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Nalan Baştürk1, Chumasha Rajapakshe1, and Rui Jorge Almeida1,2

1 Department of Quantitative Economics, School of Business and Economics,
Maastricht University, P.O. Box 61, 6200 MD Maastricht, The Netherlands

c.rajapakshe@alumni.maastrichtuniversity.nl,

n.basturk@maastrichtuniversity.nl
2 Department of Data Analytics and Digitilisation, School of Business and
Economics, Maastricht University, P.O. Box 61, 6200 MD Maastricht, The

Netherlands rj.almeida@maastrichtuniversity.nl

Abstract. In several application areas, discretized variables represent
an underlying continuous variable. For example, the level of certain med-
ical measures can be ‘low’, ‘medium’ or ‘high’, while the underlying mea-
sure is a continuous variable. The estimation of graphical causal models
for data with discretized variables leads to biased estimates and underes-
timated causal relations. In this work, we study the effect of incorporating
background information on causal relations when estimating causal mod-
els with discretized variables. We show that incorporating background
information on the relations between variables improves graphical causal
model estimates in case of discretized variables. We find particularly
large gains in reducing omitted causal relations and in estimating causal
relations correctly. We relate these improvements to the hyperparameter
choice in graphical causal models and properties of the variables in the
model.

Keywords: Causal discovery · Discretized data · Graphical causal mod-
els · Mixed data.

1 Introduction

Graphical causal models have been developed to estimate causal relations within
the data without making explicit assumptions about the direction of causality
[21, 27]. These models have been applied successfully in economics, psychology
and genetics, among other areas [6, 27, 23, 4] and extended to incorporate mixed
(discrete and continuous) variables [25, 10, 29]. In many applications with mixed
variables, discrete variables represent an underlying continuous variable. For in-
stance, the level of a disease in an individual’s medical records can be categorized
as ‘mild’, ‘moderate’ or ‘strong’ while the disease intensity prior to categorization
is a continuous variable. For linear and non-linear regression, discretization of
variables increases statistical uncertainty, causes biased and inconsistent causal
effect estimates, and spurious relations between variables [17, 1, 28]. The effects
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of discretization on the estimation of graphical causal models have been em-
pirically studied, showing that causal relations tend to be underestimated and
that causal effect estimates tend to be biased [11]. Data discretization has also
been studied in Bayesian networks which model probabilistic relationships be-
tween discretized and remaining variables [8, 12]. Data discretization in Bayesian
networks rely on distributional assumptions, and a discretization policy [8, 2].

We study the effects of incorporating background information on the esti-
mation of causal relations in a dataset with discretized and continuous vari-
ables. The uncertain causal relations are estimated using graphical causal mod-
els, which do not require distributional assumptions or a discretization policy.
Incorporating background information, represented as probability distributions,
is shown to improve parameter estimates in other models such as latent growth
models and multilevel regressions [18, 9]. Methods have been developed to in-
corporate background information in graphical causal models [13, 7, 22]. In these
methods, background information, added as restrictions on causal links, is shown
to improve estimates of causal relations in graphical causal models [19, 24]. To
the best of our knowledge, the effects of including background knowledge on es-
timates of graphical causal models with discretized data have not been studied
in the literature.

The effects of incorporating prior knowledge on estimation results are rela-
tively straightforward in conventional models such as linear regression. We first
illustrate the implications of incorporating background information in a linear re-
gression model with discretized data, where background information is expressed
as probability distributions for model parameters. For more complex models such
as graphical causal models, derivation of these effects is more involved. There-
fore, we empirically analyze the implications of incorporating prior beliefs in
graphical causal models. In this case, background information is represented as
causal links between part of the variables. We use the results of the illustration
to set up the empiricial analysis and discuss the findings. We find that the inclu-
sion of these priors increases the number of correctly estimated causal relations.
This result holds particularly for correlated variables in the model. However, the
specified background information does not lead to improvements in the bias of
the estimated causal effects.

2 Graphical Causal Models

Graphical causal models aim to capture the causal structure of multivariate data
using a graph structure G, defined as the ordered pair < V,E > for a set of ver-
tices V and a set of edges, E, representing the variables [26, 27]. An undirected
graph indicates which pairs of vertices in E are correlated and a directed acyclic
graph (DAG) represents the causal relations between variables [21]. DAGs are
often estimated using the PC algorithm [15], which estimates a completed par-
tially directed acyclic graph (CPDAG). The estimated CPDAG includes directed
and undirected edges representing the conditional independence of the variables.
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Given the estimated CPDAGs, causal effects between variables can be obtained
using the intervention when the DAG is absent (IDA) method [16, 7].

