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Abstract. Applications of data-based modeling tools in medical diag-
nosis are one of the most promising trends in the healthcare field, which
has been expedited by the increasingly common usage of various mea-
suring devices and monitoring systems. This paper addresses one such
application, namely the classification of gait patterns in cerebral palsy
patients, using various kinetic and kinematic measurements describing
the walking patterns. In order to address the data fusion challenge resul-
tant from the multi-sensor environment, while also meeting the desirable
explainability properties of medical models, this paper proposes a multi-
view ensemble approach based on multiple fuzzy rule based classifiers,
each one assigned to a single sensor and its measurements. The proposed
approach is tested on four different problems with different gait pat-
tern anomalies, using data from real subjects obtained using state-of-art
biomechanical methods and standard clinical procedures.
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1 Introduction

Cerebral palsy refers to a group of permanent disorders in the development of
movement and posture caused by non-progressive disturbances in the developing
fetal or infant brain [1]. The most common type of cerebral palsy is known
as spastic diplegia, which affects the motor cortex of the brain and controls
voluntary movement [2]. Spastic diplegia is characterized by muscle tightness in
the legs, hips and pelvis, thus having negative effects in the walking functions
of the patient.

Moreover, these effects vary by individual, and must be accurately diagnosed
for various medical interventions. Therefore, standardized categories were cre-
ated for the various types of walking function anomalies. These categories are
usually defined by quantitative descriptions of the anomalous walking patterns,
known as gait patterns [3].

This paper presents a data-driven approach to diagnostic models for patients
suffering from spastic diplegia, using real measurements from multiple test sub-
jects. The dataset includes multiple samples, each one consisting of multiple
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sensor measurements structured as time series. Each sensor measures different
parameters of the gait patterns recorded for the test subjects [4]. The diagnostic
models must predict the gait pattern anomaly (labeled by a medical expert) using
the various sensor readings [5]. Thus, the described problem not only presents
the already expected challenges often found in medical datasets [6], but also
requires data fusion of the various data sources.

In order to adequately address the multi-source dataset structure, this work
proposes a multi-view ensemble approach [8] with multiple base models, each
one assigned to a sensor [7]. Moreover, applications of data-based modeling in
medical applications, such as the one addressed in this work, increasingly require
interpretable [9] models in lieu of traditional black-box modeling tools. Thus,
we also address this requirement in the proposed approach, by structuring the
ensemble base models as fuzzy inference systems.

2 Problem Description

The problem addressed in this work is the data-based identification of medical
diagnostic models for detection of different gait pattern anomalies. The dataset
used in this paper was obtained for a group of test subjects in a controlled
laboratory environment. Each subject performed multiple gait cycles, each one
corresponding to an unique sample, consisting of the recorded sensor measure-
ments (features), and the gait pattern (class label) detected by the medical
expert supervising the tests.

The described procedure was conducted for a group of 51 subjects, consisting
of a control group with 25 healthy children, and a patient group with 26 children
diagnosed with spastic diplegia. The patient group is further divided in four
different groups depending on the gait pattern anomaly affecting each individual.
The four groups correspond to Apparent Equinus, Crouch Gait, Jump Gait, and
True Equinus, all of which are commonly found in spastic diplegia patients.

Subjects belonging to the patient group can suffer from different gait pattern
anomalies in each leg. There are also some cases in which the measurements are
only available for one of the legs, either as a consequence of sensor failure, or lack
of a clear gait pattern label provided by the medical expert. Since each leg has its
own independent set of measurements, we consider each leg as a separate entry
in the dataset, regardless of the subject. Therefore, each sample corresponds to a
set of gait cycle measurements, recorded for a single leg, resulting in the dataset
summarized in Table 1.

Regarding the laboratory setup for recording the gait cycles, a total of 15
motion tracking cameras and 3 force platforms were used. Regarding the cam-
eras, these are used to localize reflective markers attached to the subject. This
data is then processed to generate a three-dimensional link-segment model of the
subject’s body, which is then used for estimating the body joint angles (kine-
matic features). Regarding the force platforms, they provide measurements of
the ground reaction forces during a walking test. These force measurements can
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Table 1. Sample availability and respective class distribution.

