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Abstract. One of the main difficulties when it comes to aggregating
partial evaluations using tools such as Sugeno integral, is having access
to precise knowledge of the capacity to perform this aggregation. In this
article, we propose an intervallist extension of Sugeno integral that al-
lows partial knowledge of this ability to be taken into account, and to
measure the impact of this lack of knowledge on the aggregation result.
We propose an example in the field of surgical gesture evaluation.
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1 Introduction

For several decades, many researchers have been interested in replacing precise
aggregations with imprecise ones. This type of approach can be found in system
identification [1], control [2], economics [3], statistics [4], etc. One of the main
objectives of imprecise-valued approach is to take into account either the incon-
sistency between input data and the underlying model of the aggregation process
under study, or the limited knowledge we have of the aggregative model. Sev-
eral methods can be considered including Monte Carlo-type techniques, ensemble
methods [5], bootstrapping, uncertainty propagation [6], interval analysis [7] and
so on. In most approaches, convex models are used, i.e. intervallist models. Most
of the methods referenced above are relevant to the aggregation of quantitative
data.

When it comes to aggregating qualitative data, there are few dedicated meth-
ods and to our knowledge only [8] proposed to consider an additive-based in-
tervallist approach. As shown by the work of Grabisch [9], Dubois and Prade
[10,11], the Sugeno integral is a tool dedicated to qualitative aggregation, which
can be used to model a wide range of aggregation approaches.

The question we address in this paper is the following: assuming that we have
an aggregation model based on a Sugeno integral, can we create an estimate
of the final decision in the form of an interval whose width would reflect the
dispersion of the aggregated judgements towards that decision? Would such a
model also make it possible to represent poor knowledge of how to aggregate
these partial judgements?

In a recent paper [12], Loquin et al. proposed an interval-valued extension
of Choquet integral for imprecise aggregation, known as maxitive aggregation.
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This extension is based on an interpretation of possibility measures as defining
a set of probability measures. A maxitive aggregation then defines a convex set
of classical weighted aggregations.

We propose to build on recent results [13] to define an analogous extension
in the qualitative domain using the Sugeno integral. As in the case of maxitive
aggregation, we restrict ourselves to maxitive capacities, i.e. possibility measures
which replace probability measures in qualitative setting [14].

2 Background and notations

2.1 Capacities

Let Ω be the finite reference set of possible states of nature: Ω = {1, . . . , n}. In
the context of decision making, Ω can be seen as a list of experts providing dif-
ferent assessments based on the same information, or as a set of criteria enabling
the same expert to make an assessment.

We consider a totally ordered scale of t + 1 elements L = {0 = λ0 < . . . <
λt = 1} with a top denoted 1 and a bottom denoted 0. We assume that L is
equipped with an order-reversing map η : L → L with η(1) = 0 and η(0) = 1. η
is unique and such that η(λi) = λt−i.

To simplify notations, we will assume that the scale L is such that λt−i =
1 − λi. This case can always be handled by adding elements to the scale. Thus
∀λ ∈ L, η(λ) = (1− λ).

A (qualitative) vector of Ω is a function x : Ω → L denoted x = (x1, . . . xn) ∈
Ln.

A (qualitative) L-valued capacity (or L-valued fuzzy measure) is a set func-
tion µ : 2Ω → L such that: ∀A,B ⊆ Ω, A ⊆ B =⇒ µ(A) ≤ µ(B), µ(Ω) = 1
and µ(∅) = 0, ∅ being the empty set of Ω.

The set of all L-valued capacities of Ω is denoted KL(Ω). Let µ and ν be two
capacities of Ω, then max(µ, ν) is a capacity and min(µ, ν) is a capacity.

The conjugate capacity of µ is denoted µc. It is defined by ∀A ⊆ Ω, µc(A) =
1− µ(Ac) where Ac is the complement of A in Ω.

Let µ and ν be two capacities of Ω, we say that µ dominates ν if ∀A ⊆ Ω,
µ(A) ≥ ν(A). In the remainder of this article we will denote µ ≽ ν the fact that
µ dominates ν and µ ≼ ν the fact that µ is dominated by ν.

