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Abstract. The theory of attribute implications is a fundamental line of
research in formal concept analysis. The fully true attribute implications
are the most significant attributes in the Boolean framework, and also
play a fundamental role in the fuzzy one. This paper shows that the
residuated concept lattice framework satisfies natural extensions of the
equivalences among the definition of validity and the characterizations
using the extents of the subsets of attributes. Moreover, it introduces
sufficient conditions in order to obtain analogous equivalences in the
multi-adjoint framework.
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1 Introduction

Formal Concept Analysis, introduced by Wille in the 1980s, is a useful math-
ematical tool for data analysis, which has become an important and appealing
research topic. The computation of relationships between the variables involved
in a given dataset, called attribute implications, is a key task in this theory, since
obtaining a set of rules capable of modeling a given dataset is a fundamental goal
to know the behaviour of the system to be studied, for instance, stock market
prediction, disease diagnosis and census data analysis, among others.

Attribute implications have been widely studied from a Boolean [8,30] and
fuzzy [4,5,20,22,23] perspective. Ganter and Wille introduced in [19] the Boolean
definition of validity of an attribute implication, and proved that it is directly
related to the inclusion of the extents of the subset of attributes envolved in the
implication. The fuzzy generalizations of attribute implications allows to provide
a degree of validity between the bottom and top of the considered complete lat-
tice to each implication. However, the fully true implications, that is, attribute
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implications whose degree of validity is equal to 1, continue playing a fundamen-
tal role in the fuzzy case, as it was remarked in [6]. For example, it is possible
to translate an implication to a fully true implication. This translation is also
related to the f -index of inclusion [25,26].

Fuzzy formal concept analysis is a mathematical tool, based on lattice theory,
to extract knowledge from relational datasets, which are formally translated into
a set of objects, a set of attributes and a relationship between them, containing
imperfect, incomplete and vague information [2,3,7,28,27]. This paper focuses
on the study of attribute implications in residuated concept lattices [4] and
multi-adjoint concept lattices [9,12,24]. Specifically, this paper will show that
the fully true attribute implications in the residuated framework satisfy similar
equivalences to the Boolean one, and what sufficient conditions are required in
the multi-adjoint framework. The obtained results also show the really important
properties needed in the residuated framework in order to obtain the equivalence
among the definition of validity and the characterization using the extents of the
subsets of attributes.

2 Preliminaries

This section will start recalling the basic notions of the residuated concept lattice
framework [3].

Definition 1. Given a complete lattice (L,≤L) with bottom and top elements,
⊥ and ⊤ respectively, a non-empty set X of objects, a non-empty set Y of at-
tributes, and a L-fuzzy relation I : X × Y → L which associates any element
(x, y) ∈ X × Y with a truth value I(x, y), we have that:

• A complete residuated lattice is the tuple (L,≤L, ∗,→), where (L, ∗,⊤) is a
commutative monoid and (∗,→) is a residuated pair, that is, the following
equivalence holds, for all x, y, z ∈ L:

x ∗ y ≤L z if and only if x ≤L y → z

• A context is the tuple (X,Y, I).

• The concept-forming operators1 ⇑ : LX → LY and ⇓ : LY → LX are defined,
for all G ∈ LX , F ∈ LY , x ∈ X, y ∈ Y , as:

G⇑(y) =
∧

x∈X(G(x) → I(x, y))

F⇓(x) =
∧

y∈Y (F (y) → I(x, y))

• A concept is a pair ⟨G,F ⟩ satisfying that G⇑ = F , F⇓ = G, for all G ∈ LX

and F ∈ LY . The fuzzy subsets G and F are usually known as the extent
and intent of the concept, respectively.

1 Given two sets R and S, the set RS denotes the set of mappings f : S → R.
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• The residuated concept lattice, denoted as (B,≤), associated with the resid-
uated complete lattice and the context, is the set:

B = {⟨G,F ⟩ | G ∈ LX , F ∈ LY , G⇑ = F, F⇓ = G}

together with the ordering ≤, defined as ⟨G1, F1⟩ ≤ ⟨G2, F2⟩ if and only if
G1 ≤L G2 (or equivalently, F2 ≤L F1). The sets of extents and intents of
the concepts of (B,≤) will be denoted as Ext(B) and Int(B), respectively.