2.1 Graphical Causal Models for Mixed Data

The PC algorithm first estimates the causal relations through the correlation ma-
trix of the variables with the sequence of independence tests. Let Xk,n denote
the variables included in the graphical causal model for k = 1, . . . ,K variables
and n = 1, . . . , N observations. In case of mixed data, estimating ρk,l, the corre-
lation between variables k and l, is not straightforward. Therefore a kernel based
correlation estimation is proposed [5, 10]. We consider, K(), the kernel density
estimator, in the form of a radial basis function for continuous variables:

Kk(Xk,n1
, Xk,n2

) = exp
(
−(Xk,n1

−Xk,n2
)2/

(
2σ2

))
, n1, n2 = 1, . . . , N. (1)

For categorical variables, the following kernel function is used:

Kk(Xk,n1
, Xk,n2

) = hθ(P (Xk,n1
))× I(Xk,n1

= Xk,n2
), (2)

where P (x) is the probability that a categorical variable X takes the value x,

hθ(x) = (1− xθ)
1
θ and I() is the indicator function that takes the value 1 if its

argument is true and 0 otherwise. The correlation between variables are then
calculated using the kernel alignment method [10, 14]:

ρ̂k,l =

∑N
n1,n2=1 Kk(Xk,n1 , Xk,n2)Kl(Xk,n1 , Xl,n2)√(∑N

n1=1 Kk(Xk,n1 , Xk,n2)
2
)(∑N

n2=1 Kl(Xl,n1 , Xl,n2)
2
) . (3)

The causal relations are estimated through a sequence of conditional indepen-
dence test for each variable k, l, conditioning on the remaining variable set S:

H0(k, l|S) : ρk,l|S = 0, HA(k, l|S) : ρk,l|S ̸= 0, (4)

where the rejection of H0 indicates a causal relation between variables:

|Zk,l|S |
√

N − |S| − 3 > Φ−1
(
1− α

2

)
; for Zk,l|S =

1

2
log

(
1 + p̂k,l|S

1− p̂k,l|S

)
, (5)

for a given significance level α. The conditioning set S is updated by eliminating
links between edges iteratively according to (4) and (5).

The next step in the PC algorithm is the DAG or CPDAG estimation which
aims at identifying causal relations. In this step, CPDAGs represent all possi-
ble DAGs that satisfy the dependence estimates in (4). For all CPDAGs, the
directions between edges are estimated as follows: The algorithm considers v-
structures, defined as all triplets (k, l,m), where k and l are adjacent, l andm are
adjacent, but k and m are not adjacent. For all such triplets, both edges are di-
rected towards l if and only if m was not part of the conditioning set that made
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the edge between k and l drop out. In addition, the remaining directions are
found by iteratively applying the PC algorithm [14]. Estimated causal relations
can be represented by a K ×K adjacency matrix Â:

Âk,l = I(ρ̂(Xk, Xl) ̸= 0). (6)

Note that the obtained DAGs are not unique, as several causal relations can lead
to the same conditional independence relationships in (6).

2.2 Graphical Causal Models with Background Information

A modification of the IDA method has been proposed to incorporate background
knowledge [7, 22], which allows the manual inclusion and exclusion of edges based
on prior knowledge. This extension uses a set of constraints denoted as B. The
subset Bn for n = 1, . . . , N restricts the relationship between variables, pre-
venting one variable from being an ancestor of another, while the subset Bd

for d = 1, . . . , N focuses on direct causal information. By incorporating these
constraints, the causal inference process aligns better with known background
knowledge, guiding the exploration of causal relationships [7].

We consider background information in the form of restrictions on the ad-
jacency matrix Ak,l in (6). If node indicators k, l are included in the subset in
the restricted set, the connection between the edge k − l is never considered for
removal. Hence Âk,l = 1 in (6). These restrictions affect the conditioning set S
in the sequential conditional correlation tests in (4) and reduce the number of
viable DAGs derived from the CPDAG G∗. Consistency between the constraints
B and the CPDAG G∗ is achieved when at least one DAG within the equiva-
lence class of G∗ adheres to the specified constraints. Once a possible CPDAG
with background information is obtained, all possible effects between variables
are estimated using the IDA method summarized in Algorithm 1 [16, 7]. IDA
enumerates all possible causal effects of variable X ∈ {X1, . . . , XK} \ Y on vari-
able Y ∈ {X1, . . . , XK} by listing all possible parental sets of X, pa(X,G∗),
and siblings of X, sib(X,G∗), defined as variables with directed and undirected
edges with X, respectively.