In the qualitative context a capacity µ is said to be optimistic if dominates
its conjugate capacity: µ ≽ µc and pessimistic if it is dominated by its conjugate
capacity: µ ≼ µc. If µ is optimistic then µc is pessimistic and vice versa.

In the context of qualitative aggregation for decision, µ can be interpreted
as a degree of relevance of a set of possible state of nature (A ⊆ Ω) to lead to a
(qualitative) decision.

As mentioned in [15], in a qualitative context an additive capacity (a prob-
ability) makes little sense. On a practical level, we need to ensure that any
additive combination of scale elements belongs to the scale. On a theoretical
level, a qualitative scale only makes sense because of the order of the terms.
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The distance between two terms λi and λj , on which probability measures rely,
is meaningless. In this qualitative context, the maxitive and minitive capacities
play a predominant role.

A maxitive capacity is a capacity µ satisfying the maxitive axiom:

∀A,B ⊆ Ω, µ(A ∪B) = max(µ(A), µ(B)).

Such a capacity is called possibility measure. A possibility measure is com-
pletely defined by the finite vector of its values on singletons of Ω [16]. Such a set
is called a possibility distribution and denoted π : Ω → L. πi can be interpreted
as the degree of relevance of state i to lead to the decision. A possibility measure
defined by the possibility distribution π is generally denoted Ππ. Due to the
maxitivity axiom, ∀A ⊆ Ω, Ππ(A) = maxi∈A πi, and ∀i ∈ Ω, Ππ({i}) = πi.

A minitive capacity is a capacity µ satisfying the minitive axiom:

∀A,B ⊆ Ω, µ(A ∩B) = min(µ(A), µ(B)).

Such a capacity is called necessity measure. It is also completely defined by a
possibility distribution π and denoted Nπ: ∀A ⊆ Ω, Nπ(A) = mini∈A(1− πi).

In that case we have, ∀i ∈ Ω, Nπ({i}) = 1−πi. By definition, Nπ is the con-
jugate of Ππ, i.e. ∀A ⊆ Ω, Nπ(A) = 1−Ππ(A

c), Ac being the complementary
set of A in Ω. A necessity measure can also be defined by its values on single-
tons: ιi = Nπ({i}) = 1 − πi. ι is then referred as the impossibility distribution
associated to the necessity measure.

By construction, a possibility measure is an optimistic capacity while a ne-
cessity measure is a pessimistic capacity.

When it comes to possibility measures, domination relationships are much
simpler: let π and δ be two possibility distributions, ∀i ∈ Ω, πi ≥ δi ⇐⇒ Ππ ≽
Πδ (and also Nπ ≼ Nδ).

2.2 Sugeno integral

The Sugeno integral [17] is a qualitative aggregation method commonly used in
multi-criteria decision making.

Let us consider the vector x = (x1, · · · , xn) ∈ Ln, where xi is the qualitative
evaluation of state i (e.g. the evaluation of the ith expert, or the evaluation of
a single expert for the ith criterion). Let us consider that to each subset of Ω is
associated a measure of its relevance for a global evaluation. In such a context,
Sugeno integral is designed to calculate a global valuation based on the partial
valuations represented by the vector x.

Definition 1 The Sugeno integral of x ∈ Ln with respect to a capacity µ ∈
KL(Ω) is defined by

Sµ(x) = max
A⊆Ω

min(µ(A),min
i∈A

xi). (1)
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Expression (1) has a computational complexity of 2n since it has to be val-
uated on each subset of Ω. Sugeno integral computation can be simplified by
considering a permutation σ on Ω such that xσ(1) ≤ · · · ≤ xσ(n) and the sets –
also called coalitions – Aσ(i) = {σ(i), · · · , σ(n)}. In that case the Sugeno integral
of x ∈ Ln with respect to µ reduces to:

Sµ(x) =
n

max
i=1

min(xσ(i), µ(Aσ(i))), (2)

whose computational complexity is n.
When considering expression (2), Sugeno integral appears as a median of

2n− 1 terms:

Sµ(x) = median(x1, · · · , xn, µ(Aσ(1)), · · ·µ(Aσ(n−1))).

