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Abstract. In this contribution, we extend the concept of the permu-
tations dependent Choquet-like operator studied in [3] to real-valued
inputs. We study its properties and apply this new aggregation in the
image inpainting. We propose a modification of the derivative-based ap-
proach of the image inpainting introduced by Bertalmio et al. in [5]. We
keep the original iterative inpainting procedure, but we replace the image
gradient and the Laplacian with the mentioned Choquet-like operator.
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1 Introduction

The concept of the Choquet integral as a consequence of the groundbreaking
work [9] of Gustav Choquet from 1954, is still studied and developed by many
researchers. Over the years this concept was generalized in several ways and
applied in many areas such as decision making processes [10], computer vision [8],
industry [4], etc. In this contribution, we shall follow the permutations dependent
Choquet-like operator, see [3]. The main idea of this generalization is to consider
any permutation of the basic set in the formula, not only the permutation of the
basic set that reorders the input vector in nondecreasing order (the idea of the
standard Choquet integral). The permutations dependent operator is interesting
from both an application and a theoretical point of view. It is computationally
efficient, and it turns out to be a good technique in edge detection, for more
details we refer to [3]. Moreover, it covers several well-known fuzzy integrals
such as the Choquet integral, two-fold integral [16], (MC) integral [17], CAg

operator [7], etc. Originally, the concept of permutations dependent operator
was introduced only for nonnegative vectors. However, in many applications,
among them image inpainting, the extension to real-valued vectors is needed. In
this contribution, we present one possible way how to extend this operator to a
bipolar scale (−∞,∞).

In this contribution, we also aim to use our new aggregation technique in
image inpainting. It is a conservation process where damaged, or missing parts
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of an artwork are recovered into a complete image. At the beginning of the
new millennium, Bertalmio et al. in [5] introduced the first modern effective,
and efficient digital image inpainting. This method is based on the derivation of
the image, and it is inspired by the standard restoration approach. It uses the
concept of isophotes (curves that connect areas of the same brightness) together
with anisotropic diffusion. In this contribution, we use our new aggregation tech-
nique in the image inpainting. We replace the gradient, the Laplacian, and the
isophotes with extended permutations dependent Choquet-like operator. The
idea of perceiving fuzzy integrals as a gradient analogy was already published
in [12] and further studied in [2], but for edge detection.

The paper is organized as follows. Firstly, in Section 2 we introduce the
motivation, basic notations, and definitions. In Section 3 we extend the definition
of permutations dependent Choquet-like operator to real-valued vectors. We deal
with its properties necessary for image inpainting. In Section 4 we propose our
image inpainting method based on the mentioned extension of the Choquet-like
operator. Further, we experimentally test the proposed method.

2 Basic notations and motivation

Every digital image consists of a finite number of pixels. Therefore, for the needs
of the application, we restrict ourselves to a finite space. Let us denote

[n] := {1, 2, . . . , n}, n ∈ N,

with N := {1, 2, 3, . . . }. We shall work with permutations of basic set [n], i.e.
bijective mappings ψ : [n] → [n]. The set of all permutations of [n] we shall
denote by Perm([n]). The powerset of [n] we denote by 2[n]. By Bc we mean the
complement of a set B ∈ 2[n], i.e. Bc = [n] \ B. A set function µ : 2[n] → [0,∞)
such that µ(B) ≤ µ(C) whenever B ⊆ C, and µ(∅) = 0 is called a monotone
measure on 2[n]. The set of all monotone measures on 2[n] with µ([n]) > 0 we
denote by M. Under capacity we mean µ ∈ M such that µ([n]) = 1. The set of all
capacities on 2[n] we denote by M1. By F+ we denote the set of all nonnegative
vectors, i.e. x : [n] → [0,∞).

A map A(· |B) : F+ → [0,∞) is called a conditional aggregation operator
(CAO for short) with respect to a set B ∈ 2[n] \ {∅}, if
(i) A(x|B) ≤ A(y|B) for any x,y ∈ F+ such that xi ≤ yi for any i ∈ B,
(ii) A(1Bc |B) = 0.

