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Abstract. We consider the marginal problem in Dempster-Shafer the-
ory, investigating the structure of a suitable set of bivariate joint belief
functions having fixed marginals, by relying on copula theory. Next, we
formulate two Kantorovich-like optimal transport problems, either seek-
ing to minimize the Choquet integral of a given cost function with respect
to the reference set of joint belief functions or its dual functional. We fi-
nally give a noticeable application by choosing a metric as cost function:
this permits to define pessimistic and optimistic Choquet-Wasserstein
pseudo-distances, that can be used to compare belief functions on the
same space.
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1 Introduction

The optimal transport (OT) problem has gathered an increasing attention in
the probabilistic setting during the last decades, due to its numerous connec-
tions with other branches of mathematics [19] and its plethora of applications
in computer vision, computer graphics, image processing, statistics and machine
learning [14]. As is well-known, OT relies on the probabilistic marginal problem
and its popularity is also connected to the Wasserstein distance [20], that pro-
vides a metric on the set of probability measures on a metric space. In turn,
the widespread use of the Wasserstein distance in machine learning techniques
like WGANS [1] has been favored by entropic regularizations [13], that allow to
design efficient optimization algorithms.

The idea of OT naturally extends to the case where the marginal distributions
convey ambiguity in the sense of [6]. In such cases, the Dempster-Shafer theory
[4,16] reveals to be the natural framework to encode uncertainty, departing the
less from probability theory. This suggests to formulate OT in Dempster-Shafer
theory, for which several definitions can be given: two possible approaches are
those in [3] and [18].
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In this work we start by considering the marginal problem in Dempster-Shafer
theory and provide an analysis based on copula theory [12] of a suitable subset of
bivariate joint belief functions with given marginals, introduced in [8, 17]. Next,
restricting to such a set of joint belief functions, we formulate a pessimistic and
an optimistic Kantorovich-like optimal transport problem, by minimizing the
Choquet integral of a cost function or its dual functional, respectively. Such an
approach differs from [3], where the OT is expressed in terms of Mdbius inverse
and a metric between sets, while in [18] the author refers to (max, +)-transforms.

After that, choosing a metric as cost function, we define a pessimistic and
an optimistic Choquet- Wasserstein pseudo-distance (where the term “pseudo-
distance” is not given any metric connotation), proving that they are a dis-
similarity function and a metric-like function (see [5]) on the space of belief
functions, respectively. Finally, we introduce a suitable entropic regularization
to find a “closest” at most k-additive belief function [9, 10] of a given belief func-
tion, according to the two pseudo-distances. Such a “closest” belief function can
be practically computed by relying on an adaptation of Dykstra’s algorithm |2,
13], that we omit due to space limitations.

The paper is structured as follows. Section 2 recalls the basic notions of
Dempster-Shafer theory and Choquet integration. Section 3 presents the marginal
problem in Dempster-Shafer theory and characterizes the reference subset of
joint belief functions with fixed marginals. Section 4 introduces the pessimistic
and optimistic optimal transport problems in Dempster-Shafer theory. Finally,
Section 5 defines the pessimistic and optimistic Choquet-Wasserstein pseudo-
distances and show their use in finding a “closest” at most k-additive belief
function of a given belief function, while Section 6 draws our conclusions. Proofs
are not reported due to the limited number of pages.

2 A Glimpse of Dempster-Shafer Theory

Let 2 = {w1,...,wq} be a finite non-empty set of states of the world endowed
with the power set 2, and denote by R the set of all random variables. A
belief function (see [4,16]) is a set function v : 2 — [0, 1] satisfying:

(i) v(0) =0 and v(2) = 1;

k
(ii) v (U E) > > (= (ﬂ E> for all k > 2, {E;}F_, C 27
}

i=1 OAIC{L,....k icl

A belief function v is associated with a dual set function 7 on 2% called
plausibility function and defined, for all A € 2, as 7(A) = 1 — v(A°).

Every belief function v, and so its dual plausibility function 7, is completely
characterized by its Mdbius inverse [10], that is a set function m,, : 2 — [0,1]
such that m, (#) = 0 and Z m,(A) = 1.

