
Forced periodic optimal scheduling policy for

graph reinforcement learning

Miguel S. E. Martins1[0000−0002−6285−8737], Susana Vieira1[0000−0001−7961−1004],
and João M. C. Sousa1[0000−0002−8030−4746]

IDMEC, Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
miguelsemartins@tecnico.ulisboa.pt

Abstract. E�cient scheduling is fundamental when tackling large and
complex industrial problems. Heuristic methods provide good enough so-
lutions quickly, but their potential is limited. Exact methods and meta-
heuristics can reach very good results but might require prohibitively
high computational times. Alternatively, a reinforcement learning agent
can explore an environment by trial and error and create solutions based
on the current environment state. This paper proposes periodically re-
placing the current agent policy with an optimal policy, which can be
obtained by using exact methods on moderate sized problems or from
known benchmark solutions. This results in a better �nal policy, even
for problems slightly larger than those of the original training dataset.
The scheduling problem is encoded as a graph. The agent is a graph
neural network trained with Proximal Policy Optimization. Note that a
single trained model can solve problems of any size. Results show that
the trained agent can outperform heuristics. Also, it is competitive with
other reinforcement learning approaches when solving problems in the
order of magnitude of the training instances.

Keywords: Scheduling, reinforcement learning, construction heuristics.

1 Introduction

Every resource-constrained service and industrial process is concerned with e�-
cient resource allocation. Scheduling optimization is an extensively studied sub-
ject. Many problem formulations and constraints exist, which can represent most
real world problems. Three types of approaches are often used solve them: exact
methods, heuristics and metaheuristics.

Exact methods, such as branch-and-bound, are exhaustive search procedures.
They rely on e�cient mathematical formulations and optimized implementations
to navigate the solution space and reach optimal solutions. Heuristic methods
create a single solution by following a de�ned set of rules. These are usually
generic enough that they can quickly create a solution for di�erent problems,
even if large-sized [9]. However, it is often far from the optimal. Metaheuristics
are black box approaches suitable for di�erent problems as long as the prob-
lem encoding is compatible. They also follow predetermined steps to search the



2 M. Martins et al.

solution space. However, they have strategies to avoid getting stuck in local
minimum solutions. While metaheuristics almost always outperform heuristic
methods, they are probabilistic and thus can require long run times.

All three options solve problems following a �xed set of instructions. Only in
the design phase, be it rule setting, problem formulation or encoding, is there op-
portunity to adjust the approach to better tackle the current problem instances.
However, using frameworks that can learn and adapt to di�erent problems erases
the need for initial expert knowledge and hyper speci�c approaches. This can
be done with machine learning methods such as reinforcement learning (RL). It
learns by interacting with an environment and exploring the available actions,
without needing large volumes of high quality data to train. Instead, it relies on
a simulation or similar representation of the problem, the environment.

In this paper, a novel modi�cation to a reinforcement learning framework
is proposed. During training, periodically, the agent is forced to follow an op-
timal policy, which is known for benchmark problems with discovered optimal
solutions. By switching between current and optimal policy, can the agent im-
prove its performance? Does it also translate to better results on larger, unseen
problem instances? The job shop scheduling problem is encoded as a conjunctive
graph, which is then given to a graph neural network that predicts what the next
best action to schedule is.

In section 2 a brief introduction to RL concepts is presented, followed by a
review of existing RL approaches to iterative schedule construction. The problem
to solve is introduced in section 3. In section 4 the proposed approach is further
detailed. The results are presented and discussed in section 5. Finally, in section
6, the key takeaways and the next research steps are presented.

2 Reinforcement learning

2.1 Brief introduction

Reinforcement learning is a subset of ML where agents learn by interacting with
an environment iteratively [14]. In the agent-environment loop, �gure 1, the agent
observes an environment and takes a certain action. The environment changes
and the new con�guration, the state, is returned to the agent. Alongside comes
a reward signal, representing how good it was to reach this state. Since the goal
of the agent is to maximize the cumulative rewards, the reward signal guides the
agent towards a desired behaviour.