Moreover, A(· |∅) = 0 by convention, see [6]. Some examples of CAOs are the zero
operator Azero(x|B) = 0, the minimum Amin(x|B) = mini∈B xi, the maximum
Amax(x|B) = maxi∈B xi, also the sum Asum(x|B) =

∑
i∈B xi, the arithmetic

mean Amean(x|B) = 1
|B|

∑
i∈B xi, the projection Aproj(x|{i}) = xi, i ∈ [n],

fuzzy integrals, as the Choquet integral, or the Sugeno integral, the Shilkret
integral, see [6]. Under SCA we understand a sequence of conditional aggregation
operators, i.e. A := (Ai)

n
1 , where Ai(·) = A(· |Bi) for each i ∈ [n]. E.g. let (Ai)

3
1

be SCA with A1 = (Amin(· |{1, 2}), A2 = (Amax(· |{1, 2}), A3 = (Amin(· |{3}).
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Ψcon

z ∈ F+ ψcon
z ∈ Perm([3])

ψcon
z (1) ψcon

z (2) ψcon
z (3)

(0, 0, 1) 3 1 2

(0, 0, 2) 3 1 2

. . . . . .

(8, 3, 7) 3 1 2

(8, 3, 8) 3 1 2

. . . . . .

Ψ↑

z ∈ F+ ψ↑
z ∈ Perm([3])

ψ↑
z (1) ψ

↑
z (2) ψ

↑
z (3)

(0, 0, 1) 1 2 3

(0, 0, 2) 1 2 3

. . . . . .

(8, 3, 7) 2 3 1

(8, 3, 8) 2 1 3

. . . . . .

Ψ

z ∈ F+ ψz ∈ Perm([3])

ψz(1) ψz(2) ψz(3)

(0, 0, 1) 2 3 1

(0, 0, 2) 3 1 2

. . . . . .

(8, 3, 7) 2 1 3

(8, 3, 8) 1 2 3

. . . . . .

Table 1: Examples of sets of permutations associated with vectors

Further, we briefly present some motivations for the recently introduced con-
cept in [3]. In the literature, we can see two approaches to using the permutation
of the basic set in the construction of operators: Let x ∈ F, µ ∈ M.

(i) Permutation of [n] is related to the input vector, e.g. the Choquet integral

C(x, µ) =
n∑
i=1

xψ↑(i) ·
(
µ({ψ↑(i), . . . , ψ↑(n)})− µ({ψ↑(i+ 1), . . . , ψ↑(n)})

)
,

where ψ↑ ∈ Perm([n]) such that xψ↑(1) ≤ xψ↑(2) ≤ · · · ≤ xψ↑(n).
(ii) Permutation of [n] need not be solely related to the input vector. It can

be chosen arbitrarily (the same for each vector), e.g. the MCC-integral [11]
where the permutation relates to the maximal chain of subsets of [n], or the
IOWA operator [21], where it is derived from another companion vector.

In [3] we generalized the idea of a preselected permutation of [n]. We consider
a “database” where each vector is associated with its own preselected permuta-
tion (it may or may not be derived from the vector), i.e.

Ψ = {ψz ∈ Perm([n]) : z ∈ F+}.

The set of all such sets we shall denote by P. In accordance with the denotation
we have used until now, by ψ↑ ∈ Ψ↑ we denote a permutation with the property
that it reorders the components of vector in nondecreasing order. Analogously we
mean Ψ↓. If each vector is associated with the same permutation, we shall use the
denotation Ψcon. An example of Ψcon is Ψid = {ψid

z ∈ Perm([n]) : z ∈ F+} where
ψid
z is the identity. By Ψmon we mean the set of permutations that maintains

the monotonicity property, i.e. if x ≤ y, then xψx ≤ yψy , x,y ∈ F+. For better
understanding see examples in Table 1.

Definition 1 (cf [3]). Let (Ai)
n
i=1 be a SCA, Ψ,Φ ∈ P. Then the CA,Ψ,Φ

operator of x ∈ F+ w.r.t. µ ∈ M is defined as

CA,Ψ,Φ(x, µ) =

n∑
i=1

Aψ(i)(xϕ) ·
(
µ(Eψ(i))− µ(Eψ(i+1))

)
,

where xϕ = (xϕ(1), . . . , xϕ(n)), ψ is the permutation of [n] corresponding to
the vector (A1(xϕ), . . . ,An(xϕ)) and Eψ(i) = {ψ(i), ψ(i+ 1), . . . , ψ(n)} for each
i ∈ [n] with the convention Eψ(n+1) = ∅.
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In the C⊗
A,Ψ,Φ operator we use two sets Ψ,Φ ∈ P, and both play different

role. The set Ψ relates to vectors xA = (A1(xϕ), . . . ,An(xϕ)), and the set Φ is
only related to the input vector x. Similar idea appears e.g. in the construction
of TOWA operator [22].

