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Abstract. This paper presents the identification of a desalination plant
model using fuzzy inference techniques, as well as their comparison with
the Linear Parameter Variation (LPV) experimental identification. Iden-
tification of the plant model has been carried out using the fuzzy C-means
clustering (FCM) technique. The identified model was then validated,
and the estimated output was compared with the measured output. Both
models were obtained with experimental data by running the plant in
three different scenarios, with the only variation in the operating point
of the waste reuse valve, although the differences are minimal. The re-
sults obtained show that the FCM presents the lowest variability in the
estimates, the lowest discrepancy between the predicted and observed
values.

1 Introduction

Desalination is used to address the scarcity of water resources by eliminating salt
from the water. Among the various methods available, reverse osmosis (RO) is
one of the most widely used worldwide. This process involves applying pressure
higher than the natural osmotic pressure to induce a reverse flow, directing
water from the more concentrated medium to the less concentrated. This results
in one stream with a high total dissolved solids (TDS) value and another with
permeated water of high purity, depending on the membrane’s rejection rate.

Due to its complex and nonlinear nature with variable parameters, develop-
ing mathematical models based on a phenomenological approach is challenging.
Furthermore, there are parametric uncertainties and variations in the compo-
nents over time in RO desalination plants. However, modelling and control of
desalination systems are crucial for safe and efficient operation. Numerous strate-
gies have been used, ranging from the application of dynamic matrix control to
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regulate pH and nominal pressure to nonlinear control methods using open- and
closed-loop algorithms [1].

The linear parameter variation (LPV) strategy represents a robust control
approach designed to handle real-time variations in system parameters effec-
tively. This control methodology typically comprises three main stages: system
model identification, controller synthesis, and performance analysis. Numerous
studies are in the literature that focus on LPV control. Application to systems
with time delays [3] or in hydroelectric power plants [9] are some of those works.

Nonlinear dynamic systems often necessitate the use of complex mathemati-
cal equations, notably differential equations. However, while mathematical tools
support modelling, they may not always adequately address the uncertainties
inherent in systems. Developing optimal control and optimisation strategies for
nonlinear models presents a significant computational challenge, particularly
when time constraints and sampling intervals must be considered. Consequently,
the need for fast models becomes imperative to overcome this obstacle efficiently.

Fuzzy modelings as a valuable technique for modelling and controlling non-
linear systems. It effectively captures the essence of the original non-linear model
[12] while offering advantages such as rapid update and execution capabilities.
Among the different methods of obtaining fuzzy models, the Fuzzy C-Means
(FCM) have been used, similar to other reference works ([5], [4] and [7]). Clusters
have been created with FCM from the input and output data to obtain the
different membership functions and fuzzy rules.

In this paper, we propose to show the identification of the desalination plant
model using fuzzy inference techniques, as well as their comparison with the
LPV experimental identification. The rest of the article is structured as follows.
Section 2 describes the desalination plant under study, Section 3 presents the
methodology for preparing the data to model the system. Section 4 describes the
two models developed for comparison. Section 5 shows the validation results, and
Section 6 presents the conclusions.

2 Case study: Desalination pilot system

This work was carried out using a bench scale reverse osmosis desalination system
shown in Fig. 1a. This plant is located in the laboratory of the Federal University
of Ceará, in Fortaleza, Brazil.

Fig. 1b illustrates the block diagram of the system. The system comprises a
brackish water reservoir (feed water), a permeate reservoir (resulting liquid), two
water pumps (B1 and B2), a prefiltration system (10 micron, 5 micron, activated
carbon and deionised resin), two RO desalination membranes (M1 and M2), one
reverse osmosis desalination membrane (M1 and M2), a flow sensor (V1), two
pressure sensors (P1 and P2) and registers along the circuR2, (R1, R2 and R3).

The membranes were arranged in series to optimise the concentrate for dis-
posal or reuse in another test. The two tanks are consistently interconnected,
either by pipe or equipment. Consequently, the opening level of the valve in
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(a) Pilot desalination plant. (b) Simplified system schematic.

