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Abstract. Medical data stands out as one of the most valuable sources
of information in contemporary data mining research. These datasets en-
capsulate diverse information, from patient records to current situations.
Simultaneously, this wealth of information poses a challenge for data min-
ing due to its diversity and the requirement for context to discern which
data holds value and what conclusions truly contribute to generating new
knowledge. In this work, we leverage a database of medical records from
patients’ visits to several hospitals across several years, enhancing it with
hospital information and a disease ontology. This allows us to identify
a medical diagnosis at various levels of semantic depth. Based on this
information, we propose information mining centered around extracting
association rules at progressive specific levels concerning diagnoses. Sub-
sequently, we present the initial results of this study for different sets of
diseases and suggest the most relevant steps for development based on
these outcomes.

Keywords: Association rules · medicine applications · data mining ·
medical records

1 Introduction
Emerging technologies and analytical methods in healthcare have sparked a sig-
nificant shift in how we utilize clinical databases. This paper introduces a level-
by-level approach to Association Rule Mining (ARM) for clinical databases to
enhance decision-making by uncovering hidden patterns and relationships.

Despite their richness in patient data, treatment plans, and health outcomes,
clinical databases are underutilized due to their size, complexity, and standard-
ization issues. Traditional techniques fall short of fully harnessing these vast
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datasets. ARM offers a solution by effectively extracting hidden correlations,
leading to impact healthcare interventions and policies.

The unique, tiered ARM approach fits well with the hierarchical structure
of clinical databases and their multi-dimensional data points. It enables health-
care practitioners to uncover valuable insights about treatment effectiveness and
predictors of health outcomes.

This paper highlights that a hierarchical ARM approach can be used to ad-
dress computational efficiency and interpretability challenges. By segmenting
the analysis into different layers of conceptual specificity, the methodology im-
proves the interpretability of the results for clinicians and ensures the direct
applicability of the findings to healthcare delivery and policy development.

In summary, exploring clinical databases using level-by-level association rules
opens new avenues for understanding patient care complexities and improving
healthcare outcomes. Through this research, we aim to demonstrate the efficacy
and applicability of ARM in clinical settings by applying the ARM analysis
performed progressively with more specific categories, gathering novel insights
on the usefulness of medical records, and contributing to the advancement of
data-driven healthcare solutions.

Following the introduction, we delve into various related works documented
in the scientific literature in Section 2. Section 3 introduces the data sources
and the methodology essential for conducting the experiments. The results are
comprehensively presented in Section 4. In Section 5, we expand on their impli-
cations, analyzing the improvements, technologies, and processes that can help
or improve this process. The paper concludes by summarizing our findings and
insights in Section 6.

2 Related works
A substantial body of research has demonstrated success in mining patterns in
clinical databases, employing many data mining techniques, including Associa-
tion Rule Mining (ARM). Its proven efficacy in deciphering hidden patterns in
voluminous data sets has become a crucial instrument in health informatics.

Historically, one of the inaugural applications of rule-based methods stems
from the work [4], which initially aimed to manage vast data volumes in retail
scenarios like supermarkets. However, the potential of ARM has reached beyond
this sector, finding its foothold in various areas, notably in the healthcare and
medical domains. Further advancements in this area were marked by the work
of Han, Pei, and Yin [19], who introduced the Frequent Pattern (FP)-Growth
algorithm, significantly improving the computational efficiency of ARM.

Parallelly, a critical yet often underestimated aspect of big-data research, par-
ticularly in healthcare, is data preprocessing. Recognized by Kurgan et al. [20]
and Fernandez-Basso et al. [14], this foundational step increases the performance
and reliability of data mining techniques like ARM. It is unequivocally instru-
mental in resolving prevalent issues in raw healthcare data, such as inconsistent
data, redundancy, outliers, and missing data points. Numerous studies [12, 6]
show how strategic preprocessing approaches, including data normalization, dis-
cretization, cleaning, and transformation, remarkably improved data analysis
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outcomes. While its significance is irrefutable, the nature of the data and the
specific objectives of the analysis must guide the choice of data preprocessing
methods.