Next, the basic notions of the multi-adjoint concept lattice framework are
recalled. This setting arose as a fuzzy generalization of FCA [28], which has given
rise to relevant advances in different areas, such as attribute reduction [1,14], size
reduction [11,13] and attribute implications [9,12,24].

Definition 2. Given two complete lattices (L1,⪯1), (L2,⪯2), a poset (P,≤P ),
a non-empty set X of objects, a non-empty set Y of attributes, and a P -fuzzy
relation I : X × Y → P , we have that

• The tuple (L1, L2, P,⪯1,⪯2,≤P ,&1,↙1,↖1, . . . ,&n,↙n,↖n) is a multi-
adjoint frame, where (&i,↙i,↖i) are adjoint triples [15] with respect to
(L1,⪯1), (L2,⪯2) and (P,≤P ), for all i ∈ {1, . . . , n}, that is, the following
double equivalence holds, for all x ∈ L1, y ∈ L2, z ∈ P :

x ⪯1 z ↙i y if and only if x&iy ≤P z if and only if y ⪯2 z ↖i x

• A context is the tuple (X,Y, I, σ), where σ : X×Y → {1, . . . , n} is a mapping
which associates any element in X×Y with a particular adjoint triple in the
multi-adjoint frame.

• The concept-forming operators ↑σ : LX
2 → LY

1 ,
↓σ

: LY
1 → LX

2 are defined,
for all g ∈ LX

2 , f ∈ LY
1 , x ∈ X, y ∈ Y , as:

g↑σ (y) = inf{I(x′, y) ↙σ(x′,y) g(x′) | x′ ∈ X}
f↓σ

(x) = inf{I(x, y′) ↖σ(x,y′) f(y′) | y′ ∈ Y }

• A concept is a pair ⟨g, f⟩ satisfying that g↑σ = f , f↓σ

= g, for all g ∈ LX
2

and f ∈ LY
1 . The fuzzy subsets g and f are usually known as the extent and

intent of the concept, respectively.
• The multi-adjoint concept lattice, denoted as (M,⪯) and associated with
the multi-adjoint frame and the context, is the set:

M = {⟨g, f⟩ | g ∈ LX
2 , f ∈ LY

1 , g
↑σ = f, f↓σ

= g}

together with the ordering ⪯, defined as ⟨g1, f1⟩ ⪯ ⟨g2, f2⟩ if and only if
g1 ⪯2 g2 (or equivalently, f2 ⪯1 f1). The sets of extents and intents of the
concepts of (M,⪯) will be denoted as Ext(M) and Int(M), respectively.

From now on, in order to simplify the notation, we write g↑ and f↓ in-
stead of g↑σ and f↓σ

, respectively. It is important to mention that the pair of
concepts-forming operators (↑,↓ ) forms an antitone Galois connection [28], whose
properties play a key role in the proofs.
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Definition 3. Let (P1,≤1), (P2,≤2) be two posets. We say that the pair (↑,↓ )
of mappings ↓ : P1 → P2,

↑ : P2 → P1 is an antitone Galois connection between
P1 and P2 if the following properties are satisfied:

(1) ↑ and ↓ are order-reversing.
(2) x ≤1 x↓↑ and y ≤2 y↑↓

(3) x↓ = x↓↑↓ and y↑ = y↑↓↑

for all x ∈ P1 and y ∈ P2.

Now, we present the notion of forcing-implication, which play an important
role in different results obtained in this paper.

Definition 4. Let (P1,≤1), (P2,≤2) be two posets such that ⊤1 is the top el-
ement in (P1,≤1). We say that the mapping ↙ : P2 × P2 → P1 is a forcing-
implication if it is order-preserving in the left argument, order-reversing in the
right argument and the following equivalence holds, for all y, z ∈ P2:

z ↙ y = ⊤1 if and only if y ≤2 z

Finally, we include some properties associated with adjoint triples in order
to make the paper self-contained.

Proposition 1 ([10]). Let (&,↙,↖) be an adjoint triple with respect to the
posets (P1,≤1), (P2,≤2) and (P3,≤3). If P2 ⊆ P3 and P1 has a maximum ⊤1,
the following equivalence holds:

↙ is a forcing-implication if and only if ⊤1&y = y, for all y ∈ P2.

Proposition 2 ([17]). Let (&,↙,↖) be an adjoint triple with respect to the
poset (P,≤). Then, for all x, y, z ∈ P , the following equivalence holds:

(z ↙ y) ↖ x = (z ↖ x) ↙ y if and only if & is associative.

