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Abstract. Decision algorithms ensure an appropriate extraction of in-
formation from datasets by means of decision rules. These algorithms are
analyzed by the notion of efficiency, which focuses on the objects cor-
rectly classified by using only the most representative decision rules. This
paper presents a novel notion of efficiency in the fuzzy framework based
on the certainty of the decision rules, in order to quantify the quality of
classification of the studied algorithm.
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1 Introduction

Pawlak introduced Rough Set Theory (RST) [16,17] in the eighties as a math-
ematical tool to analyze relational datasets, which are interpreted as decision
tables, containing imprecise or incomplete information. Decision rules [10,19]
are considered in this framework to simplify the extraction of information and
its interpretation by means of several relevance indicators, such as the strength
and the certainty. It is important that the set of rules used to analyze a dataset
allows us to extract information in a suitably way.

With this purpose, the notion of decision algorithm arises as a set of decision
rules that satisfy some requirements, such as the provision of non-redundancy
information and the preservation of the consistency of the decision table. Pawlak
also introduced the notion of efficiency [18] to analyze decision algorithms. This
notion provides the proportion of objects that satisfy the most representative
rule for each different antecedent, so that higher values of efficiency correspond
to better decision algorithms. In addition, this notion is especially useful for
comparing different decision algorithms and extracting conclusions.

On the other hand, Fuzzy Rough Set Theory (FRST) [8,13,14,15] is a natu-
ral extension of RST to the fuzzy framework based on the philosophy of fuzzy
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sets [22]. This mathematical tool has been extensively studied, directly, such as
in [5,6,9,21] and from other perspectives [1,11,12,20], due to its advantages in
managing uncertain and inconsistent information by offering a great flexibility
to the corresponding analysis. However, many developments are still required.
For example, the notions of algorithm of decision rules and efficiency of an al-
gorithm [18] were not completely accommodated to the fuzzy setting. Recent
advances in these extensions have been made in [2,3,4], but it remains different
improvements concerning the notion of efficiency.

The classical definition of efficiency was based on the strength of the decision
rules, and a first extension was introduced in [2]. This paper focuses on the intro-
duction of a new definition of efficiency in FRST to analyze decision algorithms
from a different point of view, that is, based on the certainty of the decision
rules. Moreover, we will present some interesting properties satisfied by this no-
tion, which will simplify its computation under certain hypothesis and analyze
the variability of the possible results. The new definition and the properties are
illustrated in a final example.

2 Basic notions in FRST

This section is devoted to recalling important notions of FRST [4] for com-
puting the efficiency of decision algorithms. To begin with, decision tables are
introduced which represent datasets in this framework.

Definition 1. Let U and A be non-empty sets of objects and attributes, respec-
tively. A decision table is a tuple S = (U,Ad,VAd

,Ad) such that Ad = A ∪ {d}
with d /∈ A, VAd

= {Va | a ∈ Ad}, where Va is the set of values associated with
the attribute a over U , and Ad = {ā | a ∈ Ad, ā : U → Va}. In this case, the
attributes of A are called condition attributes and d is called decision attribute.

Next, we present the notions of formula, degree of satisfiability to a given for-
mula, conjunction/disjunction of formulas and decision rule, in order to analyze
the information contained in decision tables more easily. Notice that, the degree
of satisfiability to a given formula is based on separable tolerance relations [23].

Definition 2. Let S = (U,Ad,VAd
,Ad) be a decision table, B ⊆ Ad, C ⊆ A

and T = {Ta : Va × Va → [0, 1] | a ∈ Ad} be a family of separable [0, 1]-fuzzy
tolerance relations, that is, each mapping Ta is a symmetrical fuzzy relationship
satisfying that Ta(v, w) = 1 if and only if v = w.

• The set of formulas associated with B, denoted as For(B), is built from
attribute-value pairs (a, v), where a ∈ B and v ∈ Va, by means of the con-
junction and disjunction logical connectives, ∧ and ∨, respectively.

• The mapping ∥ · ∥TS : For(B) → [0, 1]
U

inductively defined as

∥Φ∥TS (x) = Ta(ā(x), v)

for each x ∈ U and Φ = (a, v), with a ∈ B and v ∈ Va, is the degree
of satisfiability to the formula Φ of the object x, through the relationships
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between the values of the attributes in the object x and the values of the
attributes in the formula Φ.