Image inpainting By image we mean a discrete function I : D → H, where
D = [r] × [c] represents rows and columns of pixels, r, c ∈ N, and H represents
the colours of pixels. For a colour image H = {0, . . . , 255}3 (RGB scale), and for
an image in grayscale H = {0, . . . , 255} (all three components of the RGB scale
have the same value). Thus each pixel of the image is represented by coordinates
[i, j] ∈ D, and colour I(x, y) ∈ H. In this contribution, we formally describe
methods for grayscale images. For colour images, we repeat this procedure for
each RGB component. Further, we briefly describe the method proposed by
Bertalmio et al. in [5], which ideas will serve as the basis of our proposed method.

Bertalmio et al. inpainting method Let [x, y] ∈ D and Nx,y denotes its
neighboring pixels, i.e. Nx,y = {[u, v] ∈ D : ∃ i, j ∈ {−1, 0, 1}, [u + i, v + j] =
[x, y]}\{[x, y]}. Let Ω ⊂ D denote the region of the image to be inpainted, and ∂Ω
its boundary, i.e. ∂Ω = {[x, y] ∈ Ω : ∃ [u, v] ∈ Nx,y, [u, v] /∈ Ω}. Proposed image
inpainting is the iterative method, where only pixels inside Ω are modified. Every
few iterations, a step of anisotropic diffusion is applied for better estimation of
isophotes. Let In stand for each one of the image pixels of the inpainted area
Ω at the iteration step n. Thus I0 is the input image, and by the proposed
algorithm, the iteration process is given by the equation

In+1(i, j) = In(i, j) + ∆t · Int (i, j) (1)

for any (i, j) ∈ Ω, where ∆t is the rate of improvement, and Int (i, j) means update
of image In(i, j). The step Int (i, j) using smoothness Ln(i, j) is estimated by the
Laplacian operator. The change of smoothness is propagated from outside to the

∂Ω in direction
−→
Nn(i, j). Authors proposed formula

Int (i, j) =
−−→
δLn(i, j) ·

−→
Nn(i, j)

|
−→
Nn(i, j)|

· |∇In(i, j)|,

where
−−→
δLn(i, j) expresses the change in smoothness Ln(i, j), and the fraction

−→
Nn(i, j)/|

−→
Nn(i, j)| expresses the vector orthogonal to the image gradient

−→
Nn(i, j)

|
−→
Nn(i, j)|

=
(−Iny (i, j), Inx (i, j))√

(Inx (i, j))
2 + (Iny (i, j))

2 + ε
.

Finally, |∇In(i, j)| is the slope-limited version of the norm of the image gradient.
Realizing central differences would make the scheme unstable, and this is the
reason for using slope-limiters. Within a given iteration, equation (1) is applied to
∂Ω, which is subsequently subtracted from Ω, i.e. Ω := Ω\∂Ω. Then equation (1)
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is applied to reduced Ω, the boundary ∂Ω is subtracted from Ω, etc., until Ω = ∅.
Then the next iteration follows with the same procedure and the original Ω. The
algorithm ends when changes in the image are below a given threshold. Authors
set ∆t = 0.1, and performed 15 steps of inpainting by equation (1), then 2 steps
of anisotropic diffusion (see [18]), again 15 steps of inpainting, and so on.

Let us note that the gradient at a given inpainted pixel is calculated with
respect to values of its four neighboring pixels, which may also be from the
inpainted area Ω. We propose inpainted method that takes into account all
neighboring values of an inpainted pixel, that are not in Ω.

3 On the extension of permutations dependent
Choquet-like operator

Because of the needs of the application (inpainting), we present the extension
of the C⊗

A,Ψ,Φ operator to a bipolar scale. We shall extend the above-mentioned
construction to real-valued vectors, i.e. x = (x1, . . . , xn), xi ∈ R = (−∞,∞),
i ∈ [n]. The set of these vectors we shall denote by F. The set of permutations
of [n] corresponding to all vectors z ∈ F we shall denote by Ψ, i.e.

Ψ = {ϕz ∈ Perm([n]) : z ∈ F}.

Let x = (x1, . . . , xn) ∈ F. By x+, and x− we mean vectors x+ = (x+1 , . . . , x
+
n ),

and x− = (x−1 , . . . , x
−
n ) with x

+
i = max{xi, 0}, and x−i = max{−xi, 0}, i ∈ [n].