Fig. 1: Reverse osmosis desalination facility.

the pipelines directly affects the pressure and flow rate of the concentrate and,
therefore, the operational efficiency.

To acquire the necessary input and output data of the system for various
models, three experimental tests were conducted. The pressure was maintained
at a constant operating point of approximately 50 psi, while the waste reuse
valve (R3) was opened incrementally. The operating conditions adopted were
closed valve (0% opening), half-open valve (50% opening),) and fully open valve
(100% opening).

The input signals consisted of square wave pulses generated to operate the
two pumps of the desalination system. However, for the output signal, the pres-
sure values of pump 2, located just downstream of the filters, were used. These
data were collected through the pressure sensor (P2) located immediately after
the water flow outlet of this pump, as shown in Figure 1a.

With these data and their subsequent preparation, explained in the following
section, the three models of the plant have been carried out, depending on the
degree of opening of the aforementioned valve.

3 Data preparation

During the data acquisition process, as explained above, a square wave excita-
tion was applied, the system operating at about 50 psi, which is equivalent to
approximately 3.5 bar. The voltage applied to the pressurisation pump of the
RO membranes was taken to be the input of the model, while the pressure mea-
surement of the sensors at the inlet of the membranes was used for the output.
The sampling period used was Ts = 0.01 s.

Fig. 2 shows the behaviour of the variation in system pressure at the di-
aphragm inlets as a function of the valve opening. As a consequence of the
progressive opening of the valve, the pressure at the pump outlet decreases until
it reaches a significant reduction when the valve is 100% open, as can be seen in
the figure below.
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Fig. 2: Data of the system

For LPV experimental identification, the collected data shown above were
processed, removing the mean and trend, and then normalised to obtain models
with well-conditioned parameters. The base value of the input signal is 12 Vdc
and the output signals are pressure variations with a base value of 20 psi.

For the identification of the model using fuzzy techniques, the original data
have been normalised in the range [0 1] using the following:

xnorm =
x− xmin

xmax − xmin
(1a)

4 Modelling

This section details the modelling of the system following the LPV method
first and then using a fuzzy inference method. The first of the models is taken
from [10].

4.1 LPV model of the plant

The LVP model of the plant is shown below, which has an ARX-LPV structure:

y(k) =
B(z, θ(k)

A(z, θ(k)
z−du(k) + e(k) (2a)
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where y(k) and u(k) are the output and input of the system, respectively,
and θ is the level of valve opening.

The terms nb and na are respectively the orders of the polynomials B(z, θ)
and A(z, θ), which can be described by:

B(z, θ(k) = b1(θ)z
−1 + b2(θ)z

−2 + b3(θ)z
−3 (3a)

A(z, θ(k) = 1 + a1(θ)z
−1 + a2(θ)z

−2 + a3(θ)z
−3 (3b)

Among the possible choices for parameter-dependent functions, we chose
functions with polynomial dependence in the form dependence:

bi(θ) = bi1 + bi2θ + ...+ biNθN , i = 1, ..., nb (4a)

aj(θ) = aj1 + aj2θ + ...+ ajNθN , j = 1, ..., na (4b)

where N is the degree of the polynomial functions.
The parameter identification method used was the LPVLMS (Parallel Least

Mean Squares) (F. G. Nogueira, 2018), which is grounded on the local LPV
approach. As mentioned above, operating points were selected for the scheduling
variable (feedback valve). The recursive P-LMS algorithm aims to minimise the
estimation error ϵ(k) = y(k)−ŷ(k) simultaneously for m datasets acquired under
various operating conditions of the system, where y(k) represents the measured
output signal and ŷ(k) signifies the estimated output.

The normalised data obtained previously were divided into two sets for model
identification and validation purposes. Following an analysis of the performance
of various identified models, it was determined to employ a third-order ARX-
LPV model (with Na = Nb = 3) with a second-degree dependence (N = 2).

