
Optimal Transport in Dempster-Shafer Theory
and Choquet-Wasserstein Pseudo-Distances

Silvia Lorenzini1[0009−0008−1785−3065], Davide Petturiti1[0000−0002−3277−4217],
and Barbara Vantaggi2[0000−0002−3651−3743]

1 Dept. Economics, University of Perugia, Perugia, Italy
silvia.lorenzini@dottorandi.unipg.it

davide.petturiti@unipg.it
2 Dept. MEMOTEF, Sapienza University of Rome, Rome, Italy

barbara.vantaggi@uniroma1.it

Abstract. We consider the marginal problem in Dempster-Shafer the-
ory, investigating the structure of a suitable set of bivariate joint belief
functions having fixed marginals, by relying on copula theory. Next, we
formulate two Kantorovich-like optimal transport problems, either seek-
ing to minimize the Choquet integral of a given cost function with respect
to the reference set of joint belief functions or its dual functional. We fi-
nally give a noticeable application by choosing a metric as cost function:
this permits to define pessimistic and optimistic Choquet-Wasserstein
pseudo-distances, that can be used to compare belief functions on the
same space.
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1 Introduction

The optimal transport (OT) problem has gathered an increasing attention in
the probabilistic setting during the last decades, due to its numerous connec-
tions with other branches of mathematics [19] and its plethora of applications
in computer vision, computer graphics, image processing, statistics and machine
learning [14]. As is well-known, OT relies on the probabilistic marginal problem
and its popularity is also connected to the Wasserstein distance [20], that pro-
vides a metric on the set of probability measures on a metric space. In turn,
the widespread use of the Wasserstein distance in machine learning techniques
like WGANs [1] has been favored by entropic regularizations [13], that allow to
design efficient optimization algorithms.

The idea of OT naturally extends to the case where the marginal distributions
convey ambiguity in the sense of [6]. In such cases, the Dempster-Shafer theory
[4, 16] reveals to be the natural framework to encode uncertainty, departing the
less from probability theory. This suggests to formulate OT in Dempster-Shafer
theory, for which several definitions can be given: two possible approaches are
those in [3] and [18].
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In this work we start by considering the marginal problem in Dempster-Shafer
theory and provide an analysis based on copula theory [12] of a suitable subset of
bivariate joint belief functions with given marginals, introduced in [8, 17]. Next,
restricting to such a set of joint belief functions, we formulate a pessimistic and
an optimistic Kantorovich-like optimal transport problem, by minimizing the
Choquet integral of a cost function or its dual functional, respectively. Such an
approach differs from [3], where the OT is expressed in terms of Möbius inverse
and a metric between sets, while in [18] the author refers to (max,+)-transforms.

After that, choosing a metric as cost function, we define a pessimistic and
an optimistic Choquet-Wasserstein pseudo-distance (where the term “pseudo-
distance” is not given any metric connotation), proving that they are a dis-
similarity function and a metric-like function (see [5]) on the space of belief
functions, respectively. Finally, we introduce a suitable entropic regularization
to find a “closest” at most k-additive belief function [9, 10] of a given belief func-
tion, according to the two pseudo-distances. Such a “closest” belief function can
be practically computed by relying on an adaptation of Dykstra’s algorithm [2,
13], that we omit due to space limitations.

The paper is structured as follows. Section 2 recalls the basic notions of
Dempster-Shafer theory and Choquet integration. Section 3 presents the marginal
problem in Dempster-Shafer theory and characterizes the reference subset of
joint belief functions with fixed marginals. Section 4 introduces the pessimistic
and optimistic optimal transport problems in Dempster-Shafer theory. Finally,
Section 5 defines the pessimistic and optimistic Choquet-Wasserstein pseudo-
distances and show their use in finding a “closest” at most k-additive belief
function of a given belief function, while Section 6 draws our conclusions. Proofs
are not reported due to the limited number of pages.

2 A Glimpse of Dempster-Shafer Theory

Let Ω = {ω1, . . . , ωd} be a finite non-empty set of states of the world endowed
with the power set 2Ω , and denote by RΩ the set of all random variables. A
belief function (see [4, 16]) is a set function ν : 2Ω → [0, 1] satisfying:

(i) ν(∅) = 0 and ν(Ω) = 1;

(ii) ν

(
k⋃
i=1

Ei

)
≥

∑
∅6=I⊆{1,...,k}

(−1)|I|+1ν

(⋂
i∈I

Ei

)
, for all k ≥ 2, {Ei}ki=1 ⊆ 2Ω .

