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Abstract. We present in this article an interpretable fuzzy approach to
experimental design under constraints that can be used with few data.
It is mainly intended (but not limited) to materials science. The goal is
to provide experimentalists with an interpretable and explainable algo-
rithm, allowing them to sample optimally the design space. We detail the
different steps of our algorithm that consists in recommending the next
experiment to perform and building a Sugeno fuzzy rule base. We then
present some results on a toy and a real-world datasets. As the method is
inspired from Bayesian optimization, we also compare the fuzzy approach
to the Bayesian one.

Keywords: Active learning · experimental design · fuzzy rules · opti-
mization · interpretability.

1 Introduction

Experimental sciences require exploring an often very large space of possibilities
to approach an optimum. Different sampling methods are used in experimen-
tal research, such as random sampling, factorial sampling, the response surface
method, Bayesian optimization [6], the optimal coverage algorithm, etc. Without
loss of generality, we take as example materials discovery, which aims at produc-
ing high-performance materials for a targeted use. These materials are generally
produced from a mixture of initial compounds subjected to a certain manufac-
turing process. In recent years, Artificial Intelligence has accelerated innovation
in this area [10]. In this context, the objective of our work is to develop a method
based on fuzzy logic applied to experimental design. We define our problem as
testing different sets of parameters (i.e., the composition of a material and the
process parameters) to maximize a given property (e.g., the robustness of this
material). In particular, we are interested in finding an automatic method to
iteratively sample experimental parameters optimally.

Our motivation is to provide a tool to help experimentalists determining
what are the next sets of parameters to test and that works with few data. We
aim at reducing the number of experiments to achieve a target performance,
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to both reduce the waste of raw materials and converge more quickly towards
an innovative material. To keep the Human in the loop, we pay attention to
interpretability, giving clues to the user about the choice of the next experimental
setup. Indeed, explainability/interpretability aims at making the operation and
results of the model more intelligible and transparent to humans, to strengthen
confidence in decision-making and its acceptability.

The paper is structured as follows. The next section gives an overview of the
approach. Section 3 describes the regression method that approximates the ob-
jective function. Section 4 explains the process behind the selection of the next
experiment to perform. We show the results and the comparison with Bayesian
optimization in Section 6. As our approach is dedicated to Human experts, sec-
tion 7 introduces how the end-user is considered. Finally, we draw some conclu-
sions and perspectives.

2 Approach overview

To satisfy the needs of experimentalists, we designed an approach based on these
principles:

– It must implement an adaptive sampling;
– It must be able to combine learning from data and expert knowledge;
– It must be robust, i.e. small changes in the initial points should not lead to

large changes in the results and predictions;
– It must be interpretable, i.e. the steps and results of the model must be

intelligible to humans, to strengthen confidence in decision-making;
– It must be scalable, i.e. able to work on high-dimensional mixture problems.

To meet these prerequisites, we have developed an approach whose different
steps are detailed in Fig. 1. The selected experimental point is the one that max-
imizes the sampling score (see section 4). This process is repeated over several
iterations, each iteration corresponding to one experiment.

In this work, we consider the material properties to have real values. We thus
need to build a fuzzy rule base for regression (see section 3). We chose to use a
Sugeno approach for its computational efficiency. With this choice, we favored
the performances of the prediction over the interpretability. To compensate, we
propose a method to extract a more interpretable model surrogate (section 5).

Note: the notations used in this article are detailed in the Appendix.

3 Fuzzy clustering-based regression algorithm

Let us consider the problem of predicting the property of a material, denoted
ŷ, for each point of the input space. We based our approach on several previous
works [4, 13] that share the use of a clustering method as a first step in the rule
induction. Our method differs slightly in the sense it is intended for eventually
high dimensional problems. Moreover, we improved the way membership func-
tions are learnt and the computation of the regression coefficients for the Sugeno
rule conclusions.
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Fig. 1. The different steps of the proposed approach.

3.1 Clustering

First, we perform a multidimensional fuzzy clustering of the points already sam-
pled, denoted xs, to highlight different groups. We remind the particularity of
fuzzy clustering is that a point may belong to several clusters, with different
membership degrees. The fuzzy clustering applies to both the input and output
variables, and each cluster c includes a center noted mc. We note C the set
of clusters. The number of clusters nc is often an hyperparameter, whose value
must be set by the user. The number of clusters can remain constant during the
different iterations of the experiment or can increase regularly in stages regarding
the number of points already sampled.