In the particular case where the capacity is a possibility measure defined by
a distribution π ∈ Ln, this integral reduces to a weighted maximum [18]:

SΠπ (x) = max
i∈Ω

min(πi, xi).

In the particular case where the capacity is a necessity measure defined by a
possibility distribution π ∈ Ln, this integral reduces to a weighted minimum [18]:

SNπ (x) = min
i∈Ω

max(1− πi, xi).

Proposition 1 [19] Let µ, ν be two capacities of Ω, we have the following
equivallence: µ dominates ν ⇐⇒ ∀x ∈ Ln, Sµ(x) ≥ Sν(x).

2.3 Core of a (qualitative) capacity

In the quantitative context the core of a capacity is the set of probabilities
dominated by the considered capacity. Since probability measures are unsound
in the qualitative context, the notion of core should be replaced by those of
maxitive and minitive cores [14,20].

Let µ be a capacity of Ω,

– the maxitive core of µ, denoted C(µ), is the set of possibility distributions
defining a possibility measure that dominates µ:
C(µ) = {π ∈ Ln/ ∀A ⊆ Ω,Ππ(A) ≥ µ(A)} .

– the minitive core of µ, denoted C(µ), is the set of possibility distributions
defining a necessity measure dominated by µ:
C(µ) =

{
π ∈ Ln/ ∀A ⊆ Ω,Nπ(A) ≤ µ(A)

}
.

It is obvious that the vacuous distribution v = (1, . . . , 1) belongs to any
maxitive or minitive core [15].

Proposition 2 [21] For any capacity µ of Ω, if π ∈ Ln belongs to C(µ) then
it also belongs to C(µc).
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Moreover, let π and δ be two possibility distributions belonging to C(µ), then
β defined by ∀i ∈ Ω, βi = max(πi, δi) also belongs to C(µ).

As proved in [15], any capacity µ can be represented by its maxitive core, or
the minitive core of its conjugate since ∀A ⊆ Ω:

µ(A) = min
π∈C(µ)

Ππ(A) = max
π∈C(µc)

Nπ(A). (3)

This representation induces that Sugeno integral of x ∈ Ln with respect to
capacity µ can be computed by using its maxitive and minitive cores [15]:

Sµ(x) = min
π∈C(µ)

SΠπ (x) = max
π∈C(µc)

SNπ (x).

2.4 Capacity and Sugeno integral value

This section is a brief reminder of interesting results presented in [22].
Let x ∈ Ln and α ∈ [minni=1 xi,maxni=1 xi].
– A capacity µ is solution of Sµ(x) ≥ α, if and only if it dominates the

capacity µ̌x,α defined by

µ̌x,α(A) =

1 if A = Ω
α if {i | xi ≥ α} ⊆ A
0 otherwise

In other words:
{µ ∈ KL(Ω) | Sµ(x) ≥ α} = {µ ∈ KL(Ω) | µ̌x,α ≼ µ}
By construction, µ̌x,α is a necessity measure associated to the distribution

δx,α defined by: ∀i ∈ Ω, δx,αi = 1− α if xi < α and 1 otherwise.
– A capacity µ is solution of Sµ(x) ≤ α, if and only if it is dominated by the

capacity µ̂x,α defined by:

µ̂x,α(A) =

0 if A = ∅
α if A ⊆ {i|xi > α}
1 otherwise.

In other words: {µ ∈ KL(Ω) | Sµ(x) ≤ α} = {µ ∈ KL(Ω) | µ ≼ µ̂x,α}.
By construction, µ̂x,α is a possibility measure associated to the distribution

πx,α defined by: ∀i ∈ Ω, πx,α
i = α if xi > α and 1 otherwise. Moreover, we

always have µ̌x,α ≼ µ̂x,α.
Now, if a capacity µ is such that Sµ(x) = α, then Sµ(x) ≥ α and Sµ(x) ≤ α,

therefore µ̌x,α ≼ µ ≼ µ̂x,α. In other words: {µ ∈ KL(Ω) | Sµ(x) = α} is identical
to {µ ∈ KL(Ω) | µ̌x,α ≼ µ ≼ µ̂x,α}.