The polynomial values of the identified ARX-LPV model are shown below:

a1(θ) = −0, 5700− 0, 0857θ − 0, 0738θ2

a2(θ) = −0, 2602 + 0, 0303θ + 0, 0189θ2

a3(θ) = −0, 1583 + 0, 0691θ + 0, 0498θ2

b1(θ) = 0, 0011− 0, 0014θ + 0, 0039θ2

b2(θ) = 0, 0080− 0, 0093θ − 0, 0021θ2

b3(θ) = 0, 0269− 0, 0098θ − 0, 0030θ2

The identified model was validated by simulating it over time, where the esti-
mated output is compared with the measured output. This procedure was carried
out under the same three operating conditions that were considered during the
data acquisition process.

4.2 Fuzzy model of the plant

With the data obtained from Section 3, a three-input, one-output fuzzy model
has been created as shown in Fig. 3. The output of the model is the pressure in
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the current state, which feeds back into the model, giving as one of the input
the pressure in the previous state. Likewise, the other two inputs are the current
control signal and the valve opening.

FIS

Fig. 3: FIS

The type of inference in the fuzzy model is Takagi-Sugeno (TS) [11]:

Rule j :

IF valve is F1v and uk is F2j and pk−1 is F3j ,

THEN : p̂j(x) = g0j + g1j · valve+ g2j · uk + g3j · pk−1

This type presents rules with parameters on the antecedents and on the
consequents. For the antecedents, these parameters are the means or centre (cij)
and deviations (σij) of the Gaussians that make up each fuzzy set (Fij) (in the
case of valve input, there are just three fuzzy sets, v = 1, 2, 3, one for each state
of the valve), while the consequents consist of coefficients (gij) of each of the
first-order polynomial functions, multiplying each input, plus an independent
term (g0j). The final output of the system will be the weighting of each of these
polynomial functions based on the degree of weight obtained from each of the
membership functions of the inputs.

To obtain these antecedent and consequent parameters, three Takagi-Sugeno
fuzzy models have been created, one for each valve position, using the member-
ship function and the rules derived from the clusters obtained from the input
and output data. The clustering method used was Fuzzy C-Means Clustering
(FCM), in which the clusters are obtained using an iterative approach, with
satisfactory results. The iterative process involves the progressive update of the
cluster centroids and the degrees of membership of the data points. Iterations
occur until a convergence condition is reached, which may be manifested by the
stabilisation of the centroids or the minimisation of an objective function that
evaluates the discrepancy between the data and the centroids.

Thus, with the input and output data of the model and the clustering method
used, a fuzzy inference system (FIS) is generated that captures the behaviour
of the data. The FCM approach determines the number of rules, the Gaussian
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membership functions for the antecedents, and the first-order polynomial func-
tions for the consequents of the FIS. These parameters are shown in the following
tables throughout the text. In addition, the parameters of the antecedents and
consequents could be further improved with fuzzy neural networks based on
an adaptive neuro-fuzzy inference system (ANFIS). Finally, in the antecedent
parameters, each input variable has a Gaussian input membership function for
each fuzzy cluster, while in the consequent parameters, each output variable has
a linear output membership function for each fuzzy cluster. In terms of fuzzy
rules, each model has a rule for each fuzzy cluster.

The valve has only three membership functions, with three different shapes
(linear z-shaped, triangular, and linear s-shaped), as shown in Fig. 3 correspond-
ing to the three states of the valve: closed, half-opened, or opened. The other
inputs have a different number of membership functions depending on the state
of the valve. The control signal and pressure both have six membership functions
when the valve is closed, as shown in Table 1, but in the rest of the states, the
number of membership functions is four. All are Gaussian, with the parameters
shown in Tables 2 and 3. The parameters of the membership functions of the
valve input have not been shown because they are always the same depending
on the case: a downward ramp between 0 and 0.5 for the closed valve case, a
triangle between 0, 0.5 and 1 for the half-opened valve case, and an upward ramp
between 0.5 and 1 for the opened valve case.