The agent mapping between states and actions is called policy. By interacting
with the environment, the agent can estimate the expected cumulative reward
of each state, or state-action pair. The value function relates to the selection of
a new state, and following current policy until the episode end, while Q-value is
the expected reward for the immediate next step.

Many algorithms can optimize the value function or the policy. On-policy
methods, like SARSA, improve their policy while interacting with the environ-
ment following that same policy. Alternatively, o�-policy methods learn and



Forced periodic optimal scheduling policy for graph reinforcement learning 3

state   reward                                 action

agent

environment

Fig. 1. Agent-environment interaction loop, based on [14].

observe from experiences generated by a di�erent policy, with the goal of being
more sample-e�cient. For example, the Q-Learning update, Equation 1, gives
the Q-value of taking action a at current state s. It updates its current estimate
based on observed rewards and the maximum expected future reward, de�ned
as:

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′)−Q(s, a)

]
(1)

where α is the learning rate, which controls the magnitude of the update,
r is the immediate reward, γ is the discount factor, which sets the importance
of future rewards, and s' and a' are the future state and action. The double
Q-learning variant uses two networks, one to estimate the target and another
the current Q-values. This helps with overestimation bias.

Tabular representations are lookup tables can store the Q-values explicitly,
but are only applicable when both state and action spaces are small and dis-
crete. Alternatively, approximate representations are parametrized functions to
approximate these values. While they may introduce approximation errors, they
enable RL agents to work with large or continuous spaces. Deep Q-learning
(DQN) and Double Deep Q-learning (DDQN) extend the previous Q-learning
algorithms by using a deep neural network instead of a Q-table.

All previous methods mentioned are value-based. They learn the optimal
value function by iteratively updating their estimates with temporal di�erence
or Monte Carlo methods. On the other hand, policy-based methods focus on
directly learning the policy. REINFORCE collects trajectories of states, actions,
and rewards to compute the gradients of the policy parameters.

Actor-critic methods learn the policy via an actor network while simultane-
ously learning the value function via a critic network. DDPG is an o�-policy
actor-critic method that extends DQN into continuos action spaces. It learns
from a replay bu�er of experiences and directly outputs the action. Advantage
actor-critic (A2C) is an on-policy method that introduces the advantage of taking
an action versus the average action. Outputs the action probability distribution.

Proximal Policy Optimization (PPO) [13] is an on-policy algorithm that is
both policy gradient and actor-critic. It has both actor and critic networks, but
utilizes a policy gradient approach to optimize the actor network. It presents a
clipped surrogate objective to improve sample e�ciency and stabilize training.



4 M. Martins et al.

2.2 Literature approaches

This chapter summarizes RL approaches equivalent to heuristic rules. Proposals
that construct solutions by sequentially selecting operations or resources are
organized in table 1. Job shop approaches that construct solutions iteratively
often deal with �exible, dynamic, of �ow-shop variations. In the reviewed papers,
di�erent types of neural networks (NN) are used: fully connected, convolutional
(CNN), graph (GNN) and recurrent (RNN). It is also of note that [18] uses a
type of GNN called graph isomorphic network and [2] a transformer model.

The most common way to represent the problem is as a list of metrics [8,
12, 16], either resource averages [8, 12] or individual operations, for example pro-
cessing times and status [15, 18]. Instead of lists, 3D matrices can be used [15],
which when combined with CNNs [7] can leverage the matrix neighbourhood
positions for extra information.

Graph-based [10, 17, 18] and recurrent [2, 4] approaches can use disjunctive
and conjunctive graph structures to represent the problem. Besides node and
edge features, graph structures allow the edges to implicitly encode problem dy-
namics like job precedences or machine compatibility. Nodes and edges can have
individual features, such as task processing time and setup costs, respectively.