ACQ

An event with strictly positive Mobius inverse is called a focal element and

we denote by F, = {E € 2 : m,(E) > 0} the set of focal elements of v. We
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have that, for all A € 2%, it holds:

v(A)= > my(B) and T(A)= > m(B)

BEF,, BCA BEF,, BNA#£D
Looking at the set of focal elements F,,, a belief function v is called:

— wvacuous at A, for A € 29 if F,, = {A} and in this case v is denoted by J4;
— k-additive, for 1 < k < d,if |E| < k, for all E € F,,, with at least an equality;
— probability measure, if it is 1-additive and in this case v is denoted by 7.

Given a belief function v and X € R¥, the Choquet expectation of X with
respect to v is defined through the Choquet integral [10]

d
55 Xdv = Y X (o) = X (o) IW(ED),

where o is a permutation of {1,...,d} such that X(w,(1)) > -+ > X(wy(a)),
Ef = {wo(1) -+ Wo(iy }, for i = 1,...,d, and X(ws(441)) = 0. If v reduces to a
probability measure 7, we have that Xdr = f Xdm, where the latter denotes
a classical Stieltjes integral. On the other hand, the Choquet expectation with
respect to a plausibility function 7 can be defined through duality as

%Xdﬁ = —%(—X)du.

We also have that every belief function v is in one-to-one correspondence
with the (closed and convex) set of probability measures dominating it, called
core, and denoted by core(v). Finally, we recall that both Choquet expectations
in Dempster-Shafer theory can be expressed either in terms of core(v) or m,
(see, e.g., [10]): for all X € R¥

}(Xdz/: min /dezz

TEcore(v) Ber

¢Xd§: max /Xdﬂ': Z

wecore(v) Ber

(i X)) mu(B), 1)

weB

(e X (@) ) (). @)

3 Marginal Problem in Dempster-Shafer Theory

Let X = {z1,...,2n} and Y = {y1,...,yn} be two finite sets endowed with the
algebras 2% and 2%, and let 1 and v be two belief functions on 2% and 2. We
consider the product space (X x ,2%¥*Y) and denote 2¥ = {A x Y : A € 2%}
and 2Y = {X x B : B € 2Y}, which are two sub-algebras of 2> isomorphic
to 2% and 2%, respectively. As usual, the sets X and ) can be interpreted as the
ranges of two random variables X and Y, the latter being identified with the
canonical projections X (x,y) = z and Y (z,y) = .
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The marginal problem in Dempster-Shafer theory consists in finding a joint
belief function v : 2¥*Y — [0, 1] such that

{y(A x V) = pu(A), for all A € 2%, )

(X x B) = v(B), for all B € 2Y,
which is equivalent to finding a M&bius inverse m., : 2¥*Y — [0, 1] such that

Z m (D) = u(A), for all A € 2%,
DQAX)} (4)

The set of solutions of (3) or, equivalently, (4) is denoted by
B(u,v) = {fy :2%%Y 5 00,1] : « is a belief function, Vax = gy = u}, (5)

and is easily shown to be a closed and convex subset of [0, 1}2XW endowed with
the product topolgy, whose non-emptyness has been shown in [17]. In particu-
lar, since B(u,v) is obtained by solving a finite system of linear equalities and
inequalities, its set of extreme points ext(B(u,v)) is finite.

In general, for v € B(u, v), it is not possible to know a priori the set of focal
elements F, and this is the main difficulty in providing an explicit characteriza-
tion of ext(B(u,r)) since 2™™ — 1 variables must be considered to reconstruct
My

Following [8] (see also [3,11]) a more manageable subset of B(u,v) can be
obtained by referring to the sets of focal elements F, = {Ei,...,Ey} and
F, = {F1,...,Fn} and restricting to those v € B(u,v) whose set of focal
elements satisfies

]:“/g]:u(@]:u::{EXF:EG‘FWFE‘]:”}' (6>

This allows us to introduce the following set of joint belief functions with given
marginals

B(u,v) ={y€B(v) : F, CF, @ F}. (7)

The following proposition lists a set of properties of B(u,v) that are straight-
forward to demonstrate and generalizes a well-known result in probability.

Proposition 1. The following statements hold:
(i) B(u,v) € B(u,v);

(it) B(u,v) is a non-empty closed convex subset of [0,112 ", endowed with the
product topology.