Thus x+,x− ∈ F+, and x = x+−x−. Further, for the definition of extended per-
mutations dependent Choquet-like operator, is necessary the term a sequence of
ordered pairs of conditional aggregation operators (oSCA for short) ((A1,A2)i)

n
1 ,

(A1,A2)i := (A1(· |Bi),A2(� |Bi))

for each i ∈ [n]. Let us note, that as members of oSCA we allow to con-
sider different or the same CAOs w.r.t. the same conditional set B ∈ 2[n], e.g.
(A1,A2)i = (Â(· |B), Ã(� |B)), and (A1,A2)j = (A(· |B),A(� |B)), i, j ∈ [n], i ̸= j.
For example, let ((A1,A2)i)

3
1 be a oSCA such that

(A1,A2)1 = (Amean(· |{1, 2}),AChm(� |{1, 2})), m ∈ M1

(A1,A2)2 = (Amin(· |{1, 2, 3}),Amax(� |{1, 2, 3})),
(A1,A2)3 = (Amax(· |{1, 2}),Amin(� |{1, 2})).

Definition 2. Let ((A1,A2)i)
n
1 be a oSCA, and Ψ,Φ ∈ P. Then the eCA,Ψ,Φ

operator of x ∈ F w.r.t. µ ∈ M is defined as

eCA,Ψ,Φ(x, µ) =

n∑
i=1

(
A1(x+

ϕx
)− A2(x−

ϕx
)
)
ψ(i)

·
(
µ(Eψ(i))− µ(Eψ(i+1))

)
, (2)

where xϕ = (xϕx(1), . . . , xϕx(n)), ψ is the permutation of [n] corresponding

to the vector ((A1(x+
ϕx
) − A2(x−

ϕx
))1, . . . , (A

1(x+
ϕx
) − A2(x−

ϕx
))n), and Eψ(i) =

{ψ(i), ψ(i+ 1), . . . , ψ(n)} for each i ∈ [n] with the convention Eψ(n+1) = ∅.
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If we consider ((A,Azero)i)
n
1 , and (x, µ) ∈ F+ × M, then eCA,Ψ,Φ(x, µ) =

CA,Ψ,Φ(x, µ). For the implementation of the eCA,Ψ,Φ operator into the image
inpainting method it is necessary to demand certain of its properties. The main
ones are the averaging behavior and the idempotency. Both of them partially
relate to the monotonicity property. As we show, the eCA,Ψ,Φ operator is not
monotone with respect to vectors in general.

Example 1. Let x = (2,−5,−3), y = (3,−4, 4), and ((A1,A2)i)
n
1 be a oSCA with

(A1,A2)1 = (Amax,Amin), (A1,A2)2 = (Amin,Amax), (A1,A2)3 = (Aproj,Aproj),
with B1 = {2, 3}, B2 = {2, 3}, B3 = {1}. Let Ψ↑,Φ ∈ P such that ϕx(1) = 3,
ϕx(2) = 2, ϕx(3) = 1, and ϕy = ϕ↑, and µ ∈ M1. Then

eCA,Ψ↑,Φ(x, µ) = −5 · (µ([3])− µ({1, 3}))− 3 · (µ({1, 3})− µ({1})) + 2 · µ({1}),
eCA,Ψ↑,Φ(y, µ) = −4 · (µ([3])− µ({1, 2})) + 3 · (µ({1, 2})− µ({1})) + 4 · µ({1}).

Thus, for µ({1, 3}) = 1, µ({1, 2}) = 0.1, and µ({1}) = 0 we get the result
−3 = eCA,Ψ↑,Φ(x, µ) > eCA,Ψ↑,Φ(y, µ) = −3.3, but x < y.

Lemma 1. Let ((A1,A2)i)
n
1 be a oSCA, and x,y ∈ F such that x ≤ y. Then

(A1(x+)− A2(x−))i ≤ (A1(y+)− A2(y−))i

for any i ∈ [n].

Proof. From the monotonicity of CAOs we have inequalities A1(x+) ≤ A1(y+)
and A2(x−) ≥ A2(y−) for any (A1,A2)i, i ∈ [n]. Further A(x+) − A(x−) ≤
A(y+)− A(x−) ≤ A(y+)− A(y−) for any (A1,A2)i, i ∈ [n]. ⊓⊔

Proposition 1. Let x,y ∈ F. If x ≤ y, then

eCA,Ψcon,Φmon(x, µ) ≤ eCA,Ψcon,Φmon(y, µ)

for any ((A1,A2)i)
n
1 , and any µ ∈ M.