Data enrichment is a noteworthy advancement that considerably contributes
to the success of clinical database analysis. This practice implies augmenting
primary data with context-specific, supplementary data from various sources.
These could include patient medical histories, lab results, physician notes, ge-
nomics, and imaging data, amongst others [8]. By aggregating these diverse data
through knowledge representation methods and tools, a more detailed, compre-
hensive patient view can be garnered, thus unveiling complex patterns and asso-
ciations. Natural language processing and health informatics have increased the
ability to extract, analyze, and interpret medically relevant information [9, 25].
Despite its challenges due to its high complexity and dimensionality, medical
data enrichment propels personalized medicine and improved patient care.

Within the healthcare landscape, utilization of ARM has particularly been
exemplified in the electronic health records (EHR) domain. Notably, [22] postu-
lated that the interaction of ARM with machine learning classification methods
could unveil beneficial rules within a dataset, thus proving the value-laden po-
tential of intelligent data analysis in healthcare.

Innovation in recent years has seen the advent of techniques like level-by-level
Association Rule Mining, which have shown promising results. To illustrate, [3]
used this method to unveil diabetes risk factors, thus providing insightful inputs
for disease management and prevention. [15] conducted parallel work and were
able to scrutinize associations between hospital operational performance and
medical error incidents.

On the other side of the horizon, specific research work has focused on mit-
igating the limitations of ARM, such as its huge rule sets and the challenge of
false associations [13, 28]. Statistical techniques and Bayesian inferential strate-
gies have been employed in these same efforts to enhance the algorithm’s behav-
ior.

Despite the rich array of studies in this area, ripe opportunity for explo-
ration remains, especially with the constant evolution in computational hard-
ware, which propels the augmentation of clinical databases. Therefore, efforts
towards improving ARM and employing innovative practices such as level-by-
level association rule mining are both immediate and mandatory. This will en-
able further insight into hidden patterns in healthcare data, potentially leading
to improved patient risk stratification or even novel predictive models for disease
progression.

3 Methodology
The primary objective of this work is to collect and standardize medical docu-
ments generated when users visit any of the associated hospital centers. For this
purpose, we used a dataset collected from the Clinical Hospital “San Cecilio” be-
tween the years 2016 and 2020. This initial dataset follows the structure outlined
in what is known as the Minimum Basic Dataset (CMDB) in the hospitals of the
public health system of Andalusia, information mandated to be generated in hos-
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pitals, Community Therapeutic Health Mental Hospitalization Centers (CTE),
Surgical Day Hospitals (HDQ), and Medical Day Hospitals (HDM).

Subsequently, to address privacy concerns, this data is anonymized by the
European and Spanish regulations regarding the protection of personal data.
Within this framework, we find information about the patient and their hospital
stay through specific dates and codes that refer to each of their characteristics
(e.g., the coded discharge reason among the 13 possible reasons). More detailed
information on this framework can be found in [2].

Since our initial interest is to understand potential relationships between
patients’ illnesses and their severity, the dataset contains two main points: the
diagnoses associated with a specific patient (called “Diagnoses”) and the related
hospital stay (called “Patients time in hospital”). We describe these two areas
with greater precision and outline the transformations applied to each of them,
with a graphic summary in Figure 1:

Fig. 1. Database creation process and posterior enrichment

– Patients time in hospital: Firstly, our interest lies in understanding the
duration of patients’ stay in the hospital. For this purpose, we require infor-
mation from three specific sources: the total hospitalization time, whether
the patient at any point needed to transition from general hospitalization to
the Intensive Care Unit (ICU) of the hospital (reserved for patients under-
going necessary surgical procedures or dealing with more severe cases) and
if so, the Time spent in the ICU. The hospitalization time is calculated for
these three variables, excluding the Boolean-coded ICU stay. The ICU stay is
then calculated and transformed into different categories, each labeled with
specific linguistic labels.
In creating the ICU categories, we designate a category for cases with no
hospitalization in the ICU and another for those related to a brief visit or a
quick surgical procedure lasting one day. For cases involving more delicate
surgical procedures (e.g., myocardial infarction), the ICU stay is categorized
between 2 and 4 days. Finally, cases exceeding four days in the ICU are
considered the most severe. According to medical literature [21], it is possi-
ble further to subdivide the spectrum beyond those initial four days (with
two additional categories between 4 and 13 days as prolonged and 14 days
onwards as very prolonged). However, due to the limited number of cases
supporting these rules, a decision is made to encompass these cases.
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A similar procedure is followed for the hospital stay, where seven linguistic
labels express the nature of the stay. These labels range from “intervention”
for stays of 1 to 3 days, typically after a simple surgical intervention or
childbirth, to “very long stays” lasting more than two and a half months.
All labels are described in Figure 2.