In general, it holds that B(u,v) C B(u,v), since we can find a joint belief
function v € B(u, v) that is not in B(u, v), as the following example shows.
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Ezample 1. Consider X =Y = {a,b}, p = dx, v = dy, and denote zy := (x,y)
forx € X and y € Y. Taking v = d{qq,pa,06) We have that Tz = 1 and Ty = Vs

= (0 xY) =~(X x0) =0;

- 7({a} x V) =v({aa, ab}) = v({aa,ba}) = y(X x {a}) = 0;
= v({b} x V) = v({ba, bb}) = v({ab, bb}) = v(X x {b}) = 0;
- (X xY)=1

Then, F, = {{aa,ba,bb}} is not contained in F, ® F, = {X x Y}, therefore
v € B(u,v) but v € B(p,v). ¢

The main advantage of B(u,v) is that its elements can be characterized
through copula theory (see [8,11]). We recall that a bivariate copula (see, e.g.,
[12]) is a function C : [0,1]2> — [0, 1] satisfying the following properties: for all
x,y, 2,y €[0,1] with z < 2’ and y < ¢/, it holds that

(i) C(z,0) = C(0,y) = 0;
(i) C(x,1) =z and C(1,y) = y;
(iii) C(a',y') + Cla,y) — Cla,y') — C(a',y) = 0.

As is well-known, all copulas are bounded by the Lukasiewicz (Cy) and the
minimum (Cps) copulas, i.e., every copula C satisfies, for all z,y € [0, 1],

maX(O,z +y— 1) = CL(xay) < C(SC,y) < CM(SC,:U) = min(zvy)'

In order to generate an element of B(yu,v) through a copula C (see [8,11]),
referring to F,, and F,, we have to choose a permutation ¢ of {1,..., M} and
a permutation 7 of {1,..., N}, and consider the corresponding order relations
Esq) <o <o By and Frq) <; -+ <; Fr(n).

Given p, v, 0,7, and C, we can define a function m#*o7¢ : 2¥x¥Y [0, 1], by
setting m/"C(A) = 0 for all A € 27*Y\ (F,®F, ), while for all E, ;) x Fy(;) €
F.® F, we set

mi T (B ) x Frpy) = C (M7 (i), M (7)) + C (M (i = 1), M (j — 1))
—C (M), M7 (j — 1)) = C (M (i — 1), M](5)) ,

where M7 (i) = > <;mu(Esiy), M7 (j) = > p<; mu(Frary), and summations
over an empty index set are assumed to be 0. It is readily proven that m#:%7¢
is the M&bius inverse of a belief function belonging to B(u, v). By an adaptation
of the classical Sklar’s theorem [12], we get the following result.

Theorem 1. Let o and T be permutations of {1,...,M} and {1,...,N}, re-
spectively. It holds that v € B(u,v) if and only if there exists a bivariate copula
C such that m, = mH o TC,

Since B(u,v) is a closed and convex set, it is still determined by its set of

extreme points ext(B(u, v)), the latter being finite. Following [15], we need the

following definition to characterize ext(B(u,v)).
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Definition 1. Let v € B(u,v) and let M, = (my,)i=1,..N with m,,; =

j=1,....M
mv(Ei >§Fj)f for all E; < F; € ]:u®j7:1/~ An ordered sequence [m., ; ..., M, ; |
in M, is said to be a loop in M, if
— k is even;
— i1 =g, i3 =14, ", k-1 = Uk;

- j2 :j3; j4:j5} Tty Jk :.717
— the pairs (iy,j,) for r =1,... k are all distinct.
By a straightforward adaptation of the proof of Theorem 2.9 in [15], the
following theorem is easily established.

Theorem 2 (Characterization of ext(B(u,v))). Let v € B(u,v) and let M.,
as in Definition 1. The following statements are equivalent:

(i) 7y is not an extreme point of B(u,v);
1) there is a positive loop in M., i.e., every member of the loop is positive.
(i1) L Vly Y
1) there exists a submatriz M., of M., having the property that every row and
s a ~ ~ g property Y
column of M, has at least two positive elements;
w) there exists a square submatrix M., of M., having the property that every
¥ ¥
row and column of M, contains at least two positive entries;
(v) there exists a square submatriz M of M., of order k x k for some k > 1
having the property that the number of positive elements in MY is at least
g the property p by
2k.

By Theorem 1, we known that, for fixed permutations ¢ and 7, elements of

B(u, v) can be obtained varying the copula C. We could think that ext(B(u,v))
can be generated by varying the permutations ¢ and 7, and limiting to the two
extreme copulas Cy, and Cj,;. The following example shows that, in general, some
extreme points could not be obtained from C; and Cy;.