3 Imprecise aggregation via interval-valued Sugeno
integral

3.1 Dominating an unknown capacity

When using Sugeno’s integral to aggregate expert opinions for a decision, the
choice of capacity to perform the aggregation is critical. As mentioned above,
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a capacity gives weight to each group of criteria. However, such information is
rarely available. At best, we can prioritize or value the partial assessments to be
aggregated. The information available for aggregating data is therefore usually
available in the form of weight on each criterion, i.e. in the form of a possibility
distribution.

It is sometimes possible to obtain from an expert a partial evaluation of the
(qualitative) weight of some particular sets. In this case, however, it is important
to check that the function obtained is indeed increasing with inclusion, and to
bear in mind that this information only gives an imprecise assessment of the
capacity to use.

Here, we hypothesize that the true capacity µ to accurately aggregate partial
evaluations exists, but is unknown. We assume that the possibility distribution
π provided by expert interrogation is consistent with this unknown capacity, i.e.
that it belongs to the maxitive cores of both µ and µc:

π ∈ C(µ) and π ∈ C(µc).

Proposition 3 ∀π ∈ Ln,∀µ ∈ KL(Ω), if π ∈ C(µ), and π ∈ C(µc) then ∀A ∈
Ω, Nπ(A) ≤ µ(A) ≤ Ππ(A).

Proof. ∀A ⊆ Ω,
π ∈ C(µ) =⇒ µ(A) ≤ Ππ(A)and π ∈ C(µc) =⇒ µc(Ac) ≤ Ππ(A

c), thus
1− µ(A) ≤ Ππ(A

c) thus 1−Ππ(A
c) ≤ µ(A), therefore Nπ(A) ≤ µ(A).

Remark that if µ is optimistic then µ dominates µc and thus if π ∈ C(µ) then
π ∈ C(µc).

Let π and δ be two possibility distributions such that Ππ dominates Πδ (i.e.
∀i ∈ Ω, δi ≤ πi). Thus it is easy to check that Nπ ≼ Nδ ≼ Πδ ≼ Ππ.

The Sugeno integral being increasing according to a capacity (Proposition
1), then ∀x ∈ Ln:

SNπ (x) ≤ Sµ(x) ≤ SΠπ (x).

Moreover, SNπ = minδ∈C(Nπ) SΠδ
and SΠπ = maxδ∈C(Nπ) SNδ

.

3.2 Imprecise Sugeno integral

Now let’s assume that information about the weight of each criterion in the final
decision is known in the form of a possibility distribution π.

The imprecise Sugeno integral is defined as:

∀x ∈ Ln, ISπ(x) = [SNπ (x), SΠπ (x)] . (4)

Proposition 4 ISπ(x) is the bounded set of all Sugeno integral based aggrega-
tions of x with regard to a capacity µ of Ω such that both µ and µc are dominated
by Ππ.
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Proof. This property comes directly from the definition of maxitive and minitive
cores and the link between capacity domination and Sugeno integral (Prop. 1).

If µ is dominated by Ππ then ∀x ∈ Ln, Sµ(x) ≤ SΠπ (x) and thus Sµc(x) ≥
SNπ (x). If µ

c is dominated by Ππ then ∀x ∈ Ln, Sµc(x) ≤ SΠπ (x) and thus
Sµ(x) ≥ SNπ (x)

Due to Proposition 1 we have:

Corollary 5 let π and δ be two possibility distributions of Ln such that ∀i ∈ Ω,
δi ≤ πi then ∀A ⊆ Ω, [SNδ

(A), SΠδ
(A)] ⊆ [SNπ (A), SΠπ (A)]

(i.e. ISδ(x) ⊆ ISπ(x)).

It would now be interesting to know whether the interval thus constructed is
dense in a way, i.e.