A belief function ν is associated with a dual set function ν on 2Ω called
plausibility function and defined, for all A ∈ 2Ω , as ν(A) = 1− ν(Ac).

Every belief function ν, and so its dual plausibility function ν, is completely
characterized by its Möbius inverse [10], that is a set function mν : 2Ω → [0, 1]

such that mν(∅) = 0 and
∑
A⊆Ω

mν(A) = 1.

An event with strictly positive Möbius inverse is called a focal element and
we denote by Fν = {E ∈ 2Ω : mν(E) > 0} the set of focal elements of ν. We
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have that, for all A ∈ 2Ω , it holds:

ν(A) =
∑

B∈Fν , B⊆A

mν(B) and ν(A) =
∑

B∈Fν , B∩A 6=∅

mν(B).

Looking at the set of focal elements Fν , a belief function ν is called:

– vacuous at A, for A ∈ 2Ω , if Fν = {A} and in this case ν is denoted by δA;
– k-additive, for 1 ≤ k ≤ d, if |E| ≤ k, for all E ∈ Fν , with at least an equality;
– probability measure, if it is 1-additive and in this case ν is denoted by π.

Given a belief function ν and X ∈ RΩ , the Choquet expectation of X with
respect to ν is defined through the Choquet integral [10]

C
∫
Xdν =

d∑
i=1

[X(ωσ(i))−X(ωσ(i+1))]ν(E
σ
i ),

where σ is a permutation of {1, . . . , d} such that X(ωσ(1)) ≥ · · · ≥ X(ωσ(d)),
Eσi = {ωσ(1), . . . , ωσ(i)}, for i = 1, . . . , d, and X(ωσ(d+1)) = 0. If ν reduces to a
probability measure π, we have that c

∫
Xdπ =

∫
Xdπ, where the latter denotes

a classical Stieltjes integral. On the other hand, the Choquet expectation with
respect to a plausibility function ν can be defined through duality as

C
∫
Xdν = −C

∫
(−X)dν.

We also have that every belief function ν is in one-to-one correspondence
with the (closed and convex) set of probability measures dominating it, called
core, and denoted by core(ν). Finally, we recall that both Choquet expectations
in Dempster-Shafer theory can be expressed either in terms of core(ν) or mν

(see, e.g., [10]): for all X ∈ RΩ

C
∫
Xdν = min

π∈core(ν)

∫
Xdπ =

∑
B∈Fν

(
min
ω∈B

X(ω)

)
mν(B), (1)

C
∫
Xdν = max

π∈core(ν)

∫
Xdπ =

∑
B∈Fν

(
max
ω∈B

X(ω)

)
mν(B). (2)

3 Marginal Problem in Dempster-Shafer Theory

Let X = {x1, . . . , xm} and Y = {y1, . . . , yn} be two finite sets endowed with the
algebras 2X and 2Y , and let µ and ν be two belief functions on 2X and 2Y . We
consider the product space (X × Y, 2X×Y) and denote 2̃X = {A× Y : A ∈ 2X }
and 2̃Y = {X × B : B ∈ 2Y}, which are two sub-algebras of 2X×Y isomorphic
to 2X and 2Y , respectively. As usual, the sets X and Y can be interpreted as the
ranges of two random variables X and Y , the latter being identified with the
canonical projections X(x, y) = x and Y (x, y) = y.
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The marginal problem in Dempster-Shafer theory consists in finding a joint
belief function γ : 2X×Y → [0, 1] such that{

γ(A× Y) = µ(A), for all A ∈ 2X ,

γ(X ×B) = ν(B), for all B ∈ 2Y ,
(3)

which is equivalent to finding a Möbius inverse mγ : 2X×Y → [0, 1] such that
∑

D⊆A×Y

mγ(D) = µ(A), for all A ∈ 2X ,∑
D⊆X×B

mγ(D) = ν(B), for all B ∈ 2Y .
(4)

The set of solutions of (3) or, equivalently, (4) is denoted by

B(µ, ν) =
{
γ : 2X×Y → [0, 1] : γ is a belief function, γ|2̃X = µ, γ|2̃Y = ν

}
, (5)

and is easily shown to be a closed and convex subset of [0, 1]2
X×Y

endowed with
the product topolgy, whose non-emptyness has been shown in [17]. In particu-
lar, since B(µ, ν) is obtained by solving a finite system of linear equalities and
inequalities, its set of extreme points ext(B(µ, ν)) is finite.