Ezample 2. Let X = {x1, 22, 23,24}, Y = {y1,¥2,y3}, and consider the marginal
belief functions p, v with sets of focal elements F, = {E; = {x1,22},Es =
{w1, 23}, By = {x1, 24}, By = {23, 24} }, Fu = {F1 = {y1, 92}, Fa = {2, 43}, F3 =
V}}, and Moébius inverses
Fu|E1 Ey E5 Ey Fu|FL Fy Fs
0 2 4 4 8 4 8
Mul 35 35 36 20 Mu|55 56 20
Denote by X' the set of permutations of {1,...,4}, by T the set of permu-
tations of {1,2,3}, and define the set of joint belief functions generated by the
FLukasiewicz or the minimum copulas

I'={yeB(pu,v) : my=mt"o"CL or m, = mtromC o X 7T}

It turns out that |ext(B(u,v))| = 34, |I'| = 32, and I" C ext(B(y,v)), with

ext(B(u,v)) \ I' = {71, 72}, where the matrices corresponding to 1,2 are

4 2 4 4 2 4
20 20 20 20 20 20
0% 0 0% 0
M, = and M, =
Y1 AOO Y2 OOA
20 20
4

00 56 55 00
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A direct verification shows that there are no permutations in X and T, such that

m., and m.,, can be obtained through Cz or Cyy. ¢

The restriction to sets of joint belief functions of the form (7) allows us to
prove the following version of the famous gluing lemma [20].

Lemma 1 (Gluing Lemma). Let X, Y and Z be finite sets and let p, v and
7 be belief functions on 2% 2V and 22, respectively. If v, € B(u,v) and 2 €
B(v,7), then there exist a joint belief function on (X x Y x Z,2¥XYXZ) with

marginals v, and 2, on 2X*Y and 2Y*Z, and focal elements in

Fu@F, @F,={ExFxG:EecF,FecF,GeF,}

4 Optimal Transport in Dempster-Shafer Theory

Let 1 and v be two probability measures on the finite spaces X = {z1,..., 2}
and Y = {y1,...,Yn}, respectively. For a cost function ¢ : X x Y — [0, +00), the
classical Kantorovich optimal transport problem between p and v with respect
to the cost c is given by

OT(vn) = min [ c(w.y)dn(a.y) ©
meP(u,v)

where P(u, v) is the set of joint probability measures on X x ) with first marginal

equal to p and second marginal equal to v. Assuming that X = ) and fixing

c: X% = [0, +00) which is a metric on X, then

dw (Na V) = OT(;“‘? v, C) (9)

defines the so-called Wasserstein distance (of order 1) (see, e.g., [20]) on the set
of probability measures on X.

Our aim is to generalize (8) and (9) in the context of belief functions. Re-
ferring to the set of joint belief functions (7), we can introduce the following
pessimistic and optimistic versions of optimal transport in Dempster-Shafer the-
ory.

Definition 2. Let i and v be two belief functions on 2% and 2V, respectively,
with X = {x1,...,2m}t and Y ={y1,...,yn}. For a cost function c: X x Y —
[0, +00), we define

— the pessimistic Dempster-Shafer optimal transport problem between
w and v with respect to the cost ¢ as

DSOT(u,v,¢) = min %c(m,y)dw(m,y)
'YEB(MaV)
= min Y C(ExF)my(E xF), (10)

VGE(N’J’) ExFEF,

where C' : Fry — [0,+00) is such that C(E x F)= min c(z,y);
(z,y)EEXF
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— the optimistic Dempster-Shafer optimal transport problem between
w and v with respect to the cost ¢ as

DSOT(n,v,c) = _min (el y)d(z,)
YEB(p,v)
= min Y C(Ex F)my(ExF), (11)
VE€B(Y) pyFer,

where ¥ is the dual plausibility function of v € B(u,v) and C : F, — [0, +00)

j h that C(E x F) = JY).
is such that C( ) (z,ﬁgngC@ Y)

Recalling (1) and (2), we get that DSOT(u, v, ¢) and DSOT(u, v, ¢) imple-
ment a minimin and a minimaz decision rule, respectively.

The following toy example shows a possible situation where DSOT(u, v, ¢)
and DSOT(y, v, ¢) could be relevant.