• For every Φ, Ψ ∈ For(B), the conjunction and disjunction of formulas is
defined, for each x ∈ U , as follows:

∥Φ ∧ Ψ∥TS (x) = min{∥Φ∥TS (x), ∥Ψ∥TS (x)}
∥Φ ∨ Ψ∥TS (x) = max{∥Φ∥TS (x), ∥Ψ∥TS (x)}

• A decision rule in S is an expression Φ → Ψ , where Φ ∈ For(C) is the
antecedent of the decision rule and Ψ ∈ For({d}) is the consequent of the
decision rule.

Decision rules allow to summarize decision tables in logical terms and they are
described by several fuzzy relevance indicators from different perspectives [4]. In
particular, we recall the T -strength and the T -certainty, which are defined from
the classical cardinal and the fuzzy cardinal [7].

Definition 3. Let S = (U,Ad,VAd
,Ad) be a decision table, Φ → Ψ be a decision

rule in S and T = {Ta : Va×Va → [0, 1] | a ∈ Ad} be a family of separable [0, 1]-
fuzzy tolerance relations. We call:

• T -strength of the decision rule Φ → Ψ to the value:

σT
S (Φ, Ψ) =

cardF (∥Φ ∧ Ψ∥TS )
card(U)

• T -certainty of the decision rule Φ → Ψ to the value:

cerTS (Φ, Ψ) =
cardF (∥Φ ∧ Ψ∥TS )
cardF (∥Φ∥TS )

where cardF (·) denotes the cardinal of a fuzzy set and card(·) denotes the cardinal
of a classical set.

The T -strength of a decision rule provides its representativeness in the deci-
sion table under consideration, while the T -certainty represents how much the
antecedent implies the consequent. The following notion is useful to compare
pairs of formulas and to analyze their similarity according to a threshold.

Definition 4. Given a decision table S = (U,Ad,VAd
,Ad), a family of separable

[0, 1]-fuzzy tolerance relations T = {Ta : Va × Va → [0, 1] | a ∈ Ad} and Φ,Φ′ ∈
For(Ad), such that

Φ = (a1, v1) ∧ . . . ∧ (an, vn) and Φ′ = (a′1, w1) ∧ . . . ∧ (a′m, wm)

we define the F -indiscernibility relation as a separable [0, 1]-fuzzy tolerance re-
lation RFd : For(Ad)× For(Ad) → [0, 1] given by

RFd(Φ,Φ
′) =


∧

i∈{1,...,n}
Tai

(vi, wi) if n=m and ai = a′i for each i∈{1, . . . , n}

0 otherwise
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Given α ∈ [0, 1], we define the RFd-α-block of Φ ∈ For(Ad) as follows:

[Φ]α = {Φ′ ∈ For(Ad) | α ≤ RFd(Φ,Φ
′)}

If Φ′ ∈ [Φ]α, then we will say that Φ and Φ′ are RFd-α-related.

RFd-α-blocks summarize the relationship between formulas. Moreover, they
depend on a threshold α, which is chosen by the user according to his/her ne-
cessities. These blocks are also useful to obtain those decision rules without
contradictions between them, which are the most reliable ones in a given set of
decision rules.

Definition 5. Let S = (U,Ad,VAd
,Ad) be a decision table, α ∈ (0, 1],

RFd : For(Ad)×For(Ad) → [0, 1] be a F -indiscernibility relation and Dec(S) =
{Φi → Ψi | i ∈ {1, . . . ,m}} a set of decision rules in S. The set of α-consistent
decision rules is defined as follows:

Dec+α (S) = {Φ → Ψ ∈ Dec(S) | if for each Φ′ → Ψ ′ ∈ Dec(S) such

that Φ′ ∈ [Φ]α then Ψ ′ ∈ [Ψ ]α}

Before presenting decision algorithms in FRST, it is necessary to introduce
the fuzzy positive region. This notion is defined from indiscernibility relations
and the multi-adjoint property-oriented frame, which were given in [6].

Definition 6. Let S = (U,Ad,VAd
,Ad) be a decision table and Rd be a d-

indiscernibility boolean relation. The multi-adjoint fuzzy A-positive region is
defined, for each y ∈ U , as:

POS f
A(y) = inf{Rd(y, x) ↖τ(x,y) RA(x, y) | x ∈ U}

where ↖τ(x,y) is the left residuated fuzzy implication of &τ(x,y) associated with
the pair of objects x, y.