3 Fully true attribute implications

We recall the philosophy underlying the notion of validity of an attribute impli-
cation [19]. Given two subsets of attributes A and B of a context (O,P,R), the
Boolean definition of attribute implications given by Ganter and Wille in [19]
established that the implication A → B is valid in the context, if every intent
of a single object respect the implication. They proved that this definition is
equivalent to the extent of A is included in the extent of B. Specifically, they
obtain the following result.

Proposition 3 ([21]). Given a formal context C = (O,P,R), and A,B ⊆ P,
we have the following equivalence:

A → B is valid in C if and only if A↓ ⊆ B↓ if and only if B ⊆ A↓↑

where ↓ and ↑ are the derivation operators [19].

Next, different notions to compute the validity of attribute implications will
be shown, together with useful properties for obtaining similar results to Proposi-
tion 3, concerning fully true attribute implications, that is, attribute implications
whose degree of validity is equal to 1.
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3.1 Validity of residuated attribute implications

Residuated attribute implications have been widely studied [6,18,29]. Specifi-
cally, [6] addresses the study of residuated attribute implications and the issues
traditionally investigated for attribute implications such as validity, entailment,
redundancy and bases of attribute implications associated with closure struc-
tures. Taking into consideration [6], this section starts including the syntac-
tic definition of residuated attribute implication together with the notions re-
lated to its semantic interpretation. From now on, a complete residuated lattice
(L,≤L, ∗,→) and a context ⟨X,Y, I⟩ will be fixed.

Definition 5. Given two fuzzy subsets of attributes A,B ∈ LY , we say that the
expression A ⇒ B is a residuated attribute implication over Y .

The degree of validity of a residuated attribute implication allows to provide
a semantic interpretation to the above definition. After introducing the usual
notion of fuzzy inclusion, which is a generalization of the inclusion relation of
classical sets, we recall the degree of validity of a residuated attribute implication
both in a fuzzy subset of attributes and in a family of fuzzy subsets of attributes.

Definition 6. Let H be a family of fuzzy subsets of attributes in LY and A,B ∈
LY be two fuzzy subsets of attributes.

• S(A,B) is the degree in which A is included in B, defined as:

S(A,B) =
∧
y∈Y

(A(y) → B(y))

• ∥A ⇒ B∥H is the degree in which A ⇒ B is valid in H ∈ LY , defined as:

∥A ⇒ B∥H = S(A,H) → S(B,H).

• ∥A ⇒ B∥H is the degree in which A ⇒ B is valid in H, defined as:

∥A ⇒ B∥H =
∧

H∈H
∥A ⇒ B∥H

The definition of validity of a residuated attribute implication was also extended
to a given context in [6] as follows.

Definition 7 ([6]). Given two fuzzy subsets of attributes A,B ∈ LY , the degree
in which A ⇒ B is valid in ⟨X,Y, I⟩ is defined as:

∥A ⇒ B∥⟨X,Y,I⟩ = ∥A ⇒ B∥{Ix|x∈X}

where Ix is the x-th row of the table associated with the relation I, that is,
Ix(y) = I(x, y), for all y ∈ Y .
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Notice that, the validity of a residuated attribute implication in a given context
is interpreted as the degree of validity in the whole set of rows of its relational
table. In addition, this degree of validity can be characterized by the degree
of validity on the whole set of intents of the residuated concept lattice, which
coincides with the degree of inclusion of the consequent set in the closure of the
antecedent set, as the following theorem shows.

Theorem 1 ([6]). Given two fuzzy subsets of attributes A,B ∈ LY , we obtain
that:

∥A ⇒ B∥⟨X,Y,I⟩ = ∥A ⇒ B∥Int(X,Y,I) = S(B,A⇓⇑).

where Int(X,Y, I) is the set of intents of the concept lattice (B,≤).

In the fuzzy framework, practical considerations often lead to work with
fully true attribute implications. For this reason, we will now focus our study on
presenting different properties helpful to obtain a characterization of fully true
residuated attribute implications.

First of all, we include a property which relates the degree of validity of an
attribute implication A ⇒ B in the given context to the degree of inclusion
S(A⇓, B⇓), whose proof is included in the proof of the previous theorem in [6].