There are two main ways for the agent to build the schedule. The agent can se-
lect the next job, operation or resource [2, 4, 15, 18]. All the reviewed approaches
use action masking, making infeasible options impossible to select. Alternatively,
a set of dispatching rules is the action space. When each operation can only go
to one machine, dispatching rules select the order [7, 8, 16, 17]. When machines
are also needed, either the approach selects the machine simultaneously [10] or
a resource-dedicated agent selects the job [12].

Overall, these methods are often compared with heuristics rules. Some exam-
ples of dispatching heuristics include Shortest Processing Time (SPT) or First
in, First out (FIFO) approaches [7, 15], and Most Work Remaining (MWKR)
[18]. Other used baselines include metaheuristics [15, 16] and RL approaches [7,
17]. Most papers use popular job shop benchmarks1 and show that that RL job
dispatching approaches are competitive with and often outperform heuristics.

3 Job shop scheduling graph representation

The job shop scheduling problem (JSP) is a very popular formulation in oper-
ations research [11]. A number of jobs, each consisting of multiple operations,
must be allocated to a limited number of machines. Each operation has a speci-
�ed machine and processing time, and each operation must be done in a speci�ed
order. The objective is to minimize the makespan, Cmax, the maximum total
completion time of all scheduled operations.

This problem can be represented as disjunctive and conjunctive graph [10,
17, 18], also called a directed graph [11], as can be seen in �gure 2. Considering
nodes as operations, the directed edges between nodes, the conjunctive edges,

1 OR-Library: http://people.brunel.ac.uk/ mastjjb/jeb/info.html



Forced periodic optimal scheduling policy for graph reinforcement learning 5

T
a
b
le
1
.
S
u
m
m
a
ry

o
f
p
a
p
er
s
w
it
h
it
er
a
ti
v
e
so
lu
ti
o
n
co
n
st
ru
ct
io
n
fo
r
sc
h
ed
u
li
n
g
.

R
e
f

P
u
b
li
c
a
ti
o
n

P
r
o
b
le
m

M
o
d
e
l

S
ta
te

A
c
ti
o
n

A
lg
o
r
it
h
m

[2
]

IE
E
E

T
ra
n
sa
ct
io
n
s

o
n

In
d
u
st
ri
a
l
In
fo
r-

m
a
ti
cs

J
S
P

en
co
d
er
-

d
ec
o
d
er

d
is
ju
n
ct
iv
e

g
ra
p
h

em
b
ed
d
in
g

o
p
er
a
ti
o
n
s

D
D
P
G

[4
]

In
te
rn
a
ti
o
n
a
l
J
o
u
rn
a
l

o
f
S
im
u
la
ti
o
n

M
o
d
-

el
li
n
g

�
ex
ib
le

J
S
P

R
N
N

d
is
ju
n
ct
iv
e
g
ra
p
h

jo
b

a
n
d

m
a
ch
in
e

co
m
b
o

P
P
O

[7
]

IE
E
E
A
cc
es
s

d
y
n
a
m
ic

J
S
P

C
N
N

3
D
m
a
tr
ix

jo
b
d
is
p
a
tc
h
in
g
ru
le

D
D
P
G

[8
]

In
te
rn
a
ti
o
n
a
l
J
o
u
rn
a
l

o
f

P
ro
d
u
ct
io
n

R
e-

se
a
rc
h

d
y
n
a
m
ic

J
S
P

N
N

li
st

o
f

en
v
ir
o
n
m
en
t

m
et
ri
cs

jo
b
d
is
p
a
tc
h
in
g
ru
le
s

D
D
Q
N

[1
0
]

In
te
rn
a
ti
o
n
a
l
J
o
u
rn
a
l

o
f

P
ro
d
u
ct
io
n

R
e-

se
a
rc
h

J
S
P

G
N
N

d
is
ju
n
ct
iv
e
a
n
d
co
n
-

ju
n
ct
iv
e
g
ra
p
h

o
p
er
a
ti
o
n

P
P
O

[1
2
]