Fig. 2. Semantic labels associated with different stay durations

– Diagnoses and diagnoses enrichment: Another differentiating aspect of
our analysis is the depth of diagnoses we can evaluate with the rules. Prop-
erly encoding and mining the diagnosis section in our datasets is necessary
to achieve this. Various classification indices have been proposed for disease
classification, with the most widely used being the International Classifi-
cation of Diseases (ICD) [1], created and managed by the World Health
Organization (WHO). The ICD serves a broad range of global uses, provid-
ing crucial knowledge about the extent, causes, and consequences of human
disease and death worldwide through data reported and coded using the
ICD. The diagnostic guidance linked to ICD categories standardizes data
collection and enables large-scale research.

However, this protocol is not static and is continuously evolving, with new
diseases or diagnoses being evaluated and updated, leading to new versions
of the index. This evolution can result in discrepancies if the appropriate ver-
sion is not considered. For Spain, the ICD classification as of 2024 refers to
the second edition of the CIE-10-ES [11], which is derived from the Interna-
tional Classification of Diseases, 10th Revision, Clinical Modification (ICD-
10-CM), initially published by the United States government. The ICD-10-
CM was developed by the National Center for Health Statistics (NCHS),
part of the Department of Health of the U.S. federal government (DHHS),
and the clinical modification is based on the original classification by the
World Health Organization (WHO). In our case, we use the ICD-10-CM
classification available through the NHI. This collection can be used for all
diagnoses correlated until 2020.

In that year, the emergence of COVID-19 is classified as a new and unclas-
sified disease in Spanish records. In subsequent revisions, it would precisely
align with a classification following scientific consensus and be categorized
under respiratory diseases. For this study, we have utilized this initial clas-
sification, separating its processing by years, which may influence potential
differences in the number of ICU patients not yet included with a respiratory
diagnosis. This topic is addressed in Section 5.

In terms of information, the ICD-10 (International Classification of Diseases,
10th Revision) or CIE-10-ES consists of two distinct parts: the Alphabetical
Index and the Tabular List. Our analysis focused on the Tabular List, an
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alphanumeric listing of codes organized into chapters based on body systems
or medical entities. Our classification, derived from the Tabular List, cap-
tures the details of the most precise diagnosis (the one stated in the dataset
as diagnosis) and ascends three levels in the ontology of diseases, transform-
ing the codes into linguistic labels of progressive generality. This approach
enables us to establish a broad classification of the affected apparatus with
two additional levels of specificity before reaching the specific diagnosis. An
illustration of this process can be found in Figure 3.

Fig. 3. Diagnoses enrichment via ICS10, example with a schizophrenia diagnostic.

After this process, we obtained 426,557 records of enriched patient data. We then
selected the data fields related to diagnoses and Time within the hospital/ICU.

For the associated rule mining, we used the package mlxstend [24], where
several association rules mining algorithms already established in literature can
be employed. To conduct practical data mining, it was necessary to categorize
diagnoses by extracting boolean values from each type. This process was initially
applied across three levels of depth and gradually eliminated as we delved deeper
levels. In simpler terms, the boolean categorization of a pathology’s section was
discarded when selecting specific pathologies within a particular section.

The selection of chapters, sections, and pathologies for the study is driven by
two main factors: first, the type of pathology and its societal relevance (ensuring
sufficient literature exists to validate the importance and validity of rules), and
second, the notable proportion of cases within a specific section or chapter, as
well as the percentage of these cases spending multiple days in the ICU. For
instance, we excluded those related to traumas and associated surgeries in favor
of pathologies like heart attacks or infections that result in ICU stays.