Proposition 4. Given two fuzzy subsets of attributes A,B ∈ LY , we have that:

∥A ⇒ B∥⟨X,Y,I⟩ = S(A⇓, B⇓)

Finally, we provide the equivalences required for obtaining fully true resid-
uated attribute implications, that is, the fuzzy extension of Proposition 3. Its
proof straightforwardly follows from Proposition 4 and the well-known property
that A ≤L B if and only if S(A,B) = 1.

Proposition 5. Given two fuzzy subsets of attributes A,B ∈ LY , we have that:

∥A ⇒ B∥⟨X,Y,I⟩ = 1 if and only if A⇓ ≤L B⇓ if and only if B ≤L A⇓⇑

From a practical standpoint, this property plays a fundamental role to obtain
fully true attribute implications from a given context, since it is not needed to
compute the degree of validity through the rows of the incidence relation. This
fact is illustrated in the following example.

Example 1. Let ([0, 1],≤[0,1], ∗L,→L) be a complete residuated lattice where
(∗L,→L) is the  Lukasiewicz residuated pair and (X,Y, I) be a context whose
set of objects is X = {x1, x2, x3}, the set of attributes is Y = {y1, y2, y3, y4},
and the relation I : X × Y → [0, 1] is given by Table 1.

Now, we will consider the fuzzy subsets of attributes A = {1/y1, 0.5/y3}
and B = {0.5/y2, 0.5, y3, 0.5/y4} and we will check that A ⇒ B is a fully true
residuated attribute implication from Proposition 5. Applying the definition of
the operator ⇓, we have that:

A⇓(x1) = inf{(A(y) →L I(x1, y)) | y ∈ Y } = 1

A⇓(x2) = inf{(A(y) →L I(x2, y)) | y ∈ Y } = 1

A⇓(x3) = inf{(A(y) →L I(x3, y)) | y ∈ Y } = 0.9
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I y1 y2 y3 y4

x1 1 0.9 0.8 1

x2 1 0.7 0.8 1

x3 0.9 0.5 0.8 1

x ∗L y = max{0, x + y − 1}

x →L y = min{1, 1 − x + y}

Table 1. Relation I and the  Lukasiewicz residuated pair used in Example 1.

Then, we obtain that A⇓ = {1/x1, 1/x2, 0.9/x3}. Carrying out similar analogous
computations by using the operator ⇑, we have that B⇓ = {1/x1, 1/x2, 1/x3}.
Taking into account that the hypothesis of Proposition 5 are satisfied, that is:

A⇓ = {1/x1, 1/x2, 0.9/x3} ⊆ {1/x1, 1/x2, 1/x3} = B⇓

or equivalently,

B = {0.5/y2, 0.5, y3, 0.5/y4} ⊆ {1/y1, 0.6/y2, 0.8/y3, 1/y4} = A⇓⇑

we can ensure that the residuated attribute implication A ⇒ B is fully true in
the given context. ⊓⊔

3.2 Validity of multi-adjoint attribute implications

Multi-adjoint attribute implications have been studied for instance in [9,12,16,24].
In [9] a novel definition of validity for multi-adjoint attribute implications on a
context was proposed in order to consider the whole set of intents, which is not
equivalent to the one given in the residuated framework. Following the same
philosophy that the previous section and taking into account [9], we will intro-
duce the syntactic definition of multi-adjoint attribute implication as well as the
notions related to its semantic interpretation. Henceforth, a multi-adjoint frame
(L1, L2, P,⪯1,⪯2,≤P ,&1,↙1,↖1, . . . ,&n,↙n,↖n) and a context (X,Y, I, σ)
will be fixed.

Given f1, f2 ∈ LY , we say that the expression f2 ⇐ f1 is a multi-adjoint
attribute implication over Y . The following definition provides the semantic in-
terpretation of these implications.

Definition 8. Let (&,↙,↖) be an adjoint triple with respect to (L1,⪯1), F
be a family of fuzzy subsets of attributes in LY

1 , f1, f2, f3 ∈ LY
1 be three fuzzy

subsets of attributes and g1, g2 ∈ LX
2 be two subsets of objects.