We are now interested in measuring the membership degree of a given point
x in the input space to each cluster, denoted µc(x). We chose to build a mem-
bership function that depends on several input variables. The benefit is to take
into account the interaction between variables and to get a multi-dimensional
strong partition:

∀x ,
∑
c∈C

µc(x) = 1. (1)

The membership degrees can be calculated using the FCM (Fuzzy Clustering
Means) algorithm [3], i.e. minimizing the objective function [12]:

∑
xs

∑
mc

µc(xs)||xs −mc||2, (2)
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with mc the centers of each cluster and µc(xs) the coefficient of membership of
the point xs to the cluster c. The degrees of membership obtained are:

µc(xs) =
∑
c′∈C

(
||xs −mc||2

||xs −mc′ ||2

)− 2
m−1

, (3)

with m ∈ ]1; +∞[ the “fuzzifier” parameter that influences the fuzziness of
the partition. It ranges from 1 excluded (sharp partition) to +∞ (totally fuzzy
partition). Generally, m is chosen equal to 2. Each point x is then assigned
a degree of membership to each cluster. Examples of membership degrees are
illustrated in the ternary diagram in Fig. 2 with 3 clusters and with 3 input
variables x1, x2, x3. To read the ternary diagram, the red cross indicates, for
example, the point (x1, x2, x3) = (0.55, 0.2, 0.25).

Fig. 2. Membership degrees - case study with 3 compositional variables and 3 clusters.

3.2 Generation of the fuzzy rules

Each cluster/region c is at the origin of a rule R. Each rule R is characterized by
its multidimensional antecedent region and its regression coefficients (αc, βc), in
the form:

ŷc(x) =

N∑
i=1

αcixi + βc = αc · x+ βc. (4)

The coefficients (αc, βc) of each rule are determined by the optimization process
described later in this article.

Expert rule A rule can also come from human expert knowledge or knowledge
from the literature. For example, an expert can indicate another region of interest
by adding another center mc. This cluster will also generate a rule characterized
by its antecedent region and its regression coefficients (αc, βc). This rule will
then be added to the system of rules already generated from the data.
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3.3 Optimization of regression coefficients

The output of our model is generated by merging the linear functions of the
rules through a Takagi Sugeno Kang (TSK) model:

ŷ(x) =
∑
c

µc(x) ŷc(x), (5)

with ŷc(x) = αc · x+ βc.
We determine the optimal regression coefficients (αc, βc) by minimizing the

squared deviation between the predicted values of the points already sampled ŷ
and their actual values y. We therefore seek to minimize the loss function:

L(α, β) =
∑
xs

(ŷ(xs)− y(xs))
2 (6)

=
∑
xs

(∑
c

µc(xs) (αc · xs + βc)− y(xs)

)2

.

3.4 Prediction of the output value for each entry point

For each input point x, we predict the output value ŷ. Figure 3 shows a ternary
diagram illustrating an example of predicted values ŷ obtained with our algo-
rithm for a case with 3 input variables.

Fig. 3. Example of predicted values ŷ for a case with 3 input variables.

We can evaluate the accuracy of the inference model using the points already
sampled. For each sampled point, we predict the output value ŷ using the infer-
ence system, which we compare to the real value y. We can then calculate the
mean square deviation RMSE and the coefficient of determination R2 to judge
the quality of the model. The results are presented in part 6.
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Moreover, the authors of [13] have showed that the fuzzy clustering-based
regression algorithm with gradient descent is more efficient than neural networks
for a regression problem (prediction of the shape of a function) for the 1D case,
and with much less hyperparameters.

4 Selection of the next experiment

The proposed method also chooses the next point to sample in a deterministic
manner, as a compromise between exploitation and exploration. Exploitation
means favoring regions with high potential, i.e. with high predicted values ŷ,
while exploration means exploring the regions not yet sampled.

We need to introduce a variable that captures this exploration part. A nat-
ural variable for that is the Euclidean distance to the nearest sampled point,
denoted d. The computation of the distances between each point in the input
space and the closest already sampled point is done using the KD-tree algo-
rithm [9]. Then, for each input point, ŷ and d are computed; ŷ encodes the
exploitation, and d encodes the exploration. To find a compromise between ex-
ploitation and exploration, we introduce a new variable called “sampling score”
and denoted S:

S(x) = ŷ(x) + λ d(x), (7)
where ŷ and d are here normalized, and where λ is an hyperparameter. λ can
be chosen to be constant or it can change as the number of experiments carried
out increases. Increasing λ will favor the exploration over the exploitation.