Proof. If x ≤ y, then xϕmon
x

≤ yϕmon
y

. From Lemma 1 we have that for any

((A1,A2)i)
n
1 it holds (A1(x+

ϕmon
x

) − A2(x−
ϕmon
x

))i ≤ (A1(y+
ϕmon
y

) − A2(y−
ϕmon
y

))i for

any i ∈ [n]. Further, since ψcon ∈ Ψcon, then (A1(x+
ϕmon
x

) − A2(x−
ϕmon
x

))ψcon(i) ≤
(A1(y+

ϕmon
y

)− A2(y−
ϕmon
y

))ψcon(i) for any i ∈ [n]. ⊓⊔

Remark 1. The assumptions of the previous proposition are satisfied for the sets
of permutations Φ↑,Φ↓,Φcon ∈ P.

In the following, we describe assumptions under which eCA,Ψ,Φ operator is
an averaging type of operator. This property ensures the natural requirement
that the inpainted colour is within the range of neighboring colours.

Proposition 2. Let ((A1,A2)i)
n
1 be a oSCA. If for any (A1,A2)i, i ∈ [n], it

holds min
i∈[n]

zi ≤ Ak(z) ≤ max
i∈[n]

zi for any z ∈ F+, k ∈ [2], then

min
i∈[n]

xi ≤ eCA,Ψ,Φ(x, µ) ≤ max
i∈[n]

xi

for any x ∈ F, µ ∈ M1, and Ψ,Φ ∈ P.
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Proof. Because of the assumptions we have mini∈[n] z
+
i ≤ A1(z+) ≤ maxi∈[n] z

+
i ,

and −maxi∈[n] z
−
i ≤ −A2(z−) ≤ −mini∈[n] z

−
i . Thus we have

min
i∈[n]

zi = min
i∈[n]

z+i −max
i∈[n]

z−i ≤ A1(z+)− A2(z−) ≤ max
i∈[n]

z+i − min
i∈[n]

z−i = max
i∈[n]

zi.

Further,
n∑
i=1

(
A1(x+

ϕx
)− A2(x−

ϕx
)
)
ψ(i)

·
(
µ(Eψ(i))− µ(Eψ(i+1))

)
≤

n∑
i=1

max
j∈[n]

xj ·(
µ(Eψ(i))− µ(Eψ(i+1))

)
= max

j∈[n]
xj ·

n∑
i=1

µ(Eψ(i))−µ(Eψ(i+1)) = max
j∈[n]

xj ·µ([n]) =

maxj∈[n] xj for any Ψ,Φ ∈ P. Analogously for boundary from below. ⊓⊔

Remark 2. Let z ∈ F, and B ⊆ [n]. Some examples of (A1,A2) satisfying the
assumption of Proposition 2 are

(i) (A1,A2) = (Amin,Amax). In fact, Amin(z+|B) − Amax(z−|B) expresses the
minimum of components of z with respect to B,

(ii) (A1,A2) = (Amax,Amin). In fact, Amax(z+|B) − Amin(z−|B) expresses the
maximum of components of z with respect to B,

(iii) (A1,A2) = (Amean,Amean). In fact Amean(z+|B) − Amean(z−|B) expresses
the mean of components of z with respect to B.

(iv) (A1,A2) = (AChm ,AChm), m ∈ M1. In fact, AChm(z+|B) − AChm(z−|B)
expresses the symmetric Choquet integral (or Š́ıpoš integral [20]) of z with
respect to B.

The previous proposition can be extended also for any µ ∈ M. It is enough to
suppose 1

µ([n]) min
i∈[n]

zi ≤ Ak(z) ≤ 1
µ([n]) max

i∈[n]
zi for any z ∈ F+.

Let us note, that from Proposition 2 it follows, that if eCA,Ψ,Φ operator has
the averaging behavior property, then it is also idempotent, see Corollary 1. The
reverse implication is not true see Corollary 2. Idempotency ensures that if the
neighboring pixels are equal, then the inpainted pixel is the same.