∀π ∈ Ln, ∀x ∈ Ln and ∀α ∈ ISπ(x), ∃µ ∈ KL(Ω) such that Sµ(x) = α.
We construct this as a theorem in several successive steps.
First, remark that ∀x ∈ Ln and ∀µ ∈ K(Ω) we have:

minni=1 xi ≤ Sµ(x) ≤ maxni=1 xi.

Proposition 6 Let x ∈ Ln be a vector,

∀α ∈
[

n
min
i=1

xi,
n

max
i=1

xi

]
,∃πx,α, such that SΠπx,α (x) = α.

and

∀α ∈
[

n
min
i=1

xi,
n

max
i=1

xi

]
,∃δx,α, such that SNδx,α (x) = α.

Proof. The proof of this proposition is trivial when referring to Section 2.4.

For the rest of the construction, it is important to remember that SNδx,α (x) =
α = SΠπx,α (x) and Nδx,α ≼ Ππx,α .

Proposition 7 Let x ∈ Ln be a vector, π ∈ Ln be a possibility distribution,
α ∈ ISπ(x), and πx,α, δx,α being the possibility distributions defined above,
then ∀A ⊆ Ω, [Nπ(A), Ππ(A)] ∩ [Nδx,α(A), Ππx,α(A)] ̸= ∅.

Proof. To prove this proposition, we show that there is always at least a capacity
µ̃ ∈ KL(Ω) such that Nπ ≼ µ̃ ≼ Ππ and Nδx,α ≼ µ̃ ≼ Ππx,α .

Since SNπ (x) ≤ α ≤ SΠπ (x), according to [22], Nπ ≼ Ππx,α and Nδx,α ≼
Ππ. There are thus four possible cases for each subset A ⊆ Ω:

1. Nπ(A) ≤ Nδx,α(A) ≤ Ππ(A) ≤ Ππx,α(A),
2. Nπ(A) ≤ Nδx,α(A) ≤ Ππx,α(A) ≤ Ππ(A).
3. Nδx,α(A) ≤ Nπ(A) ≤ Ππx,α(A) ≤ Ππ(A),
4. Nδx,α(A) ≤ Nπ(A) ≤ Ππ(A) ≤ Ππx,α(A).
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Let us define the following capacities:
µ = max(Nπ, Nδx,α) and µ′ = min(Ππ, Ππx,α). First remark that: ∀A ⊆ Ω,

µc(A) = 1− µ(Ac) = 1−max (Nπ(A
c), Nδx,α(Ac)) = min (Ππ(A), Πδx,α(A)) .

Thus, µc = µ′ and, by construction, µ ≼ µ′. Thus µ satisfies Nπ ≼ µ ≼ µc ≼ Ππ

and Nδx,α ≼ µ ≼ µc ≼ Ππx,α .

Theorem 8 Let x ∈ Ln be a vector, π ∈ Ln be a possibility distribution,
∀α ∈ ISπ(x), ∃µ ∈ KL(Ω) such that Nπ ≼ µ ≼ Ππ and Sµ(x) = Sµc(x) = α.

Proof. Theorem 8 can be regarded as a corollary of Proposition 7. Let πx,α,
δx,α be the two possibility distributions defined ins Section 2.4 and let µ be the
capacity defined by µ = max(Nπ, Nδx,α).
Since SNπ (x) ≤ α ≤ SΠπ (x), Nπ ≼ Ππx,α and Nδx,α ≼ Ππ.
SNδx,α (x) = α ≤ Sµ(x) ≤ Sµc(x) ≤ SΠπx,α (x) = α. Thus Sµ(x) = Sµc(x) = α.

In addition, information on how to aggregate partial evaluations may be
imprecisely available, i.e. a family of p possibility distributions

{
πi

}
i=1...p

is

assumed to be known. This is the case, for example, when several experts are
asked to each give a weighting to each criterion, and these weights are different.