Ezxample 3. Consider a population of people that pay taxes and use public ser-
vices, where individuals are categorized in retired (R) and non-retired (N). The
variable X = “tax payer” has known distribution on retired and non-retired peo-
ple, while for Y = “public service user” it is only known that retired people using
public services are at least 25%. The cost function is defined respecting a sort of
social equity and prizes categories paying for public service they use.

Referring to X and Y ranging in X = Y = {R, N}, the previous situation
can be described by the following marginal belief functions and cost function:

— Fu = {{R}, {N}} and m,({R}) = m,({N}) = L;
- Fo={{R}. ¥} and m,({R}) = { and m,(¥) = §;

~ o) = €1000, ifx # vy,
W= €500, otherwise.

Given the previous information, we get

DSOT(u, v c) = min (e, y)da(r,4) = €500,
YEB(,v)

DSOT(u,v,¢) = min c(z,y)dy(z,y) = €1000,
vEB(1,v)

that is what we expect to earn from a person, from the government’s point of
view, referring to a pessimistic and an optimistic approach, respectively. ¢

5 Choquet-Wasserstein Pseudo-Distances

Assume X =Y = {x1,..., 2} and ¢ : X2 — [0, +00) is a metric on X: a typical
choice for c is the discrete metric defined, for all z,y € X, as

1,if ,
cala,y) = {0 ifzigzj.
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Another common choice is to take the absolute value metric c,(z,y) = |z — yl,
provided X C R, or the Euclidean metric c.(z,y) = ||z — y|2, provided X C R4,

The optimal transport problems in Dempster-Shafer theory presented in Def-
inition 2 give naturally rise to two Choquet-Wasserstein pseudo-distances. We
first analyze the pessimistic pseudo-distance.

Definition 3. Let ¢ be a metric on X. Given two belief functions p and v on
2% we define their pessimistic Choquet-Wasserstein pseudo-distance as

dew(pv) =DSOT(uwc) = min el )dr(,y).
YEB(1,v)

We point out that d¢yy is a non-negative real-valued function, defined on the
set of pairs of belief functions on 2%. Nevertheless, dcyy is not a metric on the
whole set of belief function on 2%, as it may fail the positivity property and the
triangular inequality.

Ezample 4 (Positivity). Let X = {a, b} and take the discrete metric ¢ = ¢4. For
p = 0x and v = 04y, we have that F, = {X}, F, = {{a}} and F, ® F, =
{X x {a}}. Then, since C(X x {a}) =0, we get

dow(pov) = min O x {a})ms(X x {a}) =0,

that is p # v does not imply dew (i, v) > 0. ¢

Ezample 5 (Triangular Inequality). Let X = {a, b} and take the discrete metric
¢ = cq. For g = dy4), v = dp3y and 1) = dx, we have that F, ® F, = {{a} x {b}},
Fu®Fy, ={{a} x X} and F,, ® F, = {X x {b}}. Since C({a} x {b}) =1 and
C({a} x X) =C(X x {b}) =0, we get that

dew(p,v) = min  C({a} x {b})m,, ({a} x {b}) =1,

v E€B(p,v)
dew(p,m) = min  C({a} x X)m.,({a} x X) =0,
72€B(1,n)
dew(n,v) = min  C(X x {b})m, (X x {b}) =0,
v3€B(n,v)
and so dew (i, v) > dew (1, 1) + dew (1, v). ¢

The following theorem lists the properties satisfied by d¢yy, which show that
deyy is a distance or dissimilarity function on the set of belief functions on 2%,
according to the terminology of [5].

Theorem 3. Let ¢ be a metric on X. For all belief functions p,v on 2%, the
function deyy satisfies:

(i) dew(p,v) > 0;
(ii) p=v = dew(p,v) =0;
(i) dew(p,v) = dew (v, j1).
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Analogously, we can define an optimistic pseudo-distance as follows.

Definition 4. Let ¢ be a metric on X. Given two belief functions p and v on
2% we define their optimistic Choquet-Wasserstein pseudo-distance as

dew(u,v) = DSOT(,v,c) = min yfc<x7y>dv<x,y>,
YEB(,v)

where 7 is the dual plausibility function of ~y.