Algorithm 1: Modified IDA algorithm [7, 22]

Require: A CPDAG G∗, a target variable Y
Ensure : {ΘX}X∈V , where ΘX stores all possible causal effects of X on Y
for each variable X ∈ V do

Set ΘX = ∅;
for each S ⊆ sib(X,G∗) such that orienting S → X and
X → sib(X,G∗) \ S does not introduce any v-structure collided on X do

Estimate the causal effect of X on Y by adjusting for S ∪ pa(X,G∗),
and add the causal effect to ΘX ;

return {ΘX}X∈V
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3 Illustration of Incorporating Background Information
in Models with Discretized Data

Studying the effects of discretized variables and background knowledge on graph-
ical causal models theoretically is not straightforward. We therefore illustrate
the effects of discretization and background information with a linear regres-
sion model. The background information expressed as prior beliefs for the model
coefficients. The data generation process (DGP) is as follows:

Y = β1X1 + β2X2 + ε, (7)

where Y is the N × 1 vector of dependent variable, X1, X2 are N × 1 vectors
of independent variables generated from standard normal distributions, and ε ∼
N(0, IN ) is the N × 1 vector of residuals where I is the N ×N identity matrix.

Next, we define a discretized dummy variable X3 that represents the under-
lying continuous X2. We set the elements of X3 as Xn,3 = 1 for observation n
if Xn,2 > 0 and Xn,3 = 0 otherwise. The regression in (7) with the discretized
variable is:

Y = Xβ + η, (8)

where X = (X1, X3), β = (β1, β2)
′, and η = (β2X2−β3X3+ ε) is the error term

of the linear regression with the discretized variable.
Consider the following normal prior distribution on the parameters: β ∼

N
(
β, τ−2I2

)
. The posterior of the model in (8) is:

p(β|Y,X) ∝ exp

(
−1

2

(
(X ′X + τ−2I)−

1
2 (Y ′X + τ2β)

)2
)

(9)

which is equivalent to p(β|Y,X) = N(β̄, V̄β). The posterior mean is a weighted
average of the OLS estimate and the prior:

β̄ = (X ′X + τ−2I)−
1
2 (Y ′X + τ2β) = (X ′X + τ2I)−1(X ′Xβ̂OLS + τ2β). (10)

The difference between the posterior mean and true coefficients is:

β̄ − β⋆ = (X ′X + τ2I)
(
X ′X(β̂OLS − β⋆) + τ2(β − β⋆)

)
(11)

where β⋆ = (β1, β2)
′ and the bias of the OLS estimator is [11]:

β̂OLS − β⋆ = (X ′X)−1

(
X ′

3X3X
′
1η −X ′

1X3X
′
3η

X ′
1X1X

′
3η −X ′

1X3X
′
1η

)
, (12)

i.e. correlation of variables X1, X3 indicate that both the discretized and con-
tinuous variables are biased due to discretization. From (12) and the weighted
average property in (11), it is straightforward that bias is reduced when the

prior satisfies the inequality β − β⋆ < β̂OLS − β⋆, but the weighted effect of
this reduction depends on the correlation of data, represented by X ′X in (11).
In this illustration, a possible way to include background information on causal
relations, instead of causal effects is a limiting case:

lim
τ→∞

β̄ = lim
τ→∞

(X ′X + τ2I)−1τ2β = β. (13)
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4 Effects of Background Knowledge on Graphical Causal
Models with Discretized Data

Graphical causal models have been applied to mixed data successfully in the
literature [25, 10, 29]. However, in case of mixed data, discretization is shown to
be problematic in graphical causal models. In this case, graphical causal models
lead to wrong causal estimates and a higher bias [11]. In graphical causal models,
the effects of incorporating prior beliefs, or similar background information, on
the obtained results are more complex than the illustration in Section 3. This
complexity is due to the graphical causal model estimation, as well as the prop-
erty that the causal estimate is not necessarily unique [21, 16, 15]. We study the
effects of incorporating background information empirically, where background
information is represented as potential links between variables.