In general, for γ ∈ B(µ, ν), it is not possible to know a priori the set of focal
elements Fγ and this is the main difficulty in providing an explicit characteriza-
tion of ext(B(µ, ν)) since 2m·n − 1 variables must be considered to reconstruct
mγ .

Following [8] (see also [3, 11]) a more manageable subset of B(µ, ν) can be
obtained by referring to the sets of focal elements Fµ = {E1, . . . , EM} and
Fν = {F1, . . . , FN} and restricting to those γ ∈ B(µ, ν) whose set of focal
elements satisfies

Fγ ⊆ Fµ ⊗Fν := {E × F : E ∈ Fµ, F ∈ Fν}. (6)

This allows us to introduce the following set of joint belief functions with given
marginals

B(µ, ν) = {γ ∈ B(µ, ν) : Fγ ⊆ Fµ ⊗Fν}. (7)

The following proposition lists a set of properties of B(µ, ν) that are straight-
forward to demonstrate and generalizes a well-known result in probability.

Proposition 1. The following statements hold:

(i) B(µ, ν) ⊆ B(µ, ν);
(ii) B(µ, ν) is a non-empty closed convex subset of [0, 1]2

X×Y
, endowed with the

product topology.

In general, it holds that B(µ, ν) ⊂ B(µ, ν), since we can find a joint belief
function γ ∈ B(µ, ν) that is not in B(µ, ν), as the following example shows.
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Example 1. Consider X = Y = {a, b}, µ = δX , ν = δY , and denote xy := (x, y)
for x ∈ X and y ∈ Y. Taking γ = δ{aa,ba,bb} we have that γ|̃2X = µ and γ|̃2Y = ν,
since

– γ(∅ × Y) = γ(X × ∅) = 0;
– γ({a} × Y) = γ({aa, ab}) = γ({aa, ba}) = γ(X × {a}) = 0;
– γ({b} × Y) = γ({ba, bb}) = γ({ab, bb}) = γ(X × {b}) = 0;
– γ(X × Y) = 1.

Then, Fγ = {{aa, ba, bb}} is not contained in Fµ ⊗ Fν = {X × Y}, therefore
γ ∈ B(µ, ν) but γ 6∈ B(µ, ν). �

The main advantage of B(µ, ν) is that its elements can be characterized
through copula theory (see [8, 11]). We recall that a bivariate copula (see, e.g.,
[12]) is a function C : [0, 1]2 → [0, 1] satisfying the following properties: for all
x, y, x′, y′ ∈ [0, 1] with x ≤ x′ and y ≤ y′, it holds that

(i) C(x, 0) = C(0, y) = 0;
(ii) C(x, 1) = x and C(1, y) = y;
(iii) C(x′, y′) + C(x, y)− C(x, y′)− C(x′, y) ≥ 0.

As is well-known, all copulas are bounded by the Łukasiewicz (CL) and the
minimum (CM ) copulas, i.e., every copula C satisfies, for all x, y ∈ [0, 1],

max(0, x+ y − 1) =: CL(x, y) ≤ C(x, y) ≤ CM (x, y) := min(x, y).

In order to generate an element of B(µ, ν) through a copula C (see [8, 11]),
referring to Fµ and Fν we have to choose a permutation σ of {1, . . . ,M} and
a permutation τ of {1, . . . , N}, and consider the corresponding order relations
Eσ(1) ≤σ · · · ≤σ Eσ(M) and Fτ(1) ≤τ · · · ≤τ Fτ(N).