Group Gait Pattern
Available Samples

Legs Gait Cycles

Control Normal 50 183

Patient

Apparent Equinus 8 19
Crouch Gait 8 23
Jump Gait 10 29

True Equinus 9 27

then be used to estimate the body joint moments (kinetic features) by solving
the resultant inverse dynamics problem .

The aforementioned procedure results in a dataset structure consisting of 21
independent sensor measurements. Kinematic measurements consist of distinct
joint angles measured in degrees. These measurements are obtained for 4 body
joints (ankle, hip, knee and pelvis) in the X, Y and Z planes, resulting in 12
unique features. Kinetic measurements consist of distinct joint moments, and are
measured for 3 body joints (ankle, hip, knee) in the X, Y and Z planes, resulting
in 9 unique features. Each one of the unique 21 measurements is structured as
a time series with 101 data points, resulting in a total of 2121 data points for
each gait cycle recorded.

3 Methodology

This section presents the proposed approach and its elements, describing the
multi-view ensemble architecture (section 3.1) and the fuzzy rule based structure
of the base models (section 3.2).

3.1 Multi-View Ensemble Architecture

As discussed before, information fusion and multi-view approaches include a
diverse set of problem formulations and dataset structures, resulting in different
data-based modeling tasks with varying levels of complexity. Attending to the
characteristics of problem addressed in this paper, the proposed approach is
adequate to classification tasks on datasets already structured as multiple data
views, not requiring any procedure to obtain the feature subsets.

Consider a multi-view dataset D with n samples, m features, and v data

views, such that D =
{
X(1),X(2), . . .X(v)

}
, where X(i) =

[
x
(i)
1 ,x

(i)
2 , . . . ,x

(i)
n

]
∈

Rn×mi represents the i-th data view and mi its number of features. Therefore,
each data view has the same number of samples, but an unique subset of features,
such that m =

∑v
i=1 mi is the total number of features. For a classification

problem with c classes, we define the class labels as Y = {y1,y2, . . .yn} ∈ Rn×c,
where yk = [yk1, yk2, . . . , ykc] defines the label of the k-th sample, with ykj = 1
if the sample belongs to the j-th class, and ykj = 0 otherwise.
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Having defined the generic problem for a multi-view dataset, we can now
start defining the proposed ensemble structure. First, we define the set of base

classifiers as B =
{
f (1)

(
θ1,x

(1)
k

)
, f (2)

(
θ2,x

(2)
k

)
, . . . , f (v)

(
θv,x

(v)
k

)}
where

f (i)
(
θi,x

(i)
k

)
represents the i-th base classifier as a mapping from the k-th sam-

ple x
(i)
k to the respective class prediction y

(i)
k , using the estimated model param-

eters θi. Therefore, the first layer in the ensemble is fully defined by estimating
the parameters corresponding to each model. Attending to the parallel ensemble
structure, each training procedure is fully independent and can be performed si-
multaneously. After the base model parameters are estimated, the first ensemble
layer is fully defined in its final state.

Before proceeding to the aggregation step, we must first define a single layer
output ŵ from the v class predictions as ŵ =

[
ŷ(1), ŷ(2), . . . , ŷ(v)

]
∈ Rv×c,

with ŵij defining the i-th classifier prediction for the j-th class. The first en-
semble layer can therefore be defined as ŵ = B(x) defining a mapping from
sample x to the base model prediction. All the previous definitions are valid for
hard classifiers predicting the class label, as well as soft classifiers predicting the
class probabilities. For hard classifiers, the aforementioned encoding results in a
probability of 1.0 for the predicted class, and 0.0 for other classes.

The final step in the proposed ensemble consists of combining the base model
predictions in order to obtain a single output corresponding to the ensemble class
prediction. This step is known as aggregation and presents an important design
choice in ensemble models with noticeable impact on predictive performance.
Well known strategies include simpler non-parametric methods, such as differ-
ent voting rules, as well as more complex parametric methods, such as stacking.
Attending to the interest in studying the impact of different aggregation strate-
gies on the predictive performance, we propose three different methods for this
step, and will later discuss the obtained results.