Now, we recall the notion of decision algorithm [4], which is a set of decision
rules satisfying some requirements to ensure that they collect the most significant
and non-redundant information in the table.

Definition 7. Let S = (U,Ad,VAd
,Ad) be a decision table, α1, α2, α4 ∈ [0, 1),

α3∈ (0, card(U)], α ∈ (0, 1], T = {Ta : Va × Va → [0, 1] | a ∈ Ad} be a fam-
ily of separable [0, 1]-fuzzy tolerance relations and Dec(S) = {Φi → Ψi | i ∈
{1, . . . ,m}}, with m ≥ 2, be a set of decision rules in S. We say that:

1. Dec(S) is a set of α1α2-pairwise mutually exclusive (independent) decision
rules, if each pair of decision rules Φ → Ψ,Φ′ → Ψ ′ ∈ Dec(S) satisfies that
Φ = Φ′ or ∥Φ ∧ Φ′∥TS (x) ≤ α1 and Ψ = Ψ ′ or ∥Ψ ∧ Ψ ′∥TS (x) ≤ α2, for all
x ∈ U .

2. Dec(S) covers U , if cardF (∥
m∨
i=1

Φi∥TS ) = cardF (∥
m∨
i=1

Ψi∥TS ) = card(U).

3. The decision rule Φ → Ψ ∈ Dec(S) is α3-admissible in S if α3 ≤ suppTS (Φ, Ψ).
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4. Dec(S) preserves the α-consistency of S with a degree α4 if the next inequal-
ity holds for each x ∈ U :∣∣POS f

A(x)−
∨

Φ→Ψ∈Dec+α (S)

∥Φ∥TS (x)
∣∣ ≤ α4

The set of decision rules Dec(S) satisfying the previous properties for the
values α1, α2, α3, α4 is called (α1, α2, α3, α4)α-decision algorithm in S and it is
denoted as DAT (S).

More information about decision algorithms in FRST can be consulted in [4].
Finally, we recall the efficiency of decision algorithms in FRST, which generalizes
the classical notion of efficiency introduced by Pawlak [18]. This definition was
introduced, together with different properties, in [2,3].

Definition 8. Let S = (U,Ad,VAd
,Ad) be a decision table and DAT (S) be

a (α1, α2, α3, α4)α-decision algorithm. Given ε ∈ [0, 1], we call ε-efficiency of
DAT (S) to the number

ηε(DAT (S)) =
∑

{Φ∈For(A)|Φ→Ψ∈DAT (S)}

ηεΦ(DAT (S))

where

ηεΦ(DAT (S)) = max{σT
S (Φ

′, Ψ ′) | Φ′ → Ψ ′ ∈ DAT (S), Φ
′ ∈ [Φ]ε}

The following example analyzes a decision table by using the basic notions
in FRST introduced in this section.

Example 1. Consider the decision table S = (U,Ad,VAd
,Ad) represented in Ta-

ble 1, whose set of objects is U = {x1, x2, x3, x4, x5, x6, x7}, set of condition
attributes is A = {a1, a2, a3} and Va = [0, 1] for all a ∈ Ad.

Table 1: Decision table S = (U,Ad,VAd
,Ad) given in Example 1.

a1 a2 a3 d

x1 0.34 0.31 0.75 0

x2 0.21 0.71 0.5 1

x3 0.52 0.92 1 0

x4 0.85 0.65 1 1

x5 0.43 0.89 0.5 0

x6 0.21 0.47 0.25 1

x7 0.09 0.93 0.25 0

In order to preserve all the information contained in S, we extract a de-
cision rule from each object in Table 1, by considering the conjunction of all
the condition attributes. As a consequence, we obtain the set of decision rules
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Dec(S) = {r1, r2, r3, r4, r5, r6, r7} given below:

r1 : (a1, 0.34) ∧ (a2, 0.31) ∧ (a3, 0.75) → (d, 0)

r2 : (a1, 0.21) ∧ (a2, 0.71) ∧ (a3, 0.5) → (d, 1)

r3 : (a1, 0.52) ∧ (a2, 0.92) ∧ (a3, 1) → (d, 0)

r4 : (a1, 0.85) ∧ (a2, 0.65) ∧ (a3, 1) → (d, 1)

r5 : (a1, 0.43) ∧ (a2, 0.89) ∧ (a3, 0.5) → (d, 0)

r6 : (a1, 0.21) ∧ (a2, 0.47) ∧ (a3, 0.25) → (d, 1)

r7 : (a1, 0.09) ∧ (a2, 0.93) ∧ (a3, 0.25) → (d, 0)

which are denoted as ri : Φi → Ψi, for all i ∈ {1, . . . , 7}.
As was shown in [4], taking α = 0.75, α1 ≥ 0.78, α2 ≥ 0, α3 ≤ 1.61 and

α4 ≥ 0.39, we deduce that Dec(S) is a (α1, α2, α3, α4)α-decision algorithm. From
now on, consider DAT (S) = {r1, r2, r3, r4, r5, r6, r7}.