Table 1: Obtained parameters during the learning process: valve 0%
Antecedent Parameters

MFs

Inputs (x) uk pk−1

A1j B2j

j σ1j c1j σ2j c2j
1 0.0913 0.0085 0.1255 0.4245
2 0.0872 0.0010 0.1748 0.0769
3 0.0913 0.0017 0.1543 0.9610
4 0.0866 0.5546 0.1752 0.9252
5 0.0919 0.5534 0.1542 0.0348
6 0.0912 0.5487 0.1267 0.6027

Consequent Parameters
p̂k,j

j g2j g3j g0j
1 0.01887 0.9927 -0.0016
2 0.01887 0.9927 -0.0016
3 0.01887 0.9927 -0.0016
4 0.01887 0.9927 -0.0016
5 0.01887 0.9927 -0.0016
6 0.01887 0.9927 -0.0016
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Table 2: Obtained parameters during
the learning process: valve 50%

Antecedent Parameters
MFs

Inputs (x) uk pk−1

A1j B2j

j σ1j c1j σ2j c2j
1 0.0877 0.2228 0.1255 0.3656
2 0.0882 0.7746 0.0946 0.3676
3 0.0835 0.7772 0.1519 0.8680
4 0.0898 0.2255 0.0971 0.8771

Consequent Parameters
p̂k,j

j g2j g3j g0j
1 0.01488 0.9881 -0.0016
2 0.01488 0.9881 -0.0016
3 0.01488 0.9881 -0.0016
4 0.01488 0.9881 -0.0016

Table 3: Obtained parameters during
the learning process: valve 100%

Antecedent Parameters
MFs

Inputs (x) uk pk−1

A1j B2j

j σ1j c1j σ2j c2j
1 0.0726 0.9999 0.0511 0.3126
2 0.0708 0.4445 0.0501 0.5548
3 0.0722 0.9999 0.0758 0.5473
4 0.0702 0.4444 0.0770 0.3081

Consequent Parameters
p̂k,j

j g2j g3j g0j
1 0.00903 0.9850 -0.00009
2 0.00903 0.9850 -0.00009
3 0.00903 0.9850 -0.00009
4 0.00903 0.9850 -0.00009

Within the different clustering methods, Fuzzy C-Means Clustering (FCM) [2]
is a technique in which the data set is divided into a determined number of clus-
ters with every data point in the dataset belonging to every cluster to a certain
degree. The objective of this method is to minimise the following objective func-
tion:

Jm =

C∑
i=1

N∑
j=1

µm
ikD

2
ik (6)

wherem represents the exponent of the fuzzy partition matrix, controlling the
extent of fuzzy overlap, where m is greater than 1, Dij denotes the distance from
the jth data point to the ith cluster, and µij signifies the degree of membership
of the jth data point in the ith cluster.

The FCM clustering process initially involves setting the initial cluster cen-
tres, which are by default randomly chosen, so the optimum number of clusters
could be chosen. Subsequently, the membership values of the cluster µij are ran-
domly initialised. Then, the updated cluster centres are calculated iteratively
based on current membership values, using (7). These steps are repeated un-
til convergence criteria are met, such as the objective function Jm improves
by less than a specific value, has been established previously, or has reached
a maximum number of iterations. To recalculate the values of the membership
functions, equation (8) is used. As can be seen, in this formula, the metric dis-
tance from each point to the cluster centre has to be calculated. There are several
algorithms to obtain it, but the one used is Gath-Geva (GG).
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ci =

∑N
j=1 µ

m
ijxi∑N

j=1 µ
m
ij

, 1 ≤ i ≤ C (7)

µij =
1∑N

k=1(
Dij

Dik
)

2
m−1 )

, 1 ≤ i ≤ C, 1 ≤ j ≤ N (8)

In the Gath-Geva (GG) FCM algorithm [6], the process begins by computing
the covariance matrices Fi for each cluster centre. Subsequently, it determines
the prior probability Pi to select each cluster. Finally, it calculates the distance
from each data point to each cluster using an exponential distance measure with
the following formula:

Dij = Ai · exp

(
0.5

N∑
j=1

(xj − ci)
TF−1

i (xj − ci)

)
, 1 ≤ i ≤ C, 1 ≤ j ≤ N (9)

where Ai is calculated with (10) using the covariance matrices and the pre-
viously calculated probability.