Regardless of the chosen method, the aggregation step can be defined as ŷ =
S(ŵ) with ŷ ∈ Rc. Starting with simpler non-parametric methods, we propose
a simple voting strategy defining ŷj =

∑v
i=1 ŵij as the total voting score for the

j-th class, and predicting the class with maximum score. This voting strategy
is valid for hard and soft predictions, with the latter case generally improving
the resultant predictive performance. Both cases are studied and compared in
the results discussion. In order to generalize the aggregation procedure, we also
propose a data-based modeling approach for the estimation of S(ŵ) as a separate
ensemble base model. This parametric approach defines a classifier mapping
base predictions to the final class prediction, allowing for more complex class
decision rules. Such approaches are known as stacking and are also well known
and commonly used in multi-view ensembles.

3.2 Fuzzy Rule Based Classifiers

In this work, the ALMMo-0 classifier [10] was chosen for identification of all the
ensemble base classifiers that were used for testing the proposed approach, as will
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be discussed in section 4. This choice was primarily motivated by the simplicity
and performance shown in the literature. Moreover, recent publications have
shown the adequacy of ALMMo-0 classifiers for medical diagnosis applications
[11], as well as the building block for complex ensemble architectures and deep
fuzzy approaches [12].

As part of the Empirical Data Analytics (EDA) [13] framework ALMMo-0
classifiers are based on zero-order AnYa type fuzzy rules [14], presenting a sim-
plified antecedent structure and training algorithm. The model structure and re-
spective parameters are recursively updated in a non-iterative and feed-forward
way, on a sample-by-sample basis, forming data clouds which define the an-
tecedents.

Regarding the specific problem addressed in this work, the primary reason
for choosing the ALMMo-0 is its robust performance when compared to similarly
complex methods, particularly in challenging classification problems and highly
imbalanced datasets. One key aspect supporting such performances is the rule
structure, and the separate rule (cloud) identification process for each class.
This structure differs from the structure used in traditional fuzzy models, such
as Takagi-Sugeno [15] and Mamdani fuzzy systems [16].

In the remainder of this section, we describe the rule structure and its conse-
quences regarding predictive performance. Attending to the scope of this paper,
and also for the sake of brevity, the cloud identification algorithm is not de-
scribed, as it is the same proposed in [10]. The general architecture consists of
multiple parallel fuzzy rule based sub-models, one for each class. Moreover, each
rule corresponds to a data cloud, which defines its antecedents. In the case of
ALMMo-0 classifiers, rules are completely defined by the antecedent parame-
ters, since zero-order AnYa-type fuzzy rules have non-parametric consequents.
The rules are structured as shown in (1), where θck represents the focal point
describing the k-th cloud from the c-th class sub-model, and λc

k is defined as
λc
k = exp

(
− 1

2∥x− θck∥2
)
and represents the respective activation score.

IF x ∼ θck THEN ŷc = λc
k (1)

Each one of these class sub-models has its unique set of fuzzy rules, since these
are updated using only the respective class samples. Therefore, an independent
fuzzy rule set is created for each class, thus avoiding common problems related
to the existence of majority class outliers and noisy samples, generally improving
model performance, particularly in highly imbalanced datasets.

When classifying an unknown data sample, each one of the class sub-models
receives the sample as an input to each one of the rules in its rule set. Then, each
sub-model returns the maximum activation score found in its rule set, resulting
in the rule structure shown in (2), where λc

∗ is the maximum confidence score
and Rc is the number of rules in the c-th class sub-model.

IF (x ∼ θc1) OR (x ∼ θc2) OR ... OR
(
x ∼ θcRc

)
THEN ŷc = λc

∗ (2)
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In the original paper, the maximum scores of each sub-model are then com-
pared, and the largest score assigns its class label to the sample, using a winner-
takes-all strategy. In this paper, we propose a small change to this last step,
defining a normalization layer for the confidence scores. We define the model
output as ŷ =

[
y1, y2, . . . yc

]
, where yi = λi

∗/
∑c

j=1 λ
j
∗ is the i-th class probabil-

ity. This allows the ALMMo-0 to be used with soft voting methods, as discussed
in 3.1, and does not affect the model performance of the original algorithm.

4 Results

In order to more thoroughly assess the validity of the proposed approach, we
define four different problems from the dataset presented in section 2, each one
defined as the one-vs-rest binary problem for each gait anomaly. Following this
procedure, we get the binary classification problems summarized in Table 2.