A
le
x
a
n
d
ri
a
E
n
g
in
ee
r-

in
g
J
o
u
rn
a
l

�
ow

-s
h
o
p

N
N

li
st

o
f

en
v
ir
o
n
m
en
t

m
et
ri
cs

jo
b
d
is
p
a
tc
h
in
g
ru
le

S
A
R
S
A
,
Q
-

le
a
rn
in
g

[1
5
]

C
o
m
p
u
te
r

&
N
et
-

w
o
rk
s

d
y
n
a
m
ic

J
S
P

N
N

3
D
m
a
tr
ix

o
p
er
a
ti
o
n

P
P
O

[1
6
]

In
te
rn
a
ti
o
n
a
l
J
o
u
rn
a
l

o
f

P
ro
d
u
ct
io
n

R
e-

se
a
rc
h

�
ow

sh
o
p

N
N

li
st

o
f

en
v
ir
o
n
m
en
t

m
et
ri
cs

jo
b
se
le
ct
io
n
ru
le
s

A
2
C

[1
7
]

P
ro
ce
ss
es

d
y
n
a
m
ic

J
S
P

G
N
N

d
is
ju
n
ct
iv
e
g
ra
p
h

jo
b
d
is
p
a
tc
h
in
g
ru
le
s

D
D
Q
N

[1
8
]

A
p
p
li
ed

so
ft
co
m
p
u
t-

in
g

J
S
P

G
N
N

li
st

o
f
fe
a
tu
re
s

p
er

o
p
er
a
ti
o
n

o
p
er
a
ti
o
n

P
P
O



6 M. Martins et al.

are precedence constraints. Machine compatibilities can be added as undirected
edges between nodes that share the same machine, the disjunctive edges. Both
nodes and edges can have additional features.

21

11

31

22

12

32

23

13

33

source sink

Operation o of job j
Operation precedence

 Machine sharing

jo

Fig. 2. Job shop problem represented as a disjunctive and conjunctive graph.

4 Proposed approach

To minimize the makespan of job shop scheduling problems, an agent is trained
to create new schedules. It observes the current graph-encoded schedule and
selects the next operation to add. The reward signal is based on the iteration
increment of the maximum completion time.

A single agent must solve problems of di�erent sizes. A GNN is used as agent
model, which �ts the previous requirement, and PPO is used to train the model.
A naive lower bound is computed, summing all processing times and dividing it
by the total number of machines. This is used to normalize all features dealing
with processing times.

This approach resembles [10, 17]. However, state representation, model ar-
chitecture and algorithm used are di�erent. More importantly, in this paper the
periodic optimal policy switch is proposed, as described in subsection 4.2.

4.1 Agent-environment interactions

State representation: machine and operation allocations are encoded as a
conjunctive graph, as explained in section 3, but without source and sink nodes
or disjunctive machine edges. Thus, the representation contains two matrices:
node features and edge values. The node, or operation, features used are:

� Boolean representation if operation can be selected;
� Boolean representation if operation is already done;
� Normalized operation processing time;
� Normalized job processing time;
� Normalized subsequent operations' processing time;
� Subsequent operations' processing time, as percentage of full job duration;
� Total number of operations of job;
� Number of subsequent operations;
� ID of machine attributed to operation;
� Earliest possible start time at attributed machine;



Forced periodic optimal scheduling policy for graph reinforcement learning 7

� Operation free time, or -1 if not yet scheduled.

The edge features matrix is a [n ×m, 10] matrix, where n is the total number
of jobs and m the total number of operations per job. The edge values matrix
is a [2, (2m − 1)n] matrix. Precedence constraints between operations are pairs
of rows, identifying the origin and destination node of each edge. Self-loops are
needed to send its own information to the GNN embedding layers. These edges
start and end at each node, bringing the total number of edges to (2m− 1)n.

Action space: the agent outputs the single operation to schedule next. In-
ternally, the agent is using action masking to assure only feasible operations are
selected. When compared to the same approach without action masking, the
agent takes much longer to converge to a worse solution.