Given µ, ν, σ, τ , and C, we can define a function mµ,ν,σ,τ,C : 2X×Y → [0, 1], by
settingmµ,ν,σ,τ,C(A) = 0 for all A ∈ 2X×Y \(Fµ⊗Fν), while for all Eσ(i)×Fτ(j) ∈
Fµ ⊗Fν we set

mµ,ν,σ,τ,C(Eσ(i) × Fτ(j)) = C
(
Mσ
µ (i),M

τ
ν (j)

)
+ C

(
Mσ
µ (i− 1),Mτ

ν (j − 1)
)

−C
(
Mσ
µ (i),M

τ
ν (j − 1)

)
− C

(
Mσ
µ (i− 1),Mτ

ν (j)
)
,

where Mσ
µ (i) =

∑
k≤imµ(Eσ(k)), Mτ

ν (j) =
∑
k≤jmν(Fτ(k)), and summations

over an empty index set are assumed to be 0. It is readily proven that mµ,ν,σ,τ,C

is the Möbius inverse of a belief function belonging to B(µ, ν). By an adaptation
of the classical Sklar’s theorem [12], we get the following result.

Theorem 1. Let σ and τ be permutations of {1, . . . ,M} and {1, . . . , N}, re-
spectively. It holds that γ ∈ B(µ, ν) if and only if there exists a bivariate copula
C such that mγ = mµ,ν,σ,τ,C.

Since B(µ, ν) is a closed and convex set, it is still determined by its set of
extreme points ext(B(µ, ν)), the latter being finite. Following [15], we need the
following definition to characterize ext(B(µ, ν)).
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Definition 1. Let γ ∈ B(µ, ν) and let Mγ = (mγij ) i=1,...,N
j=1,...,M

with mγij :=

mγ(Ei×Fj), for all Ei×Fj ∈ Fµ⊗Fν . An ordered sequence [mγi1j1
, . . . ,mγikjk

]
in Mγ is said to be a loop in Mγ if
– k is even;
– i1 = i2, i3 = i4, · · · , ik−1 = ik;
– j2 = j3, j4 = j5, · · · , jk = j1;
– the pairs (ir, jr) for r = 1, . . . , k are all distinct.

By a straightforward adaptation of the proof of Theorem 2.9 in [15], the
following theorem is easily established.

Theorem 2 (Characterization of ext(B(µ, ν))). Let γ ∈ B(µ, ν) and let Mγ

as in Definition 1. The following statements are equivalent:
(i) γ is not an extreme point of B(µ, ν);
(ii) there is a positive loop in Mγ , i.e., every member of the loop is positive.
(iii) there exists a submatrix Mγ of Mγ having the property that every row and

column of Mγ has at least two positive elements;
(iv) there exists a square submatrix M̃γ of Mγ having the property that every

row and column of M̃γ contains at least two positive entries;
(v) there exists a square submatrix M∗γ of Mγ of order k × k for some k ≥ 1

having the property that the number of positive elements in M∗γ is at least
2k.

By Theorem 1, we known that, for fixed permutations σ and τ , elements of
B(µ, ν) can be obtained varying the copula C. We could think that ext(B(µ, ν))
can be generated by varying the permutations σ and τ , and limiting to the two
extreme copulas CL and CM . The following example shows that, in general, some
extreme points could not be obtained from CL and CM .

Example 2. Let X = {x1, x2, x3, x4}, Y = {y1, y2, y3}, and consider the marginal
belief functions µ, ν with sets of focal elements Fµ = {E1 = {x1, x2}, E2 =
{x1, x3}, E3 = {x1, x4}, E4 = {x3, x4}}, Fν = {F1 = {y1, y2}, F2 = {y2, y3}, F3 =
Y}}, and Möbius inverses

Fµ E1 E2 E3 E4

mµ
10
20

2
20

4
20

4
20

Fν F1 F2 F3

mν
8
20

4
20

8
20

Denote by Σ the set of permutations of {1, . . . , 4}, by T the set of permu-
tations of {1, 2, 3}, and define the set of joint belief functions generated by the
Łukasiewicz or the minimum copulas

Γ = {γ ∈ B(µ, ν) : mγ = mµ,ν,σ,τ,CL or mγ = mµ,ν,σ,τ,CM , σ ∈ Σ, τ ∈ T}.
It turns out that |ext(B(µ, ν))| = 34, |Γ | = 32, and Γ ⊂ ext(B(µ, ν)), with

ext(B(µ, ν)) \ Γ = {γ1, γ2}, where the matrices corresponding to γ1, γ2 are

Mγ1 =


4
20

2
20

4
20

0 2
20 0

4
20 0 0

0 0 4
20

 and Mγ2 =


4
20

2
20

4
20

0 2
20 0

0 0 4
20

4
20 0 0

 .
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A direct verification shows that there are no permutations in Σ and T , such that
mγ1 and mγ2 can be obtained through CL or CM . �

The restriction to sets of joint belief functions of the form (7) allows us to
prove the following version of the famous gluing lemma [20].