Table 2. Sample distribution and respective class distribution for each one of the
binary problems obtained from one-vs-rest decomposition.

Problem
(Target vs Rest)

Sample Distribution Class Imbalance
(%)Target Rest

Apparent Equinus vs Rest 19 262 6.8

Crouch Gait vs Rest 23 258 8.2

Jump Gait vs Rest 29 252 10.3

True Equinus vs Rest 27 254 9.6

For each one of the problems 5-fold cross validation was used. The obtained
results are presented for each problem separately, in Table 3, Table 4, Table 5 and
Table 6, respectively. The predictive performance is evaluated using well known
classification metrics, including Accuracy, Recall, Precision, F1-score, Cohen’s
Kappa Coefficient (Kappa) and Matthews Correlation Coefficient (MCC).

Moreover, in order to facilitate the ensemble performance analysis, the tables
are divided row-wise in two groups of base model results, and one group of
ensemble model results. Starting from the top, the first 12 rows show the results
for base models trained on angle measurements for distinct body joints, which
include the ankles (A-An), the hips (A-Hp), the knees (A-Kn), and pelvis (A-
Pe). The 9 middle rows of each table show the results for base models trained
on moment measurements for distinct body joints, which include the ankles (M-
An), the hips (M-Hp), and the knees (M-Kn). Finally, the last 3 rows in each
table show the overall ensemble results using 3 distinct aggregation methods for
the base classifier predictions. These include hard voting (HV), soft voting (SV),
and stacking (ST). Values in bold correspond to the highest metric scores in
each one the 3 groups, while underlined values mark the best overall.

Starting with Table 3 and the results for the apparent equinus detection,
it is quite clear that the performance of the proposed ensemble was far from
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Table 3. Performance metrics for the Apparent Equinus anomaly detection.

Model Accuracy Precision Recall F1-Score Kappa MCC

A-An
X 0.862 0.092 0.090 0.088 0.015 0.016
Y 0.909 0.120 0.120 0.120 0.088 0.084
Z 0.929 0.333 0.140 0.181 0.172 0.197

A-Hp
X 0.858 0.111 0.220 0.147 0.081 0.086
Y 0.885 0.000 0.000 0.000 -0.048 -0.054
Z 0.857 0.168 0.320 0.217 0.154 0.166

A-Kn
X 0.880 0.207 0.130 0.154 0.092 0.098
Y 0.913 0.524 0.270 0.330 0.289 0.320
Z 0.869 0.000 0.000 0.000 -0.055 -0.059

A-Pe
X 0.883 0.000 0.000 0.000 -0.045 -0.046
Y 0.866 0.025 0.040 0.031 -0.033 -0.036
Z 0.896 0.117 0.120 0.117 0.072 0.068

M-An
X 0.804 0.161 0.360 0.204 0.118 0.139
Y 0.812 0.049 0.090 0.060 -0.029 -0.032
Z 0.867 0.062 0.090 0.073 0.008 0.006

M-Hp
X 0.840 0.040 0.040 0.040 -0.042 -0.045
Y 0.891 0.500 0.190 0.267 0.215 0.250
Z 0.886 0.000 0.000 0.000 -0.047 -0.049

M-Kn
X 0.904 0.383 0.370 0.307 0.266 0.301
Y 0.887 0.000 0.000 0.000 -0.045 -0.048
Z 0.881 0.067 0.040 0.050 -0.002 -0.002

Ensemble
HV 0.922 0.000 0.000 0.000 0.000 0.000
SV 0.922 0.000 0.000 0.000 0.000 0.000
ST 0.922 0.000 0.000 0.000 0.000 0.000

acceptable, since it misclassified all the positive samples in all tests, regardless
of the aggregation method. Observing the base model results, most outperform
the ensembles in all metrics (except accuracy), as expected. Nevertheless, the
precision and recall scores are generally quite low for all models, suggesting
that the classification problem is rather challenging, regardless of the approach
complexity of the modelling method. Despite the overall underperformance, it
is also evident that base models trained on the Y axis knee joint angle (A-Kn-
Y), as well as base models trained on the X axis knee joint moment (M-Kn-X),
clearly outperform all other models, suggesting that these two features are by
far the most informative regarding the apparent equinus gait anomaly.