The graphical causal model in Section 2 is estimated in two steps. First, the
causal relations represented in the adjacency matrix in (6) are estimated. Second,
the causal effects between variables are estimated based on the estimated adja-
cency matrix. Thus, including background information can affect the estimated
the causal relations, i.e. the graph structure, or the estimated causal effects at
the second stage. To differentiate these two effects, we first report the effects
of background information in the estimated adjacency matrices. We next report
the effects of adding background information on the obtained causal effects.

4.1 Simulation Setup

For the simulation study, we consider a linear regression as the underlying DGP:

Yn = β0 +

K∑
k=1

βkX
k
n + εn, (14)

where {β0, . . . , βK} are the model parameters, Yn for n = 1, . . . , N are the
observed output variables, Xk

n for k = 1, . . . ,K are the input variables and
the error terms have the following distribution εn ∼ NID(0, σ2). The graphical
causal model in Section 2 is defined over K + 1 variables X1, . . . , XK , Y , where
we use the notation Y to clarify the endogenous variable in the simulations. The
adjacency matrix for this DGP is given in Figure 1.

We simulate data with n = 150 observations in a sample, and K = 9 input
variables, and all coefficients are fixed as β0 = . . . = β9 = 5. Thus the net-
work has p = 10 nodes. We generate Xk variables with different properties: Xk

n

for k = 1, 2, 3 are discrete data, while the remaining variables are continuous.
An important distinction in the model is the difference between discrete and
discretized data. The discrete data are defined by

Xk
n ∼ Bernoulli(0.5), for k = 1, 2, 3,∀n. (15)

Generating the outcome variable in (14) with these discrete variables in (15)
indicate that the correct model is in the set of models considered in the graphical
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Fig. 1. True underlying DAG for the simulated data according to (14).

causal model estimation. On the other hand, the discretized data, Xk
n for k =

1, 2, 3 are generated from a continuous variable, X̃k
n:

X̃k
n ∼ NID(0, 1), Xk

n = I(X̃k
n > 0), for k = 1, 2, 3,∀n, (16)

where the DGP in (14) is adjusted with X̃k
n:

Yn = β0 +

3∑
k=1

βkX̃
k
n +

9∑
k=4

βkX
k
n + εn,∀n, (17)

where X̃k
n is not an input to the graphical causal model. Hence, the DGP in

(17) is not in the consideration set of the graphical causal model. The remaining
variables Xk for k = 4, 5, 6 are data from independent normal distributions, and
Xk for k = 7, 8, 9 are generated from a dependent normal distribution:

Xk
n ∼ NID(0, 1), for k = 4, . . . , 7,∀n (18)

Xk
n = X7

n + εkn, ε
k
n ∼ NID(0, 1), for k = 8, 9,∀n. (19)

These different specifications for X variables aim to study the estimation of
graphical causal models in discrete data, discretized data, continuous data and
continuous data with correlations. Furthermore, we replicate each simulation 100
times to reduce the effect of simulation noise.

4.2 Effects of Background Knowledge on Adjacency Matrices

We present the effects of including background information on the estimated
causal relations, namely the estimation of the adjacency matrix, between differ-
ent types of variables, with and without discretization and two types of back-
ground information. For the graphical causal model estimation, we consider three
significance levels α = {0.2, 0.5, 0.8}. Intuitively, the optimized graph is expected
to have more connections with a relatively low α. Results with and without back-
ground information are obtained using the PC algorithm [27, 3] and fast causal
inference (FCI) algorithm [20], respectively.

We analyze the effects of discretization and including background informa-
tion through five scenarios: (1) ‘no bg’ corresponds to discretized data with no
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Table 1.Mean TP, FP, FN, TN for causal effects between all, discrete (dis), mixed, con-
tinuous independent (cts-indep), dependent (cts-indep) variables without background
knowledge (left), with priors (middle panels) and without discretization (right).

no bg inacc bg acc bg no dis. acc bg
TN FP FN TP TN FP FN TP TN FP FN TP TN FP FN TP

α = 0.2
all 69.3 9.7 9.6 1.4 77.7 1.3 5.0 6.0 79.0 0.0 5.3 5.7 79.0 0.0 5.7 5.3
dis 5.7 0.3 0.0 0.0 5.9 0.1 0.0 0.0 6.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0
mixed 44.3 6.7 3.0 0.0 50.5 0.5 0.8 2.2 51.0 0.0 0.7 2.3 51.0 0.0 1.1 1.9
cts.indep 5.8 0.2 0.0 0.0 6.0 0.1 0.0 0.0 6.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0
cts.dep 13.5 2.5 6.6 1.4 15.4 0.6 4.2 3.8 16.0 0.0 4.6 3.4 16.0 0.0 4.5 3.5