Finally, in order to compute the ε-efficiency of DAT (S) attending to Defi-
nition 8, we set three different thresholds ε, corresponding to low, medium and
high values, respectively. In particular, we choose the values 0.25, 0.8 and 0.67.
Following the procedure exposed in [2], the different ε-efficiencies of DAT (S) are
computed, whose results are presented in Table 2. ⊓⊔

Table 2: Different ε-efficiencies of DAT (S).

Threshold ηε(DAT (S))

ε = 0.25 2.59

ε = 0.8 2.14

ε = 0.67 2.3

One of the disadvantages of Definition 8 is that the ε-efficiency is not bounded
by 1, so it may be difficult to interpret the obtained values. Moreover, it is
intuitive to think that the certainty of the selected decision rules is also important
to measure the efficiency of an algorithm. These issues are considered in the
next section by means of the introduction of a novel notion of efficiency taking
into account the certainty of decision rules, together with the inclusion of its
main properties showing the relevance of this notion as indicator of a decision
algorithm.

3 Efficiency of decision algorithms based on the certainty

Now, we will study the efficiency of decision algorithms in FRST from a
different perspective. For that, we introduce an alternative notion to Definition 8,
which considers the T -certainty of the rules instead of the T -strength.

Definition 9. Let S = (U,Ad,VAd
,Ad) be a decision table and DAT (S) be

a (α1, α2, α3, α4)α-decision algorithm. Given ε ∈ [0, 1], we call cε-efficiency of
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DAT (S) to the number

ηcε(DAT (S)) =
∑

{Φ∈For(A)|Φ→Ψ∈DAT (S)}

ηcεΦ (DAT (S))

card({Φ ∈ For(A) | Φ → Ψ ∈ DAT (S)})

where

ηcεΦ (DAT (S)) = max{cerTS (Φ′, Ψ ′) | Φ′ → Ψ ′ ∈ DAT (S), Φ
′ ∈ [Φ]ε}

Although Definition 9 does not generalize the classical notion of efficiency
introduced by Pawlak [18], it also measures the efficiency of decision algorithms,
since it provides their quality of classification by means of the average of the T -
certainties under consideration. Next result presents some interesting properties
deduced from Definition 9.

Proposition 1. Let S = (U,Ad,VAd
,Ad) be a decision table and DAT (S) =

{Φi → Ψi | i ∈ {1, . . . ,m}}, with m ≥ 2, be a (α1, α2, α3, α4)α-decision algo-
rithm. The following properties hold:

1. The cε-efficiency of DAT (S) is decreasing in ε, that is, given ε1, ε2 ∈ [0, 1],
if ε1 ≤ ε2 then

ηcε2 (DAT (S)) ≤ ηcε1 (DAT (S))

2. Let Φj → Ψj ∈ DAT (S) such that

cerTS (Φj , Ψj) = max{cerTS (Φ, Ψ) | Φ → Ψ ∈ DAT (S)}

If ε ≤ min{RFd(Φi, Φj) | i ∈ {1, . . . ,m}}, then the cε-efficiency of DAT (S)
is given as

ηcε(DAT (S)) = cerTS (Φj , Ψj)

3. If max{RFd(Φi, Φj) | i, j ∈ {1, . . . ,m}, i ̸= j} < ε, then the cε-efficiency of
DAT (S) is given as

ηcε(DAT (S)) =

∑
Φ→Ψ∈DAT (S)

cerTS (Φ, Ψ)

card({Φ ∈ For(A) | Φ → Ψ ∈ DAT (S)})