Reward signal: the objective is to minimize the makespan. However, it is
only possible to get its value at the end of the episode, when all the operations
are scheduled. Thus, the reward signal used is the increment to the maximum
completion time in this iteration, divided by the lower bound. No change to the
maximum completion time means zero reward. The agent penalty is proportional
to the increase in makespan, normalized by the lower bound. This usually keeps
the cumulative penalty per episode between [−2.5,−1].

4.2 Forced periodic optimal policy

This paper proposes an o�-policy PPO modi�cation where the policy alternates
between the current policy and an optimal policy periodically. For the training
instances used the optimal solution is known. Thus, it is possible to create a
sequence of agent actions that would lead to this optimal solution by ordering
the start times of each operation. Following this sequence of actions for the
corresponding problem creates an optimal policy.

This modi�cation is inspired by the elitism procedure in a genetic algorithm.
In this metaheuristic, new solutions are generated every iteration. However, to
keep high quality solutions in the genetic pool, some of the best solutions from
the previous iteration have guaranteed spots in the following generation.

Since optimal solutions will not always be available for training, only the sim-
plest four instances from the la job shop benchmarks are used to train. Simpler
problems are usually easier to solve with exact methods. This will clarify if it is
possible to train the agent on simpler problems and still be performant on larger
instances. The periodicity of the policy swap is evaluated in the next section.

4.3 Agent model

The agent is represented by a GNN model [10]. It uses SAGEConv [3] node
embedding layers to interpret connections between nodes and edges of the graph
representation. For each node, sequential embedding layers aggregate informa-
tion from sequentially connected neighbours.

GNNs take the disjunctive graph information, as previously described, and
output a value for each node in the input graph. The action masking will inval-
idate any outputs that translate into infeasible actions by replacing the model



8 M. Martins et al.

output of infeasible actions with − inf. Then, a softmax layer turns these real
numbers into probabilities, from where the next action is sampled.

The approach presented uses PPO [5, 1, 13], a popular algorithm for JSP
as seen in table 1. Both actor and critic networks have the same structure.
Typically the actor and the critic share some of the layers, but for the current
implementation it was not bene�cial. Table 4.3 presents the parameters.

The agent was trained and tested on JSP benchmarks. Speci�cally, la01 to
la40 [6]. The number of machines is equal to the number of jobs, an each job has
the same number of operation. Each operation is attributed a speci�c machine
ID and a processing time. Inside a single job, all operations must be processed
in a pre-determined order and all use di�erent machines.

The agent trained with 4 parallel environments, each running a di�erent
instance: la01, la02, la03 and la04. Learning rate annealing was used to drive
its value to zero at the end of the episode, which takes 500000 steps. The Adam
optimizer is used with 4 mini-batches and 4 epochs to update the policy. Each
policy rollout runs for 256 steps. For the models, each have 5 SAGEConv layers
with 516 neurons, using ReLU as activation function and one �nal linear layer.

Table 3. PPO parameters used to train the GNN model.

Parameters Values

Learning rate 2× 10−5

Discount factor (γ) 0.99
GAE parameter 0.95
Clipping parameter 0.2
Value function coe�cient 1.0
Entropy bonus coe�cient 0.01
Maximum gradient norm 0.5

The remaining la instances not used for training are used to evaluate the
models versus the selected baselines. The baselines used are the SPT, FIFO
and MWKR heuristic rules. While [10, 18] use slightly di�erent approaches, they
solve the same problems and so are also used as baselines.

The implementation relies on torch and torch_geometric Python libraries.
All training and testing was done with the following speci�cations: AMD Ryzen
7 3700X 8-Core Processo CPU, 4.00 GHz speed; 32 GB RAM; Windows 10 Pro
operating system; NVIDIA GeForce RTX 2700 SUPER graphics card.

5 Results and Discussion

This section presents the results for the proposed approach. All la benchmarks
were tested, but tables 4 and 5 only show the results for the �rst two problem
instances of every complexity. The overall results re�ect the conclusions drawn
from these truncated tables, as can be seen in �gure 3, where the average results



Forced periodic optimal scheduling policy for graph reinforcement learning 9

for all benchmark instances are presented. For example, the values for 10×5 are
the average of all 5 instances with 10 jobs and 5 operations per job.