An illustration of S is presented in Fig. 4 for an example with 3 input vari-
ables. The areas in blue are the ones around the points already sampled, and the
areas in yellow are the regions of interest. A network structure can be observed,
due to the compromise between exploitation and exploration.

Fig. 4. Ternary diagrams illustrating the evolution of the sampling score S at different
iterations, for a case with 3 input variables.

The next point proposed by our algorithm will be the one that maximizes
S(x). For example, the next point to test could be:

{x1 = 0.35 , x2 = 0.5 , x3 = 0.15} . (8)
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Alternatively, our algorithm can also propose a region of interest to the ex-
perimentalist. This region includes all the points with a sampling score S higher
than a given threshold (for example 0.9). For example, a region of interest could
be: 0.3 ≤ x1 ≤ 0.425

0.46 ≤ x2 ≤ 0.535
0.11 ≤ x3 ≤ 0.21

(9)

and then the experimentalist will choose a point in this region. An explana-
tion can also be given to justify the point/region proposed. For example: “this
point/region is proposed to explore next to an area already exploited and that
gave good results.”

The proportion of exploitation / exploration of the next point tested can also
be provided to the experimentalist:

pexploitation =
ŷ(xnext)

ŷ(xnext) + λ d(xnext)
, (10)

pexploration = 1− pexploitation. (11)

Finally, constraints can be taken into account to restrict the input space; for
example x2 < 0.5. Experimentally, those constraints could be imposed by the
experimental setup, for example to reflect the limits of the experimental machine
or physico-chemical laws (such as the law of miscibility) in the case of a mixture
of materials.

5 Interpretability

The benefits of having multidimensional rules vs rules based on 1D fuzzy sets
include the possibility to control the desired number of rules, the avoidance
of the explosion of the number of rules regarding the number of dimensions,
and the capture of interactions between variables. However, multidimensional
rules are less interpretable than the one-dimensional case. We can make the
multidimensional system more interpretable by establishing different linguistic
categories per variable (e.g. low/medium/high) and projecting the centers of
each cluster onto each variable axis [11]. Our interpretability algorithm follows
the following steps. First, we divide each input and output variable into different
triangular fuzzy sets f , whose summits correspond to the centers of the clusters
projected on each axis. If two fuzzy sets are too close (e.g. distance < threshold
distance), we merge them. Then, for a variable xi (i ∈ [1;N +1]), by noting mci

the ith component of the center mc, the subset associated with the cluster c is
the one with the highest membership degree µf (mci).

A cluster will be associated with N +1 fuzzy sets/classes (one per variable).
Figure 5 illustrates the system of interpretable rules obtained for a case with
1 input variable x and 3 clusters. The 1D rules are used as surrogates of the
multidimensional rules to help the user understand this model.
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Fig. 5. Illustration of 3 clusters with FCM membership degrees represented with black
level lines (taken from [7]) and fuzzy sets fi of variables x and y . The association of
each cluster center to these 1D fuzzy sets makes the rules more interpretable.

6 Experimental results

In this section, we present the results of different tests to characterize our algo-
rithm. For reproducibility, we first give some details about the implementation.

6.1 Implementation considerations

To perform the multidimensional clustering, we hybridized two approaches: we
use the hierarchical clustering method [8] to get the centers of the clusters and
we use the end of the fuzzy c-means approach to determine the membership
functions. Indeed, the hierarchical clustering has the advantage to be fully de-
terministic. Without loss of generality, we determined the number of clusters
empirically for each dataset.

The optimization of the cost function Eq. 6 can be implemented by Trust
Region Reflective (TRF) method [5], recursive least squares algorithm [4] or
gradient descent [13]. We have used the TRF algorithm since it is a robust
method, well suited to complex problems with nonlinear residuals, suitable for
large sparse problems with bounds, and it does not need extra hyperparameters.