Lemma 1 (Gluing Lemma). Let X , Y and Z be finite sets and let µ, ν and
η be belief functions on 2X , 2Y and 2Z , respectively. If γ1 ∈ B(µ, ν) and γ2 ∈
B(ν, η), then there exist a joint belief function on (X × Y × Z, 2X×Y×Z) with
marginals γ1 and γ2, on 2̃X×Y and 2̃Y×Z , and focal elements in

Fµ ⊗Fν ⊗Fη := {E × F ×G : E ∈ Fµ, F ∈ Fν , G ∈ Fη}.

4 Optimal Transport in Dempster-Shafer Theory

Let µ and ν be two probability measures on the finite spaces X = {x1, . . . , xm}
and Y = {y1, . . . , yn}, respectively. For a cost function c : X ×Y → [0,+∞), the
classical Kantorovich optimal transport problem between µ and ν with respect
to the cost c is given by

OT(µ, ν, c) = min
π∈P(µ,ν)

∫
c(x, y)dπ(x, y), (8)

where P(µ, ν) is the set of joint probability measures on X×Y with first marginal
equal to µ and second marginal equal to ν. Assuming that X = Y and fixing
c : X 2 → [0,+∞) which is a metric on X , then

dW(µ, ν) = OT(µ, ν, c) (9)

defines the so-called Wasserstein distance (of order 1) (see, e.g., [20]) on the set
of probability measures on X .

Our aim is to generalize (8) and (9) in the context of belief functions. Re-
ferring to the set of joint belief functions (7), we can introduce the following
pessimistic and optimistic versions of optimal transport in Dempster-Shafer the-
ory.

Definition 2. Let µ and ν be two belief functions on 2X and 2Y , respectively,
with X = {x1, . . . , xm} and Y = {y1, . . . , yn}. For a cost function c : X × Y →
[0,+∞), we define

– the pessimistic Dempster-Shafer optimal transport problem between
µ and ν with respect to the cost c as

DSOT(µ, ν, c) = min
γ∈B(µ,ν)

C
∫
c(x, y)dγ(x, y)

= min
γ∈B(µ,ν)

∑
E×F∈Fγ

C(E × F )mγ(E × F ), (10)

where C : Fγ → [0,+∞) is such that C(E × F ) = min
(x,y)∈E×F

c(x, y);
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– the optimistic Dempster-Shafer optimal transport problem between
µ and ν with respect to the cost c as

DSOT(µ, ν, c) = min
γ∈B(µ,ν)

C
∫
c(x, y)dγ(x, y)

= min
γ∈B(µ,ν)

∑
E×F∈Fγ

C(E × F )mγ(E × F ), (11)

where γ is the dual plausibility function of γ ∈ B(µ, ν) and C : Fγ → [0,+∞)
is such that C(E × F ) = max

(x,y)∈E×F
c(x, y).

Recalling (1) and (2), we get that DSOT(µ, ν, c) and DSOT(µ, ν, c) imple-
ment a minimin and a minimax decision rule, respectively.

The following toy example shows a possible situation where DSOT(µ, ν, c)
and DSOT(µ, ν, c) could be relevant.

Example 3. Consider a population of people that pay taxes and use public ser-
vices, where individuals are categorized in retired (R) and non-retired (N). The
variable X = “tax payer” has known distribution on retired and non-retired peo-
ple, while for Y = “public service user” it is only known that retired people using
public services are at least 25%. The cost function is defined respecting a sort of
social equity and prizes categories paying for public service they use.

Referring to X and Y ranging in X = Y = {R,N}, the previous situation
can be described by the following marginal belief functions and cost function:

– Fµ = {{R}, {N}} and mµ({R}) = mµ({N}) = 1
2 ;

– Fν = {{R},Y} and mν({R}) = 1
4 and mν(Y) = 3

4 ;

– c(x, y) =

{
e1000, ifx 6= y,

e500, otherwise.