As before, dcyy is not a metric, as it may fail the reflexivity property.
Ezample 6 (Reflexivity). Let X = {a, b} and take the discrete metric ¢ = ¢q4.
Let p = v = dy, for which F, = F, = {X¥} and F, ® F, = {X x X}. Since

C(X x X) =1, we get that

dew(p,v) = min C(X x X)m, (X x X) =1,
’YGB(H’J’)

thus p = v does not imply dew (i, v) = 0. ¢

_ The following theorem lists the properties satisfied by deywy, which show that
dew is a metric-like function according to the terminology of [5].

Theorem 4. Let ¢ be a metric on X. For all belief functions p,v,n on 2% the
function deyy satisfies:

(i) dew(p,v) > 0;
(i) dew(p,v) = dew (v, p);
(iii) dew(p,v) =0 = p=v;
(iv) dew(p,v) < dew(p,n) + dew(n,v).

Given an arbitrary belief function u, both pseudo-distances deyy and deyy,
can be used to find a “closest” belief function v belonging to a distinguished
subclass of belief functions. A very popular choice in applications is given by
the class of at most k-additive belief functions [9, 10], obtained as the union of
h-additive ones, for h = 1,...,k, that we denote by Ay(X). The set Ag(X) is
easily seen to be a closed and convex set of belief functions on 2. We notice that
an element v of A,(X) has at most 22:1 () focal elements thus we can refer
to F, = {F : |F| < k}, as the maximal set of focal elements. For simplicity,
here we assume ¢ = ¢q.

To find a deyy-minimal element of Ay (X) with respect to u, we need to solve
the problem

v* € argmin deyw (i, v) = arg min DSOT (u, v, ¢q), (12)
vEAL(X) veAL(X)

which is generally not easy to attack as it involves a double minimization. Fol-
lowing [2, 13], to solve (12) we consider the (negative) entropy

H(vy) = > my(Ei x Fy)(In(my (E; x F})) = 1), (13)
EixF;eF,QF,
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and define, for A > 0, the entropic regularization

DSOT (g, v,¢q) = min {?,[cd(x, y)dvy(z,y) + )\H('y)} . (14)
YEB(1,v)
It turns out that, for a fixed belief function p on 2%, DSOT (i, v, ¢g) is a strictly
convex function of v in Ag(X) admitting a unique optimizer
vy = argmin DSOT) (i, v, ¢q), (15)
VGAk(X)
moreover, for A — 0, it can be shown that v§ converges pointwise to an optimizer
v* of the original problem (12). Thus, for a sufficiently small value of A, we get
a good approximation of the searched optimizer.
Analogously, we can reformulate problem (12) and its entropic regularization
(14) with respect to deyy and find
vy = argmin DSOT) (i, v, cq). (16)
VvEAL(X)

Both problems (15) and (16) and can be faced by adapting Dykstra’s algorithm
[2,13].

Example 7. Let X = {1, 2,23} and consider the belief function x on 2% with
set of focal elements F,, = {E1 = {21}, B2 = {1,235}, B3 = X} and Mobius

inverse my,(E1) = 2, my(E2) = ¢, and my,(E3) = Z. Table 1 shows the Mébius

Fo | {m} Az} {ws} A{mi w0} {w, 73} {mo, 23}
myg 10255556 0.055556 0.088889 0.255556 0.255556 0.088889
mygx -0.583333 0.083333 0.083333 0.083333 0.083333 0.083333
Table 1. Mobius inverses of v} and vy in (15) and (16) for £k = 2 and A = 0.05.

inverses of the optimal solutions of (15) and (16) for k& = 2 and A = 0.05,
computed by adapting Dykstra’s algorithm. ¢

6 Conclusions

We considered the marginal problem in Dempster-Shafer theory and provided an
analysis of a suitable subset of joint belief functions with given marginals, intro-
duced in [8,17]. Restricting to such a set of joint belief functions, we formulated
a pessimistic and an optimistic Kantorovich-like optimal transport problem and
defined a pessimistic and an optimistic Choquet-Wasserstein pseudo-distance.
Finally, we introduced an entropic regularization to compute a “closest” at most
k-additive belief function of a given belief function, according to the two pseudo-
distances. In the same spirit, one can address probability-possibility transforma-
tions for metrology (see, e.g., [7]). The aim of future research is to further analyze
the derived Choquet-Wasserstein pseudo-distances, focusing on their application
to machine learning algorithms like WGANS [1], so as to convey ambiguity.
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