6.2 Toy datasets

We first evaluated our method on a toy dataset that we generated from a sinus
function with possibly several inputs. A small number of inputs helps us to
visualize the results to qualify them, while a large number helps to validate our
algorithm.
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Sinus function with 3 input variables We tested our algorithm for the following
sinus objective function with 3 input variables:

f(x) =

∣∣∣∣∣
3∏

k=1

sin(kπxk)

∣∣∣∣∣ . (12)

This objective function has been chosen because it presents a non-trivial
shape with several maxima and one global maximum, with output values ranging
between 0 and 1, and because it can be plotted in a ternary diagram (see Fig. 6).
It also helps us to characterize the approach since we will never have a complete
experimental plan from a real-world application. Each axis xi contains 100 values
from 0 to 1, so in total we have 5151 points in the input space. Our goal is
to converge as fast as possible towards the optimal value. We choose initially 5
random points and we perform 50 iterations (with one point tested per iteration).
The efficiency of our algorithm is measured with the criteria of the number of
iterations M needed to reach 80% of the optimal value of y (which is 0.984
in our study case). Figure 6 shows the best y value obtained among the points
tested until a given iteration; 80% of the optimal value is reached at the iteration
M = 24.

Fig. 6. Left: Ternary diagram of the objective function f given by eq (12). Right: Best
value of y obtained for each iteration (i.e. experiment).

The proportion of exploitation/exploration of the point tested at each itera-
tion is plotted in the histogram Fig. 7.

We observe, as expected, that the proportion of exploration decreases as the
number of points sampled increases. Note that there are still some explorations
even after a high number of experiments; indeed, it is better to continue exploring
to avoid coming across a local maximum.

We then tested the sensibility of our approach to its initialization. Indeed,
the number of experiments M needed to reach 80% of the optimal value depends
on the relevance of the random initial points. We repeated the simulation 100
times where at each simulation we have 5 random initial points with y < 0.1
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Fig. 7. Proportion of exploitation/exploration for each tested point.

(i.e. we chose non-relevant points). We evaluated that the number of iterations
needed to reach 80% of the optimal value is M = 20 ± 12.5. This variability is
due to the fact that the algorithm is sensitive to initial points, especially when
the number of initial points is small.

Sinus function with N > 3 input variables To get closer to a real world problem,
we tested our approach with more variables. For that, we consider the following
objective function with N ≥ 3 input variables:

fN (x) =

∣∣∣∣∣
N∏

k=1

sin(iπxk)

∣∣∣∣∣ , (13)

with x = (x1, x2..., xN ) continuous, discrete or categorical variables. The values
of y range between 0 and 1. More precisely, we study the case of 3 ≤ N ≤ 10 input
discrete variables (with 5 different values each). This simulates a composition
optimization experiment whose values are very constrained.

We use this last toy dataset to compare our approach with Bayesian Opti-
mization (BO). BO differs from our fuzzy algorithm for the following steps [6]:
in BO, we evaluate the surrogate function using the Gaussian Process (GP) or
the Tree-structured Parzen Estimator algorithm (TPE); and the compromise be-
tween exploitation and exploration is modelled by using the acquisition function
called “Expected Improvement” (EI).

Analogously to our algorithm, the BO is repeated over a certain number
of iterations. Each loop provides additional information until reaching an opti-
mal value. The TPE algorithm is computationally efficient and well suited for
high-dimensional optimization problems with an expensive objective function [2].
Additionally, it is well suited to optimization problems involving discrete and
categorical variables, as well as continuous variables [1].

For both algorithms, we evaluate the number of iterations M needed to reach
80% of the optimal value for a given number N of input variables and for given 5
initial points (see Fig. 8). In the case of the BO, due to the random nature of the
computation of the surrogate function, we had to repeat the simulation several
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times to get an average value. We observe that globally our fuzzy algorithm
gives better result than BO, it converges with less iterations. Moreover, BO is a
non-deterministic method and we observe that the disparity of the convergence
is quite important (see high standard deviation bars in blue in the figure).

Fig. 8. Number of iterations needed to reach 80% of the optimal value - Case with N
discrete variables.

6.3 Real world dataset

We then tested our approach on a real-world dataset from UC Irvine Machine
Learning Repository called “Concrete Compressive Strength” 1.

It includes 8 input variables, and the goal is to maximize the normalized
output variable “Concrete compressive strength (MPa)”. This dataset includes
1030 instances. By using cross validation process (with 80% of training set and
20% of testing set), our simulations on this dataset showed that the surrogate
function from our fuzzy algorithm leads to a better regression prediction than
the Gaussian process from bayesian optimization: RMSE = 8.7 ± 2.9 for our
fuzzy algorithm, and RMSE = 15.1±3.6 for the Gaussian process. To determine
the number of experiments to reach an optimal point, we set up the following
process: we chose 5 random points from the 1030 instances with bad output value
y < 0.1; an experiment consists here in taking a point among those instances
chosen by the algorithm and we would like to converge fast to an optimal point.
The full simulation is repeated several times to get an average value and standard
deviation. The number of experiments needed to reach 80% of the optimal value
of y is M = 9± 6.7.