Regarding the results for the crouch gait anomaly shown in Table 4, the en-
semble approach with hard vote aggregation outperforms the other ensembles in
all metrics. Moreover, it also outperforms all other models in terms of accuracy
and precision. However, this suggests that the proposed ensemble (using hard
voting) predicts a large number of false negatives, meaning that it often fails
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Table 4. Performance metrics for the Crouch Gait anomaly detection.

Model Accuracy Precision Recall F1-Score Kappa MCC

A-An
X 0.907 0.496 0.593 0.532 0.481 0.489
Y 0.896 0.463 0.640 0.533 0.476 0.487
Z 0.921 0.587 0.640 0.610 0.566 0.568

A-Hp
X 0.929 0.622 0.760 0.674 0.636 0.646
Y 0.919 0.597 0.640 0.598 0.554 0.566
Z 0.904 0.458 0.373 0.393 0.344 0.355

A-Kn
X 0.816 0.260 0.467 0.328 0.234 0.250
Y 0.928 0.681 0.580 0.593 0.556 0.575
Z 0.865 0.177 0.273 0.209 0.149 0.152

A-Pe
X 0.764 0.000 0.000 0.000 -0.106 -0.119
Y 0.892 0.461 0.460 0.437 0.379 0.392
Z 0.841 0.102 0.113 0.107 0.022 0.021

M-An
X 0.877 0.457 0.447 0.375 0.321 0.359
Y 0.919 0.583 0.440 0.480 0.441 0.456
Z 0.891 0.397 0.347 0.365 0.307 0.310

M-Hp
X 0.846 0.120 0.147 0.130 0.049 0.049
Y 0.873 0.442 0.467 0.424 0.358 0.374
Z 0.904 0.467 0.207 0.267 0.232 0.262

M-Kn
X 0.903 0.542 0.787 0.624 0.575 0.597
Y 0.892 0.251 0.287 0.265 0.222 0.222
Z 0.876 0.327 0.527 0.390 0.336 0.356

Ensemble
HV 0.935 0.800 0.460 0.565 0.533 0.566
SV 0.929 0.800 0.393 0.500 0.468 0.513
ST 0.905 0.380 0.180 0.217 0.191 0.218

to detect the crouch gait anomaly (the low recall scores further support this
conclusion). Moreover, these results show that hard voting can lead to better
results than soft voting and stacking, as was discussed in section 3.1, despite
being the simplest strategy. Regarding the base models, the best overall perfor-
mances correspond to the classifiers trained on the X hip joint angle (A-Hp-X)
and X knee joint moment (M-Kn-X) measurements, showing the highest recall,
F1-Score, Kappa and MCC scores. Therefore, it is clear that once again the base
models outperformed the ensembles.

Regarding the results in Table 5 for the jump gait anomaly detection, the
proposed ensemble (using stacking as the aggregation method) outperforms all
the remaining models in all metrics except the recall score. As such, these results
show that the proposed ensemble approach can lead to more balanced classifi-
cation performances than the individual base models, at the expense of a larger
number of false negatives. Regarding the base classifiers, the best overall perfor-
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Table 5. Performance metrics for the Jump Gait anomaly detection.

Model Accuracy Precision Recall F1-Score Kappa MCC

A-An
X 0.898 0.489 0.720 0.563 0.510 0.534
Y 0.828 0.130 0.147 0.134 0.041 0.042
Z 0.888 0.407 0.260 0.273 0.223 0.246

A-Hp
X 0.867 0.196 0.240 0.206 0.145 0.146
Y 0.869 0.458 0.447 0.388 0.322 0.355
Z 0.890 0.267 0.187 0.218 0.172 0.175

A-Kn
X 0.844 0.273 0.433 0.329 0.246 0.259
Y 0.899 0.529 0.587 0.538 0.483 0.494
Z 0.913 0.383 0.307 0.331 0.303 0.308

A-Pe
X 0.875 0.400 0.593 0.473 0.405 0.418
Y 0.855 0.000 0.000 0.000 -0.049 -0.054
Z 0.877 0.357 0.253 0.279 0.217 0.229

M-An
X 0.850 0.368 0.827 0.506 0.433 0.485
Y 0.850 0.349 0.607 0.432 0.356 0.380
Z 0.870 0.447 0.467 0.420 0.353 0.372

M-Hp
X 0.848 0.251 0.533 0.337 0.261 0.291
Y 0.851 0.207 0.187 0.173 0.100 0.108
Z 0.876 0.200 0.153 0.170 0.116 0.119

M-Kn
X 0.886 0.443 0.393 0.395 0.339 0.349
Y 0.854 0.338 0.600 0.427 0.350 0.373
Z 0.837 0.244 0.293 0.256 0.169 0.174

Ensemble
HV 0.921 0.467 0.273 0.337 0.319 0.336
SV 0.918 0.600 0.153 0.238 0.226 0.288
ST 0.945 0.700 0.533 0.580 0.564 0.583