Regarding the chosen algorithms, given the information sets at our disposal,
most algorithms can produce interesting results within an acceptable timeframe.
Future steps and adaptations at this juncture are discussed in the discussion sec-
tion. For our experimentation, we initially analyzed using the Apriori algorithm
[5] and the FP-growth algorithm [19]. Both yielded similar results in terms of
performance and rules generated, requiring extensive algorithms in this initial
phase of the study rather than those exploring space probabilistically.

During our experimentation, we relaxed the support limit to 0.1 to ensure
capturing the majority of rules the algorithm might find, even those with few
occurrences, for this preliminary feasibility analysis. Subsequently, we filtered
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out simple rules that did not contribute to any relationships and those that only
related information showcasing semantic relationships across different diagnostic
levels. After that, we also filtered the results enforcing in the antecedent and
consequent to respect the ontology levels; that is, no rules should connect a more
restricted category (i.e., diagnoses) to a broader category in the consequent (i.e.,
section-level).

Fig. 4. Level-by-level approach: Once the database is built we run different Association
rule mining algorithms ranging from more general level to more specific diagnoses.

4 Results

Throughout our study, several significant patterns emerged from the clinical
database analyses. We effectively mitigated the limitations inherent to tradi-
tional ARM by utilizing level-by-level association rules, which offered tangible
benefits in computational efficiency and the trade-off between memory usage and
running time. This is due to the fact that selecting specific levels reduces the
overall search space, avoiding the need to consider every possible combination
of diagnoses simultaneously. This targeted approach optimizes resource alloca-
tion and facilitates parallelization, enabling efficient processing of large datasets
commonly encountered in pathology ontologies.

4.1 Cardiac pathologies
Cardiac diseases represent the third most frequent category of pathologies in our
dataset, encompassing over 30,000 patients whose primary reason for admission
is a consultation due to issues related to them. It is also a widely studied category
and interesting because of the effect of long ICU stays from cardiac pathologies
or interventions [26, 27]. In our case, to test the system’s effectiveness, we have
conducted experiments considering the number of admitted patients and their
stay in the ICU. For this purpose, we have selected Cardiac diseases, ranging
from more general to more specific. In the deeper levels, we focused our analy-
sis on “ST elevation (STEMI) myocardial infarction” belonging to the broader
category of “Acute myocardial infarction” and, in turn, to “Ischemic heart dis-
eases (I20-I25)” and “Diseases of the circulatory system (I00-I99)”. On the rules
extracted, we offer in Table 1 a selection backed by the current medical litera-
ture. In the table, the level-by-level approach can be seen within the different
objectives and information extracted.
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In the context of STEMI, two rules of particular interest stand out, and these
can be referenced in Table 1 at the section level. These rules illustrate that right
atrial infarcts demonstrate a stronger association with a shorter timeframe than
left atrial infarcts. Thus, we can infer that left atrial infarcts are potentially more
severe due to the extended duration of ICU stays and hospital admissions asso-
ciated with them. This could be attributed to the left atrium’s role—it receives
oxygen-enriched blood from the lungs and forwards it to the left ventricle, which
subsequently pumps this oxygen-rich blood to the body. Hence, any impairment
or damage to the left atrium might significantly affect the heart’s capacity to
provide an efficient blood supply to the body.

Antecedents Consequent Support Confidence Lift

Chapter-level

Parent: Aortic aneurysm and dis-
section, Days in UCI: Short

AGe > 80 y.o. 0.0181 0.5763 1.7840

Section: Diseases of arteries, arteri-
oles and capillaries (I70-I79), Days
in UCI: Short

Parent: Aortic
aneurysm and
dissection’

0.0314 0.7763 9.2762

Section-level

Diagnoses: ST elevation (STEMI)
myocardial infarction involving
left anterior descending coronary
artery, Time in hospital: Stan-
dard, Parent: Acute myocardial
infarction

Time in UCI: Long 0.0136 0.7222 7.0454

Age: 50-68 y.o., Parent: Acute my-
ocardial infarction, Diagnoses: ST
elevation (STEMI) myocardial in-
farction involving right coronary
artery, Days in UCI: Short

Time in hospital:
Intervention

0.0188 0.75 2.0486

Parent-level

Diagnoses: ST elevation (STEMI)
myocardial infarction involving
left anterior descending coronary
artery, Time in hospital: Standard

Time in UCI: Long 0.0143 0.7222 6.8953

Table 1. Cardiac rules examples by different levels.