α = 0.5
all 69.1 9.9 10.1 0.9 76.1 2.9 4.9 6.1 79.0 0.0 5.1 5.9 79.0 0.0 5.3 5.7
dis 5.6 0.4 0.0 0.0 5.9 0.1 0.0 0.0 6.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0
mixed 44.5 6.5 3.0 0.0 49.2 1.8 0.6 2.4 51.0 0.0 0.6 2.4 51.0 0.0 0.8 2.1
cts.indep 5.4 0.6 0.0 0.0 5.8 0.2 0.0 0.0 6.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0
cts.dep 13.6 2.4 7.1 0.9 15.2 0.8 4.3 3.7 16.0 0.0 4.4 3.6 16.0 0.0 4.4 3.6

α = 0.8
all 71.6 7.4 10.5 0.5 74.2 4.8 4.7 6.3 79.0 0.0 4.7 6.3 79.0 0.0 5.0 6.0
dis 5.7 0.3 0.0 0.0 5.6 0.4 0.0 0.0 6.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0
mixed 46.2 4.8 2.9 0.1 48.1 2.9 0.7 2.3 51.0 0.0 0.6 2.4 51.0 0.0 0.7 2.3
cts.indep 5.6 0.4 0.0 0.0 5.5 0.6 0.0 0.0 6.0 0.0 0.0 0.0 6.0 0.0 0.0 0.0
cts.dep 14.1 1.9 7.6 0.4 15.0 1.0 4.0 4.0 16.0 0.0 4.1 3.9 16.0 0.0 4.3 3.7

Table 2. MSE and variance of the estimated versus true effects for, discrete (dis),
mixed, continuous independent (cts-indep), dependent (cts-indep) variables without
background information (left), with background information (middle panels) and with-
out discretization (right).

no bg inacc bg acc bg no dis. acc bg
mean var mean var mean var mean var

α = 0.2
all 0.62 0.64 1.20 0.91 1.18 0.93 0.27 0.34
dis 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
mixed 0.82 0.81 0.91 0.73 0.87 0.81 0.26 0.36
cts.indep 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00
cts.dep 0.65 0.72 2.56 1.85 2.54 1.74 0.48 0.54
α = 0.5
all.1 0.71 0.82 1.26 1.06 1.22 1.03 0.39 0.55
dis.1 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01
mixed.1 0.89 0.90 0.95 0.85 0.97 0.91 0.29 0.46
cts.indep.1 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01
cts.dep.1 0.81 1.19 2.65 2.17 2.51 1.92 0.83 1.10
α = 0.8
all.2 0.78 0.91 1.19 1.07 1.12 0.92 0.43 0.63
dis.2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01
mixed.2 0.88 0.91 0.93 0.86 0.84 0.67 0.31 0.45
cts.indep.2 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01
cts.dep.2 1.09 1.50 2.46 2.16 2.39 1.98 0.94 1.40
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background information, (2) ‘inacc bg’ corresponds to discretized data with in-
accurate background information, (3) ‘acc bg’ corresponds to discretized data
estimated with relatively accurate background information, (4) ‘no dis. acc bg’
corresponds data without discretization and with accurate background informa-
tion. Data generations for the four cases are given in (14)–(19).

The accuracy of the background information is defined according to the prob-
ability that the background information indicates a correct link between vari-
ables and the probability that it indicates an incorrect link between variables.
The background information puts restrictions on the adjacency matrix:

Ai,10 for i = 1, . . . , 9 =

(
1 with probability pTP

NA with probability 1− pTP

)
Ai,k for i = 1, . . . , 8, k > i =

(
1 with probability pFP

NA with probability 1− pFP

) (20)

i.e. the background information provides the true links as in the DGP in (14)
with probability pTP , and it indicates wrong links, which are not part of the
DGP in (14) with probability pFP . When including background information,
only the NA (missing) elements of the adjacency matrix are estimated using the
graphical causal model. For the case of inaccurate background information, we
set pTP = 0.8 and pFP = 0.2, where the background information is still stronger
for indicating true links, but it also has a probability to indicate non-existing
links. For the case of accurate background information, we set pTP = 0.8 and
pFP = 0, hence the background information never indicates non-existing links.