• S1(f1, f2) is the degree in which f1 is included in f2, defined as:

S1(f1, f2) =
∧
y∈Y

(f2(y) ↖ f1(y))

• S2(g1, g2) is the degree in which g1 is included in g2, defined as:

S2(g1, g2) =
∧
x∈X

(g2(x) ↙ g1(x))
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• ∥f2 ⇐ f1∥f3 is the degree in which f2 ⇐ f1 is valid in f3, defined as:

∥f2 ⇐ f1∥f3 = S1(f2, f3) ↙ S1(f1, f3)

• ∥f2 ⇐ f1∥F is the degree in which f2 ⇐ f1 is valid in F , defined as:

∥f2 ⇐ f1∥F =
∧
f∈F

∥f2 ⇐ f1∥f

The notion of validity of a multi-adjoint attribute implication was also ex-
tended to a multi-adjoint concept lattice [9], as it is shown below.

Definition 9. Given two subsets of attributes f1, f2 ∈ LY
1 , the degree in which

the multi-adjoint attribute implication f2 ⇐ f1 is valid in the multi-adjoint con-
cept lattice (M,⪯) is defined as:

∥f2 ⇐ f1∥M = ∥f2 ⇐ f1∥Int(M)

where Int(M) is the set of intents of the concepts of (M,⪯).

Unlike to the residuated framework, the definition of validity on the whole
set of intents is not equivalent to the definition on the whole set of rows of
the relation table, as it was shown in [9, Example 26]. Furthermore, in the
general multi-adjoint framework, only one inequality in the equality displayed in
Proposition 4 can be ensured. Specifically, the degree of inclusion S2(f↓

1 , f
↓
2 ) is

not equal to the degree of validity ∥f2 ⇐ f1∥M based on the whole set of intents.

We can only assert that the degree of inclusion S2(f↓
1 , f

↓
2 ) is an upper bound of

∥f2 ⇐ f1∥M in the multi-adjoint framework, as the following theorem shows.

Theorem 2. Let (L1,⪯1) be a complete lattice satisfying the descendent chain
condition, (&,↙,↖) be an adjoint triple with respect to (L1,⪯1) such that
x&⊤1 = x, for all x ∈ L1, and f1, f2 ∈ LY

1 be two fuzzy subsets of attributes.
Then:

∥f2 ⇐ f1∥M ⪯1 S2(f↓
1 , f

↓
2 )

Following the same sequence of results as in the previous section, we will now
devote to the study to analyze different properties useful to characterize fully
true multi-adjoint attribute implications. The first result provides a sufficient
condition to ensure the usual equivalence given by the properties of a Galois
connection, but now when the fuzzy inclusions S2 and S1 are considered.

Proposition 6. Given an adjoint triple (&,↙,↖) with respect to (L1,⪯1) such
that & is associative and two subsets of attributes f1, f2 ∈ LY

1 , then we have that:

S2(f↓
1 , f

↓
2 ) = S1(f2, f

↓↑
1 )

Next technical property is necessary before presenting the results associated
with fully true multi-adjoint attribute implications. Notice that, although it
seems trivial, an extra property is required on the general adjoint implications
to obtain it.
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Proposition 7. Let (&,↙,↖) be an adjoint triple with respect to (L1,⪯1) such
that ↙ is a forcing-implication. Given two subsets of objects g1, g2 ∈ LX

2 , then
we have that:

g1 ⪯1 g2 if and only if S2(g1, g2) = ⊤1

The following proposition shows a particular case of fully true attribute im-
plications, which is required before presenting the most important result of this
section.

Proposition 8. Let (&,↙,↖) be an adjoint triple with respect to (L1,⪯1) such
that & is associative and ↙ is a forcing-implication. Given a subset of attributes
f1 ∈ LY

1 , we have that:

∥f↓↑
1 ⇐ f1∥M = ⊤1

Now, we can present the equivalences which allow us to characterize the fully
true multi-adjoint attributes implications. Note that, next result is analogous to
the one given in Proposition 5 for the residuated case and the Boolean one, that
is, Proposition 3.

Theorem 3. Let (L1,⪯1) be a complete lattice satisfying the descendent chain
condition and (&,↙,↖) be an adjoint triple with respect to (L1,⪯1) such that
& is associative, ↙ is forcing-implication and x&⊤1 = x, for all x ∈ L1. Given
two subsets of attributes f1, f2 ∈ LY

1 , then we have:

∥f2 ⇐ f1∥M = ⊤1 if and only if f2 ⪯1 f↓↑
1 if and only if f↓

1 ⪯1 f↓
2

Finally, an illustrate example is introduced.