Corollary 1. Let ((A1,A2)i)
n
1 be a oSCA, Ψ,Φ ∈ P, and µ ∈ M1. If

min
i∈[n]

xi ≤ eCA,Ψ,Φ(x, µ) ≤ max
i∈[n]

xi

for any x ∈ F, then eCA,Ψ,Φ((c, . . . , c), µ) = c for any c ∈ R.

Remark 3. Examples of oSCA for which the eCA,Ψ,Φ operator is idempotent can
be found in Remark 2.

The following corollary describes conditions under which averaging behavior
property is equivalent to idempotency for the eCA,Ψ,Φ operator.

Corollary 2. Let ((A1,A2)i)
n
1 be a oSCA, and µ ∈ M1. The inequality

min
i∈[n]

xi ≤ eCA,Ψcon,Φmon(x, µ) ≤ max
i∈[n]

xi

holds for any x ∈ F if and only if eCA,Ψcon,Φmon((c, . . . , c), µ) = c for any c ∈ R.
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Input: I0, Ωorig, R, ∆t, µ, T
Output: IR

I0 := anisDiff(I0, λ, κ);
for each n ∈ {1, . . . , R} do

Ω := Ωorig;
while Ω ̸= ∅ do

if |Nx,y \ Ω| ≥ 4 then
zk := In−1(x, y)− In−1(xk, yk), [xk, yk] ∈ Nx,y \ Ω;
nx,y := |Nx,y \ Ω|, z := (z1, . . . , znx,y ), w := (1, . . . , 1);
if [2x− xk, 2y − yk] /∈ Ω, |I(x, y)− I(2x− xk, 2y − yk)| ≤ T then

wk := wk + 1;
end
if [2xk − x, 2yk − y] /∈ Ω, |I(x, y)− I(2xk − x, 2yk − y)| ≤ T then

wk := wk + 1;
end

zmin := min{z1, . . . , znx,y}, zmax := max{z1, . . . , znx,y};
if zi − zmin ≤ zmax − zi then

Smax := Smax ∪ {(zi, wi)}, (zmax
i , wmax

i ) := (zi, wi);
else

Smin := Smax ∪ {(zi, wi)}, (zmax
i , wmin

i ) := (zi, wi);
end

zmin := (zmin
1 , . . . , zmin

|Smin|), w
min = (wmin

1 , . . . , wmin
|Smin|);

zmax := (zmax
1 , . . . , zmax

|Smax|),w
max = (wmax

1 , . . . , wmax
|Smax|);

cmin := 2/(min{wmin
1 , . . . , wmin

|Smin|}+max{wmin
1 , . . . , wmin

|Smin|});
cmax = 2/(min{wmax

1 , . . . , wmax
|Smax|}+max{wmax

1 , . . . , wmax
|Smax|});

smin := zmin · (cmin ·wmin), smax := zmax · (cmax ·wmax);

Int (x, y) := |Nx,y \ Ω| · (eCA,Ψ↓,Φ↑(smin, µ) + eCA,Ψ↓,Φ↑(smax, µ))/2;
In+1(x, y) := In(x, y)−∆t · Int (x, y), Ω := Ω \ ∂Ω;

end

end

end
Algorithm 1: Proposed inpainting method

4 Image inpainting based on eCA,Ψ,Φ operator

In this section, we propose a new method, or algorithm, for image inpainting
based on eCA,Ψ,Φ operator. As we stated, we keep the notations and ideas of
the method proposed by Bertalmio et al. in [5], see Subsection 2. From a com-
putational point of view, the proposed eCA,Ψ,Φ operator is time-efficient, what
is important when we take into account how many inpainted pixels and itera-
tions we work with. The proposed method, see Algorithm 1, can be described in
several steps:

(i) The inputs for proposed algorithm are: the input image I0, the area Ωorig

for inpainting, the number of iterations R, the rate of improvement ∆t,
µ ∈ M1, and threshold T ∈ {0, . . . , 255}. The output is the image IR.



Extended permutations dependent Choquet-like operator and application 9

(ii) We apply the discretization of the anisotropic diffusion equation introduced
by Perona and Malik, see the equation (7) in [18], with λ = 0.25 and κ
equals to the approximation of image gradient magnitude.

(iii) For each pixel of ∂Ω that has at least four neighbors outside we create
a vector z expressing the difference between the inpainted pixel and its
neighbours outside Ω. This is an analogy of an image gradient. We will
express the importance of individual pixels with appropriate weights w.