5 Discussion
With the previously highlighted results and our initial approach, numerous study
aspects emerge that can be the subject of successive expansions in our work. In
this section, we develop these aspects and discuss their implications.

Firstly, the data we have can be further enriched by hospital records. Works,
such as [15], emphasize the extraction of association rules from medical records,
including seasonal factors not only as background but also as a means of filtering
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future rules. In this case, we would discuss the transformation of additional
records to create data fields related to seasonality, location, or type of hospital.
Moreover, this level-by-level extracting can be a very promising approach to get
data insights not only on the different diagnosis levels proposed but also with
specific sets of initial conditions. In areas like pregnancy, when we reproduce the
level-by-level approach selecting certain patient characteristics as Age, we can
delve into more detailed rules centered on age-dependent pathologies.

Another potential enrichment could come from secondary diagnoses. Hospital
records contain secondary diagnoses that point to specific patient illnesses unre-
lated to the reason for their visit to the hospital. These secondary illnesses could
provide another interesting point of discussion to enrich the data and obtain
relationships conditioned by the patient’s medical history. While this additional
diagnosis offers an interesting enrichment, up to 20 additional new data fields
encode the patient historical data. As these records increase the volume of data
for rule generation, it becomes necessary to use optimized algorithms for large
datasets [17], [10].

This would also allow us to explore the application of generalized associa-
tion rules [7], [23]. It is also worth noting that applications of generalized rule
mining in medicine, especially in cases involving associated complications, as
we aim to study in this work, may overlook essential data or generate associa-
tions that lose significant information. For instance, malignant variants with a
worse prognosis than benign ones may share close categorization of pathologies,
leading to potential oversights. However, this factor may be useful for including
secondary previous diagnoses, where detailed information may not be as crucial
as for primary diagnoses. Although this data is encoded with a specific diagnosis,
as depicted in Figure 3, a multilevel approach can be achieved.

Throughout this work, we have utilized aspects such as ICU stay duration or
hospitalization time through linguistic labels. These labels condense information
into categories that may or may not apply to the patients we have considered.
However, it is arguable that this distinction and categorization of data are lim-
ited and lack reasonable flexibility when dealing with less rigid variables such
as Time. Therefore, the natural extension of this approach could benefit from
a shift in the treatment of these variables to one that allows for more flexibil-
ity: the fuzzy approach. Aspects like age, ICU or hospitalization time, or some
potential additional enrichment data mentioned earlier take on a more specific
significance when using a fuzzy approach where the degree of membership en-
ables a categorization that better reflects reality. The fuzzification of the system
also involves using mechanisms capable of working with fuzzy rules beyond a
mere crisp transformation. To achieve this, some interesting works in this area
have been developed as [18, 16].

6 Conclusions

This study has showcased the application of level-by-level Association Rule
Mining (ARM) as a novel approach to unveil hidden patterns within clinical
databases. Our methodology has settled the way for managing the unique chal-
lenge of mining high-dimensional and complex medical data, uncovering signifi-
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cant associations that can pave the avenue for more effective healthcare provision
and policy formation.

Our findings from the database analyses have strengthened the importance
and relevance of the ARM approach and, more specifically, the level-by-level
ARM approach in healthcare data interpretation. This level-by-level approach
presents a practical solution to the challenges in traditional ARM, particularly
in terms of interpretability and computational efficiency.

Moreover, our results underscore the need for data preprocessing and the
inclusion of a wide range of data sources in data enrichment. These critical steps
in the processing pipeline have a direct and notable impact on the quality of
the resulting mined rules, highlighting the importance of investing in these areas
alongside developing advanced analytical techniques.

However, as with all progress in the data science domain, this study is not
without its limitations and opportunities for future growth. Key among the
challenges faced is the robustness of ARM for handling excessively large rule
sets and preventing false associations. This matter warrants further research
and exploration to enhance the usability and reliability of the findings.
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