mances were obtained for the X ankle joint angle (A-An-X) and X ankle joint
moment (M-An-X).

Proceeding to Table 6 and the results for the true equinus pattern detection,
it is clear that the stack ensemble approach once again outperforms the other
aggregation strategies in all metrics. Nevertheless, the results shown once again
that the base models still lead to the best overall classification performances.
Specificaly, base classifiers trained on the X knee joint angle (A-Kn-X) and the
X knee joint moment (M-Kn-X) features show the best overall performance.

5 Conclusions and Future Work

This paper proposes a data-based modeling approach to gait pattern detection
in spastic diplegia patients. Validation of the presented approach was conducted
using data from real subjects and following state-of-the-art clinical procedures.
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Table 6. Performance metrics for the True Equinus anomaly detection.

Model Accuracy Precision Recall F1-Score Kappa MCC

A-An
X 0.841 0.147 0.124 0.134 0.058 0.053
Y 0.826 0.117 0.062 0.080 -0.009 -0.008
Z 0.886 0.419 0.286 0.329 0.276 0.284

A-Hp
X 0.852 0.407 0.614 0.480 0.398 0.417
Y 0.814 0.172 0.229 0.184 0.084 0.092
Z 0.847 0.439 0.500 0.441 0.361 0.374

A-Kn
X 0.889 0.483 0.600 0.535 0.472 0.476
Y 0.846 0.225 0.186 0.200 0.123 0.122
Z 0.870 0.448 0.410 0.405 0.336 0.348

A-Pe
X 0.843 0.273 0.257 0.263 0.177 0.177
Y 0.774 0.155 0.181 0.157 0.035 0.036
Z 0.798 0.075 0.086 0.080 -0.031 -0.032

M-An
X 0.771 0.229 0.357 0.271 0.150 0.156
Y 0.831 0.150 0.086 0.109 0.032 0.030
Z 0.865 0.430 0.257 0.321 0.250 0.261

M-Hp
X 0.849 0.384 0.381 0.373 0.289 0.294
Y 0.866 0.450 0.238 0.299 0.231 0.252
Z 0.897 0.537 0.381 0.440 0.389 0.398

M-Kn
X 0.962 0.893 0.800 0.819 0.799 0.814
Y 0.894 0.587 0.324 0.414 0.361 0.382
Z 0.883 0.540 0.238 0.301 0.251 0.287

Ensemble
HV 0.895 0.400 0.086 0.139 0.128 0.173
SV 0.895 0.350 0.114 0.159 0.146 0.177
ST 0.908 0.760 0.233 0.329 0.307 0.380

Regarding the proposed ensemble architecture, the results show that it failed
to outperform its base classifiers regarding detection of the gait pattern anoma-
lies. Moreover, more complex aggregation methods, such as stacking, did not
consistently lead to performance improvements. Results also suggest that not
all features are equally useful in distinguishing between normal and anomalous
gait patterns, as suggested by the base classifiers performance. Furthermore, the
usefulness of the various features varies by problem, meaning that specific gait
anomallies may be better described by different sets of features.

Attending to the general adequacy of similar approaches that was found in the
literature for similarly structured problems, we conclude the under-performance
described in this work is related to the challenges posed by the dataset used.
Concretely, we propose that the limited number of samples, high class imbal-
ance, and variable feature importance may be the main contributors degrading
the ensemble performance. In order to better understand the experimental re-
sults, a more detailed study of the ensemble performance would be required,
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ideally comparing experimental results for various multi-view datasets with dis-
tinct features. Furthermore, it would also be relevant to study the performance
impact of different methods for base model identification, including other fuzzy
approaches.
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