Given the previous information, we get

DSOT(µ, ν, c) = min
γ∈B(µ,ν)

C
∫
c(x, y)dγ(x, y) = e500,

DSOT(µ, ν, c) = min
γ∈B(µ,ν)

C
∫
c(x, y)dγ(x, y) = e1000,

that is what we expect to earn from a person, from the government’s point of
view, referring to a pessimistic and an optimistic approach, respectively. �

5 Choquet-Wasserstein Pseudo-Distances

Assume X = Y = {x1, . . . , xm} and c : X 2 → [0,+∞) is a metric on X : a typical
choice for c is the discrete metric defined, for all x, y ∈ X , as

cd(x, y) =

{
1, if x 6= y,
0, if x = y.
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Another common choice is to take the absolute value metric ca(x, y) = |x − y|,
provided X ⊆ R, or the Euclidean metric ce(x, y) = ‖x− y‖2, provided X ⊆ Rd.

The optimal transport problems in Dempster-Shafer theory presented in Def-
inition 2 give naturally rise to two Choquet-Wasserstein pseudo-distances. We
first analyze the pessimistic pseudo-distance.

Definition 3. Let c be a metric on X . Given two belief functions µ and ν on
2X , we define their pessimistic Choquet-Wasserstein pseudo-distance as

dCW(µ, ν) = DSOT(µ, ν, c) = min
γ∈B(µ,ν)

C
∫
c(x, y)dγ(x, y).

We point out that dCW is a non-negative real-valued function, defined on the
set of pairs of belief functions on 2X . Nevertheless, dCW is not a metric on the
whole set of belief function on 2X , as it may fail the positivity property and the
triangular inequality.

Example 4 (Positivity). Let X = {a, b} and take the discrete metric c = cd. For
µ = δX and ν = δ{a}, we have that Fµ = {X}, Fν = {{a}} and Fµ ⊗ Fν =
{X × {a}}. Then, since C(X × {a}) = 0, we get

dCW(µ, ν) = min
γ∈B(µ,ν)

C(X × {a})mγ(X × {a}) = 0,

that is µ 6= ν does not imply dCW(µ, ν) > 0. �

Example 5 (Triangular Inequality). Let X = {a, b} and take the discrete metric
c = cd. For µ = δ{a}, ν = δ{b} and η = δX , we have that Fµ⊗Fν = {{a}×{b}},
Fµ ⊗ Fη = {{a} × X} and Fη ⊗ Fν = {X × {b}}. Since C({a} × {b}) = 1 and
C({a} × X ) = C(X × {b}) = 0, we get that

dCW(µ, ν) = min
γ1∈B(µ,ν)

C({a} × {b})mγ1({a} × {b}) = 1,

dCW(µ, η) = min
γ2∈B(µ,η)

C({a} × X )mγ2({a} × X ) = 0,

dCW(η, ν) = min
γ3∈B(η,ν)

C(X × {b})mγ3(X × {b}) = 0,

and so dCW(µ, ν) > dCW(µ, η) + dCW(η, ν). �

The following theorem lists the properties satisfied by dCW , which show that
dCW is a distance or dissimilarity function on the set of belief functions on 2X ,
according to the terminology of [5].

Theorem 3. Let c be a metric on X . For all belief functions µ, ν on 2X , the
function dCW satisfies:

(i) dCW(µ, ν) ≥ 0;
(ii) µ = ν =⇒ dCW(µ, ν) = 0;
(iii) dCW(µ, ν) = dCW(ν, µ).
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Analogously, we can define an optimistic pseudo-distance as follows.

Definition 4. Let c be a metric on X . Given two belief functions µ and ν on
2X , we define their optimistic Choquet-Wasserstein pseudo-distance as

dCW(µ, ν) = DSOT(µ, ν, c) = min
γ∈B(µ,ν)

C
∫
c(x, y)dγ(x, y),

where γ is the dual plausibility function of γ.

As before, dCW is not a metric, as it may fail the reflexivity property.

Example 6 (Reflexivity). Let X = {a, b} and take the discrete metric c = cd.
Let µ = ν = δX , for which Fµ = Fν = {X} and Fµ ⊗ Fν = {X × X}. Since
C(X × X ) = 1, we get that

dCW(µ, ν) = min
γ∈B(µ,ν)

C(X × X )mγ(X × X ) = 1,

thus µ = ν does not imply dCW(µ, ν) = 0. �

The following theorem lists the properties satisfied by dCW , which show that
dCW is a metric-like function according to the terminology of [5].

