uninorm if it is associative, non-decreasing in both coordinates and possesses an n-neutral element. Commutative pseudo-n-uninorm is called n-uninorm.

A pseudo-*n*-uninorm on the squares given by $[z_{i-1}, e_i]^2$ and $[e_i, z_i]^2$ for $i \in$ $\{1, 2, ..., n\}$ reduces to the pseudo-t-norm respectively pseudo-t-conorm in the latter case. We will refer to them as the underlying functions of the pseudo-nuninorm P^n . Under the assumption of continuity the underlying functions of P^n are commutative (i.e., t-norm, t-conorm) [3]. Starting from the most general case of pseudo-*n*-uninorm P^n with the continuous underlying function we will propose its complete characterization completely by distinguishing all possibilities and then inductively reducing the order of a pseudo-n-uninorm. The following Lemma appears to be useful.

Lemma 1. Let $P^n: [0,1]^2 \to [0,1]$ be an n-pseudo-uninorm with n-neutral ele $ment \{e_1, \dots, e_n\}_{z_1, \dots, z_{n-1}} then for i, j \in \{0, \dots, n\}, i \le j P^n(z_i, z_j), P^n(z_j, z_i) \in \{0, \dots, n\}, i \le j P^n(z_i, z_j), P^n(z_j, z_j) \in \{0, \dots, n\}, i \le j P^n(z_j, z_j), P^n(z_j, z_j), P^n(z_j, z_j), P^n(z_j, z_j) \in \{0, \dots, n\}, i \ge j P^n(z_j, z_j), P^n$ $\{z_i, z_{i+1}, \dots, z_i\}.$

The previous Lemma implies that $P^n(0,1) = z_i$ and $P^n(1,0) = z_j$ for some $i, j \in \{0, 1, ..., n\}$. Assuming $z_i \leq z_j$ we find out the following:

- $\begin{array}{l} \ P^n \ \text{on} \ [0,z_i]^2 \ \text{is a pseudo-}i\text{-uninorm with} \ P^n(0,z_i) = P^n(z_i,0) = z_i. \\ \ P^n \ \text{on} \ [z_i,z_j]^2 \ \text{is a pseudo-}(j-i)\text{-uninorm with} \ P^n(z_i,z_j) = z_i \ \text{and} \ P^n(z_j,z_i) = z_i. \end{array}$ $- P^n$ on $[z_j, 1]^2$ is a pseudo-(n - j)-uninorm with $P^n(z_j, 1) = P^n(1, z_j) = z_j$.
- $P^n \text{ on } [z_i, 1] \times [0, z_i] \text{ is constantly equal to } z_i. \\ P^n \text{ on } [0, z_j] \times [z_j, 1] \text{ is constantly equal to } z_j.$

Therefore it only remains to examine values of P^n on the squares $[0, z_i]^2, [z_i, z_j]^2$, $[z_j, 1]^2$ and the rectangles $[0, z_i] \times [z_i, z_j], [z_j, 1] \times [z_j, z_i]$. We will at first start with the square $[z_i, z_j]^2$.

If there exists some $x \in [z_i, z_j]$ such that $P^n(x, z_i) = x$ then the following hold:

- 1. x is a left annihilator of P^n .
- 2. $x \in \{z_i, z_{i+1}, ..., z_i\}.$

Now on we will denote L the set of left annihilators of P^n . Note that in our setup such set L is non-empty since $\{z_i, z_i\} \subset L$. Consider that the previous inclusion holds properly then we may state the following Proposition.

Proposition 1. Let $P^n: [0,1]^2 \to [0,1]$ be an n-pseudo-uninorm with continuous underlying functions such that $P^n(0,1) = z_i$ and $P^n(1,0) = z_i$ and L be the set of left annihilators of P^n then for each $z_k, z_l \in L, z_k < z_l$ such that there is no $z_m \in L$, $z_k < z_m < z_l$ the following hold.

- 1. P^n restricted to $[z_i, z_j]^2$ is isomorphic to a (l-k)-pseudo-uninorm $P^{(l-k)}$: $[0,1]^2 \rightarrow [0,1]$ with continuous underlying functions and two left annihilators namely 0, 1.
- 2. $P^{n}(x, y) = z_{k}$, for each $(x, y) \in [z_{k}, z_{l}[\times[0, z_{k}]]$. 3. $P^{n}(x, y) = z_{l}$, for each $(x, y) \in [z_{k}, z_{l}[\times[z_{l}, 1]]$.
- Remark 1. Note that this proposition is stated in the form that characterizes the structure of a pseudo-n-uninorm P^n on the rectangles $[0, z_i] \times$ $[z_i, z_j], [z_i, 1] \times [z_i, z_i]$ as well.
- Observe that unlike the case of *n*-uninorms with continuous which can be constructed via z-ordinal sum of semigroups (consisting of trivial semigroups and uninorms not necessarily proper), this is no longer true for the case of general pseudo-n-uninorm as it can be seen from this Proposition.
- The case when $z_i < z_i$ can be dealt analogously and is left to the reader due to a lack of space.