(iv) Further we model the isophote concept with weights. If the color difference
of centrally symmetrical pixels (both from Ω), or two consecutive pixels
(also both from Ω) in the direction of the center pixel is within the range
determined by T , we increase the weights of these pixels by 1.

(v) In the next step, it is appropriate to divide the components of z with
corresponding weights w into two groups – those that are closer to the
minimum, or to the maximum component of z. Thus we create vectors
zmin with wmin, and zmax with wmax. We rescale the weights using the
procedure below and multiply them with the corresponding vectors zmin,
or zmax, respectively.

(vi) The vectors smin = zmin ·wmin and smax = zmax ·wmax are inputs for the
aggregation by eCA,Ψ↓,Φ↑ operator with respect to a capacity µ.

(vii) The final inpainted value is the arithmetic mean of eCA,Ψ↓,Φ↑(smin, µ) and
eCA,Ψ↓,Φ↑(smax, µ) multiplied by the aliquot numbers of neighbours of an
inpainted pixel outside of Ω.

(viii) This value is further multiplied by the constant ∆t and subtracted from
the value of the inpainted pixel from the previous iteration.

(ix) The number of iterations defines the number of repetitions of steps (ii)–
(viii). Additionally, every 100 iterations we apply 2 iterations of anisotropic
diffusion with the same parameters as above. In some cases, to suppress
blurring, after a selected number of iterations, it is appropriate to recolor
randomly selected pixels with the maximum, minimum, average pixel, etc.
from their surroundings.

In the following, we experimentally apply our proposed image inpainted
method described by Algorithm 1. For the purpose of the experiment, we use
images from Berkeley Segmentation Dataset and Benchmark (BSDS500), see [1].
We select some images from the dataset, damage and restore them to their origi-
nal state, or remove unwanted objects using our proposed method. In inpainting
algorithm we use eCA,Ψ↓,Φ↑ operator with oSCA (A1,A2)n1 described in Table 2.
From the definition of the eCA,Ψ↓,Φ↑ operator, the number of members of oSCA is
equal to the dimension of the aggregated vector. The dimension can take values
from 1 to 8, see step (v) of Algorithm 1. For this reason, it is always necessary
to consider only the aliquot part of the ordered pairs listed in Table 2. Further,
as the monotone measure we use the power measure µ ∈ M defined as

µ(B) =

(
|B|
n

)q
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i (A1,A2)i Bi

1 (Amean,Amean) [n]

2 (AChm ,AChm ) [n]

3 (Amean,Amean) {n+1
2 }, if n is odd, and {n

2 ,
n
2 + 1}, if n is even

4 (Amean,Amean) {⌊0.25 · n⌋, ⌊0.75 · n⌋}
5 (AmaxMin,AmaxMin) {1, n}
6 (AChm ,AChm ) {1, 2, n− 1, n}
7 (AmaxMin,AmaxMin) {2, n− 1}
8 (AmaxMin,AmaxMin) {3, n− 2}

Table 2: The oSCA used in the image inpainting with respect to the dimension n of
the aggregated vector

for any B ⊆ [n], with q = 0.9. Figure 1 shows a sample of the above-mentioned
images from the BSDS500 dataset and the subsequent use of our proposed image
inpainting method to remove unwanted elements of these images.

The inpainting of images can be evaluated both qualitatively and quanti-
tatively. As we see in Figure 1, a better result is achieved with respect to a
small inpainted area Ω, or with respect to the neighborhood of the area Ω with
the same shade. For example, let us consider the damaged image 385028 from
BSDS500 in Figure 1 and the letter “a” in the word “adipiscing”. In Figure 2
one can see the diagram that shows the original pixel values (in a shade of gray
before the image damage) from the area bounded by the mentioned letter “a”
in blue, and the values of the inpainted pixels in orange. As we can see the in-
painted values copy the original pixel values well except for the areas where the
inpainted area hid the additional information for the image inpainting method.
From the above, it is possible to deduce the fact that the concept of additive
measures and integrals is also applicable in this area of image processing and in
a certain way replaces the gradient and Laplacian.

5 Conclusion

In this contribution, we have presented an extension of the permutations de-
pendent operator to a bipolar scale. We have used this new aggregation in the
inpainting problem where this extension was necessary. In the contribution we
have used the asymmetric extension, in the future it would be interesting to
compare the result with other extensions using the idea of construction of the
symmetric Choquet integral called also the Šipoš integral [20], the balancing
Choquet integral [15], fusion Choquet integral [13], or BIOWA operators [14].
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