Table 1 summarizes the obtained causal relations over M = 100 simulation
replications. The entries indicate correctly and incorrectly estimated causal links
calculated according to the difference between the true adjacency relations Ak,l

in Figure 1 and the estimated adjacency relations Âk,l in (6):

TP =

K∑
k=1

∑
l ̸=k

I(Âk,l = 1, Ak,l = 1), FP =

K∑
k=1

∑
l ̸=k

I(Âk,l = 1, Ak,l = 0),

TN =

K∑
k=1

∑
l ̸=k

I(Âk,l = 0, Ak,l = 0), FN =

K∑
k=1

∑
l ̸=k

I(Âk,l = 0, Ak,l = 1).

(21)

The comparison of the first and last four columns in Table 1 shows the effects
of discretization compared to the no discretization case. True positives and true
negatives are smaller or equal under discretization for almost all variables and
α values. The inclusion of background information, in the form of accurate or
inaccurate information, improve correctly identified relations (TP) as well as the
correctly excluded relations (TN) compared to the discretized case without prior
information. This result holds particularly for mixed variable connections, i.e.
connections between discretized and continuous variables including the outcome
variable Y . Hence the correct DGP in (14) is more likely to be attained even
under relatively inaccurate background information.
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Next, we report the results of incorporating background information based
on variable types. Table 1 shows that the confusion matrix elements improve un-
der background information particularly for mixed data (connections between
discrete and continuous data) and for connections between continuous and de-
pendent variables (X7, X8, X9, Y ). CM elements for discretized variables are
close to each other in all considered cases. This indicates that even without
background information, the links between discretized variables are accurately
estimated. In this simulation, discretized variables do not correlate with other
variables. We conjecture that this lack of correlation is the reason for the dis-
cretized variables’ CMs to be better than those of the continuous correlated
variables.

An important observation from Table 1 is that the true positives and false
negatives are exactly zero in all cases for discrete (dis) and continuous indepen-
dent (cts.indep) variables. These results arise from our simulation setup. The
DGP has no causal links between discrete variables and between continuous
dependent variables. Therefore, the estimation results cannot indicate a true
positive or a false negative. Finally, the effect of the hyperparameter α on the
obtained results is minimal. With priors, a smaller α, α = 0.2 leads to slight
improvements in the confusion matrix elements, but there is no general link
between the value of α and improvements in TP or TN.

4.3 Effects of Background Knowledge on Causal Effects

The second step in estimating graphical causal models is to obtain causal effects.
Causal effects are estimated based on the links between variables according to
the estimated adjacency matrices in Section 4.2. Note that estimated causal
estimates are not unique in graphical causal models. The conventional method
is to consider the minimum and maximum values of causal relations based on
the graph estimates, and report the lower and upper bounds of these estimates
[16, 15]. We report the effects of incorporating prior beliefs on the mean squared
differences between estimated and true causal effects for all model parameters.

We report four cases to compare the effects of discretization as well as the
inclusion of background information: (1) ‘no bg’ corresponds to discretized data
with no background information, (2) ‘inacc bg’ corresponds to discretized data
with inaccurate background information, (3) ‘acc bg’ corresponds to discretized
data estimated with relatively accurate background information, (4) ‘no dis. no
bg’ corresponds to data without discretization and without background infor-
mation. Data generations for the four cases are given in (14)–(19). The accuracy
of the background information is defined as in (20).

Table 2 presents average MSEs and its variance across 100 simulation replica-
tions. MSE values in the first and last panels (no bg vs no dis. acc bg) are substan-
tially different with much higher values for discretized data without background
information (no bg). This indicates the bias arising from data discretization,
which is in line with the literature [11]. For discrete and continuous independent
variables, the estimation bias is close to zero in all scenarios.
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5 Conclusion

In this work, we study the effect of incorporating background information in
graphical causal models with discretized variables. We show that incorporating
prior beliefs on the relations between variables improves graphical causal model
estimates with a particular reduction in omitted causal relations in estimates
and an increase in correctly identified causal relations. The inclusion of back-
ground information, in inaccurate or accurate form, increase the overall bias
in all variables, and specifically in continuous dependent variables. This indi-
cates that adding background information improves the estimation of links be-
tween variables, but has a deteriorating effect on the estimation bias in graphical
causal models. Furthermore, the bias in continuous dependent variables increases
with background information since our priors do not indicate relations between
continuous and correlated variables. A potential solution to this is to include
background information in the form of priors on model parameters. Finally, un-
certainty in background information can be explicitly considered in combining
background information and data information.
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