Theorem 4. Let c be a metric on X . For all belief functions µ, ν, η on 2X , the
function dCW satisfies:

(i) dCW(µ, ν) ≥ 0;
(ii) dCW(µ, ν) = dCW(ν, µ);
(iii) dCW(µ, ν) = 0 =⇒ µ = ν;
(iv) dCW(µ, ν) ≤ dCW(µ, η) + dCW(η, ν).

Given an arbitrary belief function µ, both pseudo-distances dCW and dCW ,
can be used to find a “closest” belief function ν belonging to a distinguished
subclass of belief functions. A very popular choice in applications is given by
the class of at most k-additive belief functions [9, 10], obtained as the union of
h-additive ones, for h = 1, . . . , k, that we denote by Ak(X ). The set Ak(X ) is
easily seen to be a closed and convex set of belief functions on 2X . We notice that
an element ν of Ak(X ) has at most

∑k
h=1

(
m
h

)
focal elements thus we can refer

to Fν = {F : |F | ≤ k}, as the maximal set of focal elements. For simplicity,
here we assume c = cd.

To find a dCW -minimal element of Ak(X ) with respect to µ, we need to solve
the problem

ν∗ ∈ argmin
ν∈Ak(X )

dCW(µ, ν) = argmin
ν∈Ak(X )

DSOT(µ, ν, cd), (12)

which is generally not easy to attack as it involves a double minimization. Fol-
lowing [2, 13], to solve (12) we consider the (negative) entropy

H(γ) =
∑

Ei×Fj∈Fµ⊗Fν

mγ(Ei × Fj)(ln(mγ(Ei × Fj))− 1), (13)
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and define, for λ > 0, the entropic regularization

DSOTλ(µ, ν, cd) = min
γ∈B(µ,ν)

{
C
∫
cd(x, y)dγ(x, y) + λH(γ)

}
. (14)

It turns out that, for a fixed belief function µ on 2X , DSOTλ(µ, ν, cd) is a strictly
convex function of ν in Ak(X ) admitting a unique optimizer

ν∗λ = argmin
ν∈Ak(X )

DSOTλ(µ, ν, cd), (15)

moreover, for λ→ 0, it can be shown that ν∗λ converges pointwise to an optimizer
ν∗ of the original problem (12). Thus, for a sufficiently small value of λ, we get
a good approximation of the searched optimizer.

Analogously, we can reformulate problem (12) and its entropic regularization
(14) with respect to dCW and find

ν∗∗λ = argmin
ν∈Ak(X )

DSOTλ(µ, ν, cd). (16)

Both problems (15) and (16) and can be faced by adapting Dykstra’s algorithm
[2, 13].

Example 7. Let X = {x1, x2, x3} and consider the belief function µ on 2X with
set of focal elements Fµ = {E1 = {x1}, E2 = {x1, x3}, E3 = X} and Möbius
inverse mµ(E1) =

3
6 , mµ(E2) =

1
6 , and mµ(E3) =

2
6 . Table 1 shows the Möbius

Fν {x1} {x2} {x3} {x1, x2} {x1, x3} {x2, x3}
mν∗0.05

0.255556 0.055556 0.088889 0.255556 0.255556 0.088889

mν∗∗0.05
0.583333 0.083333 0.083333 0.083333 0.083333 0.083333

Table 1. Möbius inverses of ν∗λ and ν∗∗λ in (15) and (16) for k = 2 and λ = 0.05.

inverses of the optimal solutions of (15) and (16) for k = 2 and λ = 0.05,
computed by adapting Dykstra’s algorithm. �

6 Conclusions

We considered the marginal problem in Dempster-Shafer theory and provided an
analysis of a suitable subset of joint belief functions with given marginals, intro-
duced in [8, 17]. Restricting to such a set of joint belief functions, we formulated
a pessimistic and an optimistic Kantorovich-like optimal transport problem and
defined a pessimistic and an optimistic Choquet-Wasserstein pseudo-distance.
Finally, we introduced an entropic regularization to compute a “closest” at most
k-additive belief function of a given belief function, according to the two pseudo-
distances. In the same spirit, one can address probability-possibility transforma-
tions for metrology (see, e.g., [7]). The aim of future research is to further analyze
the derived Choquet-Wasserstein pseudo-distances, focusing on their application
to machine learning algorithms like WGANs [1], so as to convey ambiguity.
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