By supposing that this information is coherent in a way, i.e. ∃µ ∈ KL(Ω) such
that ∀i ∈ {1 . . . p}, πi ∈ C(µ) and πi ∈ C(µc). In that case, due to Expressions
(3) ∀x ∈ Ln we have:

Sµ(x) ∈
p⋂

i=1

ISπ(x) =

[
p

max
i=1

SNπi (x),
p

min
i=1

SΠπi (x)

]
.

This technique can reveal the fact that the weight distributions given by each
expert are conflicting, and in this case ∃x ∈ Ln, such that

⋂p
i=1 ISπ(x) = ∅.

Example: Let x = {0.1, 0.5, 0.8} ∈ L3 be the partial evaluations on n = 3
criteria. Let us suppose that interviewing two experts leads to two possibility dis-
tributions π1 = {0.0, 0.4, 0.8} and π2 = {0.8, 0.4, 0.0}. Thus ISπ1(x) = [0.7, 0.8]
while ISπ2(x) = [0.2, 0.4]. Obviously ISπ1(x) ∩ ISπ2(x) = ∅.

4 Experiment

In this section, we propose an application of the proposed interval-valued Sugeno
integral based on the technical assessment of ENT (ear, nose, and throat) sur-
geons.

Training to surgery can be difficult for the more critical procedures during
residency. In this context, researchers from the Montpellier University Hospital
in France investigated the dead porcine model for training to total laryngectomy
(TL). Eighteen surgeons, decomposed into three level groups – young residents
(post graduate year (YR – 1 to 3)), experienced residents (ER – 4 to 6) and
senior surgeons (SS) – were asked to perform the full surgical operation in dead
swines.



Imprecise Sugeno integral based decision 9

Seven main steps (O1...7) of the surgery were video-recorded and rated from
5 (poor) to 25 (excellent) by 3 surgeon’s experience blinded experts of the pro-
cedure using modified Objective Structured Assessment of Technical Skills (OS-
ATS). OSATS is a validated assessment tool that evaluates the technical compe-
tency in a particular technique, in order to grade the overall technical proficiency
for open surgery. It consists of a procedure specific checklist, a pass/fail judgment
and a global rating scale. For each task and each surgeon, the mean OSATS score
of the three experts was considered. The results of this evaluation are shown in
Table 1.

Surgeon 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Group ER YR SS SS SS ER YR SS ER ER YR YR YR YR ER YR ER SS Diff.

O1 12 11 23 14 20 15 13 22 17 19 16 14 16 14 17 13 20 25 1

O2 12 13 23 20 22 17 8 25 16 19 17 13 13 14 12 10 18 22 5

O3 11 8 24 21 21 12 11 23 15 16 12 14 12 13 11 5 15 25 4

O4 16 9 22 21 21 16 11 23 17 17 13 11 13 14 13 9 15 24 6

O5 13 8 25 19 17 15 9 24 15 15 14 9 12 10 11 12 18 25 4

O6 8 8 24 17 20 10 5 24 13 9 15 13 13 8 12 11 18 25 7

O7 16 14 20 18 18 18 12 24 16 14 15 15 15 13 9 7 20 25 8

Table 1: Mean OSATS for the 7 steps of a laryngectomy with the level of tech-
nicality of each step.

A weight is attached to each stage, defining its level of technicality (last
column of Table 1). We use this weight to define the possibility distribution
associated with this OSATS. As the two scales (OSATS and weights) are not
commensurable, we reduce them to 0 and 1 in two different ways, because they
don’t represent the same thing.

OSATS are scores and thus can be reduced e.g. by dividing each value by 25.
In contrast, the weights associated to the stages were given by the evaluators

as a level of technicality. They see it more as an additive scale: for a surgery to
be successful, it is not sufficient for a single step to be performed at its best, but
rather to have a maximum score on the technicality scale. We therefore propose
to transform this 1 to 8 scale into a possibility distribution using a probability
/ possibility transformation.

There are two main transformations. One is more relevant in a subjective
context while the other gives the most specific possibility distribution dominat-
ing the probability distribution of interest [16]. We propose to investigate both
approaches.