Table 4 presents the results regarding the periodic optimal policy frequency
parameter. Every rollout means that after the policy update, in the next agent-
environment exploration phase, the �rst episode of each environment will follow
the optimal policy. The other optimal policy frequencies tested are every ten
rollouts, every hundred and never.

Table 4. Selected la results for di�erent optimal policy frequency. The results presented
are the best results obtained in ten di�erent runs. †Problem instances used during
training.

Benchmark n Ö m Never 100 rollouts 10 rollouts Every rollout

la01† 10 Ö 5 900 943 768 732

la02† 10 Ö 5 782 863 795 789
la06 15 Ö 5 1131 1050 985 944

la07 15 Ö 5 1149 1239 1045 999

la11 20 Ö 5 1363 1405 1263 1264
la12 20 Ö 5 1182 1125 1061 1108
la16 10 Ö 10 1135 1661 1304 1161
la17 10 Ö 10 1340 1534 1228 995

la21 15 Ö 10 1645 1937 1640 1429

la22 15 Ö 10 1428 1686 1412 1246

la26 20 Ö 10 1796 2180 1752 1667

la27 20 Ö 10 1725 2256 1842 1781
la31 30 Ö 10 2448 3475 2486 2228

la32 30 Ö 10 2386 3228 2526 2689
la36 15 Ö 15 1901 3230 1985 2100
la37 15 Ö 15 2066 2761 2252 2192

Results show that for the current implementation, forcing the periodic opti-
mal policy every rollout improvements it. It achieves the best result more fre-
quently and has the lowest average gap to optimal solution (28%). While never
using the optimal policy still reaches the best solution many times, it is the third
average gap (37%), after every ten policy rollouts (35%).

Note that using 100 rollouts frequency results in a worse agent (67%) than
with no forced optimal policy. This shows that repetition is important for the
agent to learn with an optimal policy. It is also interesting that for higher com-
plexities, not forcing optimal policy leads to better performance. That might be
because forcing an optimal policy on small instances will make agents better,
but only up to a certain degree of complexity close to the training examples.
After that, it has a detrimental e�ect.

Table 5 compares the best trained model, using elitism every policy rollout,
with the benchmarks. Figure 3 shows the gap to the optimal solution for all la
benchmarks, grouped by similar problem instances.



10 M. Martins et al.

Table 5. Selected la benchmark results for baselines: heuristics, RL approaches [10,
18] and proposed approach. For the proposed approach, it is shown the average of ten
runs, as well as the best result of those ten. †Problem instances used during training.

Instances n Ö m Optimal SPT FIFO MWKR [10] [18]
Ours

Average Best

la01† 10 Ö 5 666 751 772 773 805 670 818.9 732

la02† 10 Ö 5 655 821 830 803 687 756 827.1 789
la06 15 Ö 5 926 1200 926 926 926 932 1032.8 944
la07 15 Ö 5 890 1034 1088 1030 931 1012 1059.8 999
la11 20 Ö 5 1222 1473 1272 1238 1276 1228 1348.8 1264
la12 20 Ö 5 1039 1203 1039 1039 1039 1050 1192.2 1108
la16 10 Ö 10 945 1156 1180 1060 1134 1051 1296.1 1161
la17 10 Ö 10 784 924 943 859 953 857 1055.4 995
la21 15 Ö 10 1046 1324 1265 1234 1309 1179 1527.9 1429
la22 15 Ö 10 927 1180 1312 1187 1158 1057 1312.1 1246
la26 20 Ö 10 1218 1498 1372 1453 1553 1383 1817.8 1744
la27 20 Ö 10 1235 1784 1644 1473 1642 1515 1919.4 1799
la31 30 Ö 10 1784 1951 1918 1832 1817 1894 2366.4 2227
la32 30 Ö 10 1850 2165 2110 1995 1977 1902 2869.5 2689
la36 15 Ö 15 1268 1799 1516 1508 1489 1426 2220.9 2100
la37 15 Ö 15 1397 1655 1873 1594 1623 1649 2261.4 2192