Previously we have reduced the general pseudo-uninorm P^n to respectively to pseudo-i/(n-j)/(k-l)-uninorm respectively. We have also characterized the values of general pseudo-n-uninorms outside squares, which lay along the main diagonal. To characterize pseudo-uninorms on these squares, we point out that all of them are isomorphic to pseudo-uninorm P^m on the unit interval for corresponding m. For such pseudo-uninorm P^m hold $P^m(0,1), P^m(1,0) \in \{0,1\}$ and $L \subset \{0,1\}$, assuming $P^m(0,1) < P^m(1,0)$ since the other inequality is just a dual case. Notice that this case covers also the commutative options of choice $z_i = z_i \in \{0, 1\}.$

We can further reduce such pseudo-*m*-uninorm P^m as follows. Since $P^m(e_1, e_m)$ $= z_k$ and $P^m(e_m, e_1) = z_l$ for some $k, l \in \{1, 2, ..., m-1\}$. Because of the idempotency of both z_k, z_l we can define and ensure the existence of x_0, y_0 given by:

$$x_0 = \inf(x|P^n(x, \min(z_k, z_l))) = \min(z_k, z_l),$$

$$y_0 = \sup(y|P^n(y, \max(z_k, z_l))) = \max(z_k, z_l).$$

For all $x, y \in [x_0, \min(z_k, z_l)] \times [\max(z_k, z_l), y_0]$ it holds that $P^n(x, y) = z_k$ and $P^n(y,x) = z_l$. Moreover x_0, y_0 are idempotent points of P^n . Now we will divide the interval [0, 1] on 2 disjoint domains, namely the interior denoted by I and the exterior E. With $[0, x_0[,]y_0, 1] \subset E$ and $]x_0, y_0[\subset I. x_0$ belongs to E if and only if $P^n(x_0, \min(z_k, z_l)) = P^n(\min(z_k, z_l), x_0) = \min(z_k, z_l)$ and similarly y_0 belongs to E if and only if $P^n(y_0, \max(z_k, z_l)) = P^n(\max(z_k, z_l), y_0) = \max(z_k, z_l)$. In such case it holds that $P^n(i, e) = P^n(e, i) = e$, whenever $i \in I$ and $e \in E$. Notice that both I and E are closed on the operation P^n . Thus the pseudo-m-uninorm P^m can be constructed via Clifford's ordinal sum of two semigroups $G_1 = (E, P^m)$ and $G_2 = (I, P^m)$ with order $1 \prec 2$. Observe that (E, P^m) is a generalized pseudo-uninorm.

Since pseudo-uninorms with continuous underlying functions were characterized in [2], we will further focus only on semigroup $G_1 = (I, P^m)$. But in that case $z_k = P^m(0, 1)$ and $z_l = P^m$ are one sided annihilators of G_1 which is a pseudo-*m*-uninorm with continuous underlying functions on interval *I*. Such pseudo-*m*-uninorm can be then decomposed similarly as was described above.

We can proceed inductively until we reduce n to 1 and in that case, the pseudo-1-uninorm is only a pseudo-uninorm with continuous underlying functions. Now there remains an interesting open question. Whether there exists some non-commutative construction approach similar to the z-ordinal sum which is suitable for a similar characterization of pseudo-n-uninorms and thus for construction of other non-commutative associative functions.

Acknowledgement. This contribution was supported by grants VEGA 1/0036/23, VEGA 2/0128/24 and Program na podporu mladých výskumníkov (Young Researchers Support Programme).

References

- P. Akkela (2007). Structure of n-uninorms. Fuzzy Sets and Systems 158, pp. 1631– 1651.
- J. Kalafut, A. Mesiarová-Zemánková. Decomposition of pseudo-uninorms with continuous underlying functions via ordinal sum. (under review in Information Sciences).
- 3. E. P. Klement, R. Mesiar, E. Pap (2000). Triangular norms. Kluwer Academic Publishers, Dordrecht.
- A. Mesiarová-Zemánková (2022). Characterization of idempotent n-uninorms Fuzzy Sets and Systems 427, pp. 1–22.
- A. Mesiarová-Zemánková (2021). Characterization of n-uninorms with continuous underlying functions via z-ordinal sum construction. International Journal of Approximate Reasoning 113, pp. 60–79.
- A. Mesiarová-Zemánková (2022). Commutative, associative and non-decreasing functions continuous around diagonal. Iranian Journal of Fuzzy Systems 19 (2), pp. 31–48.