Proposition 1(1) ensures that the cε-efficiency of a decision algorithmDAT (S)
is decreasing in the threshold ε. This is consistent with the fact that, if we de-
crease the threshold more antecedents are considered in the corresponding classes
and a greater certainty is considered per antecedent. Hence, a good balance
between the threshold ε and the cε-efficiency is required. On the other hand,
Proposition 1(2) exposes the case that, due to the choice of the threshold ε, only
the decision rule with the greatest T -certainty is considered, since its antecedent
is RFd-ε-related to the antecedents of the rest of rules. Finally, Proposition 1(3)
focuses on the case in which none of the antecedents of the rules in DAT (S) are
RFd-ε-related. As a result, all the rules are needed to compute the cε-efficiency
of DAT (S). Moreover, notice that, from the three items of Proposition 1, it is
possible to determine the range of all values that the cε-efficiency of any decision
algorithm can take.
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Corollary 1. Let S = (U,Ad,VAd
,Ad) be a decision table and DAT (S) =

{Φi → Ψi | i ∈ {1, . . . ,m}}, with m ≥ 2, be a (α1, α2, α3, α4)α-decision algo-
rithm. If Φi ̸= Φj for each i, j ∈ {1, . . . ,m} with i ̸= j, then for all ε ∈ [0, 1]:

∑
Φ→Ψ∈DAT (S)

cerTS (Φ, Ψ)

card({Φ ∈ For(A) | Φ → Ψ ∈ DAT (S)})
≤ ηcε(DAT (S)) ≤ max{cerTS (Φ, Ψ) | Φ → Ψ ∈ DAT (S)}

The previous result provides an interval useful to detect the influence of the
threshold ε in the cε-efficiency of a decision algorithm DAT (S). For instance, if
the certainties of all the decision rules in DAT (S) are similar, then that interval
is small. Consequently, in this case, the cε-efficiency does not depend much on
the fixed threshold ε. Moreover, if all the rules are certain, then the efficiency is
1, independently of the threshold. In particular, the cε-efficiency of any decision
algorithm is a value of the unit interval for all ε ∈ [0, 1], which allows us to
interpret the algorithms more easily than applying Definition 8.

Now, we continue analyzing the decision algorithm given in Example 1 by
taking advantage of Definition 9, Proposition 1 and Corollary 1.

Example 2. First of all, we will calculate the T -certainty of each decision rule
in the decision algorithm DAT (S) given in Example 1, in order to determine
the cε-efficiency of DAT (S). With this purpose, we consider the family T =
{Ta : Va×Va → [0, 1] | a ∈ Ad} defined as Ta(v, w) = 1−|v−w|, for each a ∈ Ad

and v, w ∈ Va, in Definition 3. The obtained results are presented in Table 3.

Table 3: T -certainty of decision rules in DAT (S).

Rule cerTS

r1 0.58

r2 0.45

r3 0.6

r4 0.46

r5 0.58

r6 0.52

r7 0.59

Furthermore, it is also necessary to compute the relation between each pair
of antecedents in DAT (S), applying Definition 4. By using the aforementioned
family T , we obtain the results exposed in Table 4.

Now, we will consider the same values of the threshold ε as in Example 8 in
order to compute different cε-efficiencies of DAT (S).

• To begin with, we compute the c0.25-efficiency of DAT (S). Notice that, from
Table 3, the decision rule with the greatest T -certainty is r3. Moreover, we
have that [Φ3]0.25 = {Φ1, Φ2, Φ3, Φ4, Φ5, Φ6, Φ7} from Table 4 and Defini-
tion 4. Hence, by Proposition 1(2) we deduce that:

ηc0.25(DAT (S)) = cerTS (Φ3, Ψ3) = 0.6
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Table 4: Relation between each pair of antecedents of decision rules in DAT (S).

RFd Φ1 Φ2 Φ3 Φ4 Φ5 Φ6 Φ7

Φ1 1 0.6 0.39 0.49 0.42 0.5 0.38

Φ2 0.6 1 0.5 0.36 0.78 0.75 0.75

Φ3 0.39 0.5 1 0.67 0.5 0.25 0.25

Φ4 0.49 0.36 0.67 1 0.5 0.25 0.24

Φ5 0.42 0.78 0.5 0.5 1 0.58 0.66

Φ6 0.5 0.75 0.25 0.25 0.58 1 0.54

Φ7 0.38 0.75 0.25 0.24 0.66 0.54 1

• We continue the study by using the threshold ε = 0.8. Since [Φi]0.8 = {Φi}
attending to Table 4, for all i ∈ {1, . . . , 7}, by Proposition 1(3) we obtain
that:

ηc0.8(DAT (S)) =

∑
Φ→Ψ∈DAT (S)

cerTS (Φ, Ψ)

card({Φ ∈ For(A) | Φ → Ψ ∈ DAT (S)})

=
0.58 + 0.45 + 0.6 + 0.46 + 0.58 + 0.52 + 0.59

7
= 0.54

• In order to compute the c0.67-efficiency, it is necessary to apply Definition 9.
Taking into account Definition 4 and Table 4, we obtain the following RFd-
0.67-blocks:

[Φ1]0.67 = {Φ1} [Φ4]0.67 = {Φ3, Φ4} [Φ6]0.67 = {Φ2, Φ6}
[Φ2]0.67 = {Φ2, Φ5, Φ6, Φ7} [Φ5]0.67 = {Φ2, Φ5} [Φ7]0.67 = {Φ2, Φ7}
[Φ3]0.67 = {Φ3, Φ4}

Thus, by Definition 9 we obtain that:

ηc0.67Φ1
(DAT (S)) = cerTS (Φ1, Ψ1) = 0.58

ηc0.67Φ2
(DAT (S)) = max{cerTS (Φ2, Ψ2), cer

T
S (Φ5, Ψ5), cer

T
S (Φ6, Ψ6), cer

T
S (Φ7, Ψ7)}

= cerTS (Φ7, Ψ7) = 0.59

ηc0.67Φ3
(DAT (S)) = max{cerTS (Φ3, Ψ3), cer

T
S (Φ4, Ψ4)} = cerTS (Φ3, Ψ3) = 0.6

ηc0.67Φ4
(DAT (S)) = max{cerTS (Φ3, Ψ3), cer

T
S (Φ4, Ψ4)} = cerTS (Φ3, Ψ3) = 0.6

ηc0.67Φ5
(DAT (S)) = max{cerTS (Φ2, Ψ2), cer

T
S (Φ5, Ψ5)} = cerTS (Φ5, Ψ5) = 0.58

ηc0.67Φ6
(DAT (S)) = max{cerTS (Φ2, Ψ2), cer

T
S (Φ6, Ψ6)} = cerTS (Φ6, Ψ6) = 0.52

ηc0.67Φ7
(DAT (S)) = max{cerTS (Φ2, Ψ2), cer

T
S (Φ7, Ψ7)} = cerTS (Φ7, Ψ7) = 0.59
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As a result, the c0.67-efficiency of DAT (S) is:

ηc0.67(DAT (S)) =

∑
{Φ∈For(A)|Φ→Ψ∈DAT (S)}

ηc0.67Φ (DAT (S))

card({Φ ∈ For(A) | Φ → Ψ ∈ DAT (S)})

=
0.58 + 0.59 + 0.6 + 0.6 + 0.58 + 0.52 + 0.59

7
= 0.58

Finally, by Corollary 1, we conclude that:

0.54 ≤ ηcε(DAT (S)) ≤ 0.6

for all ε ∈ [0, 1]. Hence, due to the certainty of the rules are very similar, the cε-
efficiency of the algorithm DAT (S) of this particular example is ranked among
two closed values. The most representative value is 0.54, which really measures
the classification efficiency of the algorithm DAT (S), since it corresponds to the
average of all the certainties. We can decrease the threshold ε to match similar
antecedents (avoiding possible noise) and increase the cε-efficiency. ⊓⊔

As a consequence, the introduction of Definition 9 has enabled us to directly
interpret the different values of the cε-efficiency of a given decision algorithm,
which implies a significant advantage with respect to Definition 8. Moreover,
Proposition 1 and Corollary 1 have also contributed to analyze the new notion of
efficiency. Moreover, this notion will be useful for evaluating different algorithms
obtained from the same dataset. This goal will be studied in-depth in the near
future.

4 Conclusions and further work

We have introduced a new definition of efficiency of decision algorithms in
FRST. This notion is based on the certainties of decision rules and provides
the quality of classification of the given algorithm. We have also presented some
interesting properties of this new notion, such as the monotony in the threshold
and the interval where the efficiency can take values depending on the decision
algorithm under consideration.

In the future, we will study the cε-efficiency of different decision algorithms
to compare them. This fact is very important for a better understanding about
the simplification of decision rules, and consequently, the reduction of attributes
in the fuzzy framework. Furthermore, we are interested in analyzing real datasets
by computing different cε-efficiencies to extract significant conclusions.
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