The trained agent cannot overcome the reinforcement learning baselines. It
is competitive for the simpler problems, even for the average values, and it can
compete with heuristic rules up to medium complexity. However, the perfor-
mance deteriorates after that. Thus, forcing optimal policy on an agent that
trains only with small problems leads to some improvements, but it cannot re-
liably solve harder problems. In �gure 3 can be seen that all approaches worsen
with rising problem complexity. However, the scalability of the proposed ap-
proach is the worst one. This reinforces the conclusion from before. Note that
while the current implementation cannot surpass the state-of-the-art RL meth-
ods, periodically forcing the optimal policy was ultimately a good strategy. From
the values of table 4, never switching to the optimal policy is approximately 7%
worse than forcing it every rollout. This value is closer to 9% when evaluating
all la instances not used for training.

6 Conclusions

In this paper, an o�-policy modi�cation to the PPO is proposed. Results show
that for the current implementation, periodically switching between an optimal
policy and the current policy, at every policy rollout, leads to a 9% improve-
ment. Thus, adopting this alternating strategy can potentially improve other
RL approaches as well. Comparatively to state-of-the-art approaches, the cur-
rent implementation is competitive for smaller scale problems.



Forced periodic optimal scheduling policy for graph reinforcement learning 11

10 × 5 15 × 5 20 × 5 10 × 10 15 × 10 20 × 10 30 × 10 15 × 15
Problem instance dimensions

0

10

20

30

40

50

60

G
ap

 %

Algorithm
SPT
FIFO
MWKR
[10]
[18]
Our

Fig. 3. Gap (%) to optimal solution, shown as average of all instances with the same
dimensions, per algorithm. Note that four of the �ve 10 × 5 problem instances were
used during training.

As problem complexity increases, the performance drops rapidly compara-
tively to the baselines. Having a more balanced dataset, with some problem
instances of larger sizes, could mitigate this issue. Also, forcing the optimal pol-
icy when training with more complex problems, which usually have more steps,
might be even more valuable than for shorter problems. This is also applicable
to �exible job shop problems, since having the agent select both the job and the
appropriate machine greatly increases the state and action spaces.

Finally, the proposed approach assumes that the optimal solution is known.
If that was not the case, how di�erent would the performance improvement be?
What if the agent is forced to follow a heuristic solution instead? Would it be
better for the agent to start with a heuristic solution, and only later be see the
higher quality solution? It also seems promising to investigate dynamic changes
to the optimal policy period, either changing the frequency over time or using
the optimal policy to keep the agent from converging prematurely.

Acknowledgments. This work was supported by FCT, Fundação para a Ciência e a
Tecnologia, I.P., under the PhD scholarship 10.54499/2020.08776.BD (Miguel S.E. Mar-
tins). The authors acknowledge Fundação para a Ciência e a Tecnologia (FCT) for its �-
nancial support via the project LAETA Base Funding (DOI: 10.54499/UIDB/50022/2020)
and via the project LAETA Programatic Funding (DOI: 10.54499/UIDP/50022/2020).

References

1. Andrychowicz, M., Raichuk, A., Sta«czyk, P., Orsini, M., Girgin, S., Marinier, R.,
Hussenot, L., Geist, M., Pietquin, O., Michalski, M., Gelly, S., Bachem, O.: What
Matters In On-Policy Reinforcement Learning? A Large-Scale Empirical Study
(2020), http://arxiv.org/abs/2006.05990

2. Chen, R., Li, W., Yang, H.: A Deep Reinforcement Learning Framework Based
on an Attention Mechanism and Disjunctive Graph Embedding for the Job-Shop
Scheduling Problem. IEEE Transactions on Industrial Informatics 19(2), 1322�
1331 (2023). https://doi.org/10.1109/TII.2022.3167380