Example 2. Given the multi-adjoint frame

([0, 1]2,≤, (&DG,↙DG,↖DG), (&DP,↙DP,↖DP), (&DL,↙DL,↖DL))

where (&DG,↙DG,↖DG), (&DP,↙DP,↖DP), (&DL,↙DL,↖DL) are the adjoint
triples defined from the discretization of the Gödel, product and  Lukasiewicz
t-norms [10], respectively, on [0, 1]2 = {0, 0.5, 1} and (X,Y, I, σ) be a con-
text such that the set of objects is X = {x1, x2, x3}, the set of attributes is
Y = {y1, y2, y3, y4, y5}, and the relation I : X × Y → [0, 1]2 and the mapping σ
are given in Table 2.

I y1 y2 y3 y4 y5

x1 0.5 0.5 1 1 1

x2 1 1 1 0.5 0.5

x3 0 0.5 0.5 0 1

σ y1 y2 y3 y4 y5

x1 &DL &DL &DL &DL &DL

x2 &DP &DP &DP &DP &DP

x3 &DG &DG &DG &DG &DG

Table 2. Relation I and mapping σ of Example 2.

Consider the fuzzy subset of attributes f1 = {1/y1, 0.5/y2, 0.5/y3, 1/y4, 0.5/y5}
and we will compute its closure, that is f↓↑

1 in order to check if the hypothesis
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required in Theorem 3 are satisfied. Applying the definition of the operator ↓,
we have that:

f↓
1 (x1) = inf{I(x1, y) ↖DL f1(y) | y ∈ Y } = 0.5

f↓
1 (x2) = inf{I(x2, y) ↖DP f1(y) | y ∈ Y } = 0.5

f↓
1 (x3) = inf{I(x3, y) ↖DG f1(y) | y ∈ Y } = 0

Then, we obtain that f↓
1 = {0.5/x1, 0.5/x2}. Applying the operator ↑ to the set

f↓
1 , we obtain that:

f↓
1
↑(y1) = inf{I(x1, y1) ↙DL f↓

1 (x1), I(x2, y1) ↙DP f↓
1 (x2), I(x3, y1) ↙DG f↓

1 (x3)} = 1

f↓
1
↑(y2) = inf{I(x1, y2) ↙DL f↓

1 (x1), I(x2, y2) ↙DP f↓
1 (x2), I(x3, y2) ↙DG f↓

1 (x3)} = 1

f↓
1
↑(y3) = inf{I(x1, y3) ↙DL f↓

1 (x1), I(x2, y3) ↙DP f↓
1 (x2), I(x3, y3) ↙DG f↓

1 (x3)} = 1

f↓
1
↑(y4) = inf{I(x1, y4) ↙DL f↓

1 (x1), I(x2, y4) ↙DP f↓
1 (x2), I(x3, y4) ↙DG f↓

1 (x3)} = 1

f↓
1
↑(y5) = inf{I(x1, y5) ↙DL f↓

1 (x1), I(x2, y5) ↙DP f↓
1 (x2), I(x3, y5) ↙DG f↓

1 (x3)} = 1

Hence, we have that f↓↑
1 = {1/y1, 1/y2, 1/y3, 1/y4, 1/y5}. It is clear that f2 ≤ f↓↑

1

for all f2 ∈ [0, 1]Y2 . Applying Theorem 3, we have that any attribute implication
whose antecedent is f1 will be fully true in the given context. In particular, the
six non-trivial implications f2 ⇐ f1, obtained from mappings f2 greater than f1.

As a conclusion, Theorem 3 facilitates the identification of fully true implica-
tions in a given context, since it does not require the computation of the degree
of validity based on the whole set of intents of the concepts of the lattice. ⊓⊔

4 Conclusions and future work

This paper has analyzed the fully true implications from two useful fuzzy frame-
works, residuated concept lattices and multi-adjoint concept lattices. We have
shown that the residuated case contains sufficient properties to ensure the gen-
eralization of the Boolean equivalences recalled in Proposition 3. On the other
hand, sufficient conditions are needed to ensure a similar equivalence in the
flexible multi-adjoint framework. We have proved that, if associative adjoint
conjunctors and forcing implications are considered in the adjoint triples, then
similar equivalences arise. This result also shows the relevant properties in the
residuated framework to the characterization of the fully true residuated at-
tribute implications. In the future, more properties will be studied and a deeper
relationship among the definition of validity in the residuated and multi-adjoint
frameworks will be examined.
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