Ai =
det(Fi)

Pi
(10)

5 Results

The results obtained from the neurofuzzy modelling of the plant, as well as the
comparison with the system identified by LPV, are now presented. Both models
have been validated with part of the total data set obtained experimentally. For
the neurofuzzy model, it has been necessary to normalise the data beforehand,
as was done for the modelling, as explained above, and in the figure 4, the two
models adequately reflect the dynamics of the system.

In order to make a comparison of the two models, four different metrics have
been used: the error mean (Ē), the standard deviation of the error (σE), the
Root Mean Squared Error (RMSE) and the R2, which are consistently used to
compare the model outputs with a new dataset of real data validation data, as
pointed out in [8].

Ē =

∑N
i=1(xi − x̂i)

N
(11a)

σE =

√∑N
i=1(Ei − Ē)2

N
(11b)

RMSE =

√∑n
i=1(xi − x̂i)2

N
(11c)

R2 = 1− xi − x̂i

xi − x̄i
(11d)
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Fig. 4: Validation results. Real data (cyan line), fuzzy model (blue line) and LPV
model (orange line), outputs.

The validation of the three models obtained with each of the applied tech-
niques (LPV and FCM) is shown in Fig. 4. Fig. 4a shows the comparison of
the models when the valve is closed. On the other hand, the comparison of the
models when the valve is at 50% is shown in Fig 4b, while Fig. 4c shows the
comparison of the two models when the valve is fully open. Furthermore, the
error indices of all models are shown in Table 4.

Table 4: Overall performance indices
Validation index

Model Close Semi-open Open
output Fuzzy LPV Fuzzy LPV Fuzzy LPV

Ē [bar] 0.0023 0.0229 0.0052 0.0088 -0.0108 -0.0063
σE [bar] 0.1210 0.1363 0.0845 0.0865 0.0592 0.0554
RMSE [bar] 0.1210 0.1382 0.0847 0.0869 0.0602 0.0558

R2 0.9372 0.8951 0.9055 0.8961 0.8205 0.8381

Based on the indices provided in Table 4, we compare the different models
obtained for each valve state. When the process is with the valve closed, the
FCM model presents the lowest mean with 0.0023; [bar], while the LPV model is
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around the hundredths. Taking into account the variability of the estimations,
measured by the standard deviation of the error (σE), it is observed that the
LPV model shows the highest deviation, with a value of 0.1363 [bar]. Regarding
the precision of the estimates, measured by RMSE, the FCM model shows the
lowest value with 0.1210, while the LPV model has the highest RMSE with
0.1382 [bar], indicating a larger discrepancy between predicted and observed
values. Finally, both models exhibit relatively high R2 values, suggesting a good
fit to the observed data. However, the FCM exhibits the best error rates.

On the other hand, when the valve state is at 50%, the metrics obtained
show that the FCM presents the lowest variability in the estimates, the lowest
discrepancy between the predicted and observed values. In the case where the
valve state is 0.50 the mean error indicates that both models, FCM and LPV,
respectively, overestimate the outlet pressure, as they present a positive value in
both cases.

Finally, when the valve is at 100%, fully open, the mean error indicates
that both techniques underestimate the outlet pressure, as it has a negative
value. However, the lowest value of −0.0063 [bar] is found in the LPV model.
Furthermore, the variability of the estimates measured by σE , the discrepancies
in RMSE between the predicted and observed values, together with the R2 of
the LPV, have relatively low values compared to the FCM.

In general, both techniques show good results, with the FCM fitting best
when the valve is closed and semi-open, and the LPV fitting best when the valve
is fully open, although the differences are minimal.

6 Conclusion

This article compares two different models of a reverse osmosis desalination
plant. Both models were obtained with experimental data by running the plant
in three different scenarios, with the only variation in the operating point of the
waste reuse valve. A detailed description of the fuzzy C-Means modelling of the
system has been shown, and this has been validated with some data, obtaining
results similar to the LPV model, even better in certain scenarios. However, the
greatest advantage lies in the computational speed of the fuzzy method, since
with only a few rules and a few seconds of simulation, it achieves a dynamic
almost identical to the real system and with less computational cost than the
LPV model. The ease of modelling the fuzzy system can also be mentioned.
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