1 https://archive.ics.uci.edu/dataset/165/concrete+compressive+strengt
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7 End-user consideration

We evaluated the interaction with the end-users with a questionnaire (human-
based evaluation). The panel is constituted of 29 individuals working in the field
of Materials Science, from academic researchers to industrial researchers, aged
from 22 to 62 years old. To collect their opinions, we used a 5-point Likert scale,
from totally disagree to totally agree. The questionnaire describes a situation
based on a mixture of 3 compounds (x1, x2, x3) and a property (y) that ranges
from 0 to 1. On a ternary diagram, 17 previous experiments are showed with
the respective values of the property. We asked the panel to compare 4 different
outputs:

– Type 1: the algorithm gives exactly the next values for x1, x2, x3, as in Eq. 8;
– Type 2: same as Type 1 with an explanation (e.g., “to exploit an already

explored zone and that gave good results”);
– Type 3: the algorithm gives a region of interest as in Eq. 9;
– Type 4: same as Type 3 and with the same explanation as in Type 2.

Figure 9 shows the answers to the question : “are you satisfied by the next
experiment(s) suggested by the AI?”. The results are mainly positive, but the
third type of output has the best marks (i.e. a region without explanation).
Moreover, Figure 10 shows the answers to the question : “do you trust the choice
of the AI?”. The two types that do not provide any explanation have less positive
results. However, the two types that provide the users with an explanation have
more positive results but they also have one panelist who is totally disagree. We
had a closer look to his answers and they are sometimes contradictory: it may
be considered as an outlier.

-30 -20 -10 0 10 20

Type 1

Type 2

Type 3

Type 4

1 (totally disagree) 2 3 4 5 (totally agree)

Fig. 9. Answers to the question: “Are you satisfied by the next experiment suggested
by the AI?”

We asked the panelists what was their favorite output: 12 of them answered
Type 4, 8 answered Type 2, 5 for Type 3 and finally 4 for Type 1. Thus, the
two favorite outputs come with explanations. It is important to mention that we
asked the panelists if they were afraid by the use of AI in their job: 7 panelists
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-30 -20 -10 0 10 20

Type 1

Type 2

Type 3

Type 4

1 (totally disagree) 2 3 4 5 (totally agree)

Fig. 10. Answers to the question: “Do you trust the choice of the AI?”

totally agree and 10 of them agree. 9 of them stayed neutral, meaning only
3 of them are not afraid. The results confirm what we were expecting: end-
users prefer having a choice and an explanation, meaning that the final method
should provide the region of the next experiment and an explanation of the
recommendation. In a comment, one panelist wrote he prefers having possible
experiments instead of only one, but since the AI chose a central experiment,
his choice would be the same. It highlights the importance of considering the
Human preferences in such tools to increase their acceptability.

8 Conclusion and perspectives

In conclusion, we summarize the advantages of our approach based on the re-
sults obtained. Our algorithm is transparent as a direct consequence of the in-
terpretable nature of its parameters, the dominance of a cluster in each region
of the input-output space, the lack of complexity and the linguistic nature of
its fuzzy rules; it is deterministic, i.e. it converges to the same values at each
execution; it is significantly faster than meta-heuristic approaches such as evo-
lutionary algorithms; it is robust to overtraining and resilient to noise thanks to
the fused contribution of clusters; finally, constraints from the literature can be
applied to reduce the input search space. This approach has the merit to be in-
terpretable, intuitive, and can be a real help to experimentalists. The originality
of our algorithm includes the transformation of multidimensional fuzzy clusters
into interpretable 1D fuzzy sets, and the definition of an acquisition/sampling
score function from the variables ŷ (predicted output value) and d (distance to
the nearest sampled point). Possibilities for improvement include the computa-
tional speed in the high-dimensional case, better detection of local extrema, and
multi-objective optimization.
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Index of notations

– N number of input dimensions
– xs point already sampled ; x input space point
– xnext next point tested
– f fuzzy set
– c cluster ; C set of clusters ; mc center of the cluster c ; nc number of clusters
– µc membership degree to cluster c
– R fuzzy rule
– αc, βc regression coefficients relative to the cluster c
– ŷc output value predicted for an input x, relative to the cluster c
– ŷ global output value predicted for an input x
– M number of iterations needed to reach an optimal point