12 M. Martins et al.

3. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. Advances in Neural Information Processing Systems 2017-Decem(Nips),
1025�1035 (2017)

4. Han, B.A., Yang, J.J.: A deep reinforcement learning based solution for �exible
job shop scheduling problem. International Journal of Simulation Modelling 20(2),
375�386 (2021). https://doi.org/10.2507/IJSIMM20-2-CO7

5. Huang, S., Dossa, R.F.J., Ye, C., Braga, J., Chakraborty, D., Mehta, K., Araújo,
J.G.: CleanRL: High-quality Single-�le Implementations of Deep Reinforcement
Learning Algorithms. Journal of Machine Learning Research 23(274), 1�-18
(2022). https://doi.org/https://doi.org/10.48550/arXiv.2111.08819

6. Lawrence, S.: An experimental investigation of heuristic scheduling techniques.
Supplement to resource constrained project scheduling (1984)

7. Liu, C.L., Chang, C.C., Tseng, C.J.: Actor-critic deep reinforcement learning
for solving job shop scheduling problems. IEEE Access 8, 71752�71762 (2020).
https://doi.org/10.1109/ACCESS.2020.2987820

8. Liu, R., Piplani, R., Toro, C.: Deep reinforcement learning for dynamic scheduling
of a �exible job shop. International Journal of Production Research 60(13), 4049�
4069 (2022). https://doi.org/10.1080/00207543.2022.2058432

9. Martins, M.S.E., Viegas, J.L., Coito, T., Firme, B., Costigliola, A., Figueiredo,
J., Vieira, S.M., Sousa, J.M.C.: Minimizing total completion time in large-
sized pharmaceutical quality control scheduling. Journal of Heuristics (2023).
https://doi.org/10.1007/s10732-023-09509-8

10. Park, J., Chun, J., Kim, S.H., Kim, Y., Park, J.: Learning to schedule job-shop
problems: representation and policy learning using graph neural network and re-
inforcement learning. International Journal of Production Research 59(11), 3360�
3377 (2021). https://doi.org/10.1080/00207543.2020.1870013

11. Pinedo, M.L.: Planning and Scheduling in Manufacturing and Services. Springer,
2nd edn. (2009). https://doi.org/10.1007/978-1-4614-2361-4

12. Ren, J., Ye, C., Yang, F.: Solving �ow-shop scheduling problem with a
reinforcement learning algorithm that generalizes the value function with
neural network. Alexandria Engineering Journal 60(3), 2787�2800 (2021).
https://doi.org/10.1016/j.aej.2021.01.030

13. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal Policy
Optimization Algorithms pp. 1�12 (2017), http://arxiv.org/abs/1707.06347

14. Sutton, R.S., Barto, A.G.: Reinforcement Learning. MIT Press (2020)
15. Wang, L., Hu, X., Wang, Y., Xu, S., Ma, S., Yang, K., Liu, Z., Wang,

W.: Dynamic job-shop scheduling in smart manufacturing using deep rein-
forcement learning. Computer Networks 190(November 2020), 107969 (2021).
https://doi.org/10.1016/j.comnet.2021.107969

16. Yang, S., Xu, Z.: Intelligent scheduling and recon�guration via deep reinforcement
learning in smart manufacturing. International Journal of Production Research
60(16), 4936�4953 (2022). https://doi.org/10.1080/00207543.2021.1943037

17. Yang, Z., Bi, L., Jiao, X.: Combining Reinforcement Learning Algorithms with
Graph Neural Networks to Solve Dynamic Job Shop Scheduling Problems. Pro-
cesses 11(5) (2023). https://doi.org/10.3390/pr11051571

18. Yuan, E., Cheng, S., Wang, L., Song, S., Wu, F.: Solving job shop scheduling
problems via deep reinforcement learning. Applied Soft Computing 143, 110436
(2023). https://doi.org/10.1016/j.asoc.2023.110436