Let wi be the weights associated to the ith step of the surgery. Let ρ ∈ R+n

be the values obtain by normalizing the weights (ρi =
wi

35 , since
∑7

i=1 wi = 35).
The so-called optimal transformation of the probability distribution ρ into

the possibility distribution π 7→ρ is given by:

∀i ∈ {1, . . . , 7}, π 7→ρ
i =

7∑
j=1

ρj .χ(ρj ≤ ρi),
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where, ∀a, b,∈ [0, 1] χ(a ≤ b) = 1 if a ≤ b and 0 else.
The subjective transformation of the probability distribution ρ into the

possibility distribution π(ρ) is given by:

∀i ∈ {1, . . . , 7}, π(ρ)
i =

7∑
j=1

min(ρi, ρj).

By construction we have ∀i ∈ Ω, π 7→ρ
i ≤ π

(ρ)
i , thus Ππ(ρ) dominates Ππ 7→ρ .
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Fig. 1: Imprecise aggregation by using the subjective transformation.
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Fig. 2: Imprecise aggregation by using the optimal transformation.

Figures (1) and (2) plot the intervals obtained by aggregating the scores
obtained by each surgeon for each step of the surgery. The intervals associated
to the young residents are plotted in blue, experience residents in green and
senior surgeons in red.

Naturally, due to Corollary 5, since Ππ(ρ) dominates Ππ 7→ρ , the interval ob-
tained with the optimal transformation are tighter than those obtained by the
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subjective transformation. For example, for the 3rd surgeon (senior surgeon)
the interval-valued aggregation is reduced to a single value (0.8) when using
the optimal transformation while it stays as an interval ([0.8, 0.96]) when using
the subjective transformation. On the other hand, for the second surgeon, the
interval-valued aggregation is unchanged ([0.32, 0.56]) whatever the possibility
distribution.

On a more pragmatic level, what emerges in these two graphs is that there
is a very strong difference between the evaluations of senior surgeons and those
of residents, while this distinction is not clear between young and experienced
residents. This distinction is much less clear when we simply look at the min-max
intervals of the partial scores, as can be seen in Figure (3).

The fact that steps 4, 6 and 7 are more significant according to the evaluator
tends to highlight the difference between senior surgeons and residents. More-
over, we can see that, according to this aggregation, these evaluations show that
senior surgeons results completely dominate young residents and most of the
experienced residents.
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Fig. 3: Range of partial score values.

For comparison, Figure (4) shows the projection of the (unweighted) principal
component analysis data onto the first two principal axes. As in previous figures,
blue is for young residents, green for experience residents and red for senior
surgeons. We can see that the senior surgeons stand out quite well from the
residents, while the residents form a group that is difficult to distinguish. The
weighted interpretation given by imprecise aggregation gives richer information
in the sense that we find this result but for a whole set of possible aggregations,
which is a stronger conclusion.

5 Conclusion and discussion

In this article, we proposed the construction of an intervallist extension of the
Sugeno integral. The aim of this construction is to be able to handle imprecise
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Fig. 4: Projections of the individual evaluations of the surgeons on the two first
principal axes (×: YR, ◦: ER, ⋆: SS )

knowledge of the appropriate capacity for a qualitative aggregation. We assume
that imprecise knowledge is available in the form of one or several coherent
possibility distributions. The main result of this article is Theorem 8 showing
that the interval produced by this extension is dense in L. A medical example
shows the benefits of using such an approximation.

Among the many future works we’re considering, we’d like to find explicit
conditions for knowing whether a set of possibility distributions is consistent, i.e.
there exists a capacity µ that can be imprecisely reconstructed by using this set
of possibility. Similarly, on a practical level, it would be interesting to explore a
little more how to exploit expert information on sets that are not singletons.

Finally, as you may have noticed, the scores associated with each surgical step
were in fact averages of assessments given by three different experts. It might
be interesting to carry on the intervallist approach by calculating an aggregated
interval for each expert. The final aggregation could consist in aggregating the
intervals obtained, or in developing a method taking into account multiple eval-
uations for several criteria.
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