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Abstract. This paper introduces a novel fuzzy association rule mining
algorithm explicitly developed for federated environments. With expo-
nential growth in datasets and increasing data privacy concerns, solu-
tions such as federated learning have become at the forefront of secure
and efficient data analysis. However, efficiently finding meaningful and
relevant patterns in data across decentralized databases remains chal-
lenging. To address this, we propose integrating fuzzy logic with asso-
ciation rule mining in a federated setting. The ability of fuzzy logic to
handle uncertainty and nuance in data combined with the distributed
data mining process of federated systems, creates an efficient, secure,
and powerful tool for pattern discovery. Our proposed algorithm respects
data privacy and effectively manages communication overhead, an innate
challenge in federated systems. Experimental results demonstrate the ef-
ficacy of the proposed algorithm. The system has significant implications
for the healthcare sector, where data volume and privacy concerns are
paramount.
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1 Introduction

The burgeoning field of data mining has become an integral part of extracting
meaningful patterns and relationships from vast datasets. Among the various
data mining techniques, association rule mining has proven valuable for uncover-
ing transactional data correlations. In recent times, advancements in distributed
computing have given rise to federated learning or mining environments, where
machine learning and data mining tasks are performed across a network of de-
centralized nodes, each holding local data samples. This paradigm shift brings
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about novel opportunities and challenges, bearing implications for privacy, effi-
ciency, and scalability.

Federated learning, by design, preserves the privacy of local datasets by train-
ing shared models without the need to transfer data between nodes. This feature
is highly beneficial when data privacy is paramount, such as in healthcare or fi-
nancial services. Despite the advantages, the decentralized nature of federated
learning poses significant analytical challenges, particularly when applying tradi-
tional data mining algorithms like association rule mining. Conventional methods
often require centralizing datasets or iterative communication that may compro-
mise privacy or incur heavy communication costs.

Furthermore, in real-world scenarios, the crisp classification of data points
often fails to capture the nuances and uncertainties inherent in the data. Fuzzy
set theory has been employed to address this limitation by allowing objects to
belong to multiple classes with varying degrees of membership, providing a more
natural representation of data relationships and patterns.

This study introduces a novel algorithm that combines federated mining with
fuzzy set theory to perform association rule mining. The proposed fuzzy asso-
ciation rule mining algorithm accommodates the uncertainties found in real-
world data while adhering to the principles of federated environments. It aims
to efficiently discover meaningful and interesting patterns across decentralized
databases while mitigating the challenges associated with privacy and commu-
nication overheads.

Our contribution is twofold: firstly, we present a novel approach for inte-
grating fuzzy logic within the federated mining framework to enhance the inter-
pretability and relevance of association rules. Secondly, we provide a comprehen-
sive algorithm that addresses the constraints of federated environments, such as
limited communication bandwidth and data privacy concerns. The proposed al-
gorithm lays the foundation for a new generation of data mining tools optimized
for the distinctive requirements of federated systems.

The following sections discuss the relevant literature on association rule min-
ing, federated learning, and fuzzy logic. We then outline the methodology under-
pinning our novel algorithm, followed by experimental results demonstrating its
efficacy. Finally, we conclude with discussions on the implications and potential
applications of our findings, as well as future research directions.

2 Preliminary concepts and related work

Unsupervised methods are used when no information is given about data, that
is, data have no labels. These methods allow for discovering hidden patterns,
data grouping, and other insights. We will now cover federated implementations
of some of the most popular existing unsupervised learning/data mining algo-
rithms.
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2.1 Federated Mining

In recent years, advanced Artificial Intelligence (AI) methodologies, such as deep
learning requiring vast data, have seen significant growth. They are employed
extensively to grapple with complex challenges across diverse sectors like health-
care, finance, and transportation. The ability of these techniques to effectively
generate accurate predictions or classifications heavily relies on the volume of
available data.

The more data we collect, the more worried people are about privacy, who
owns the data, and how it is shared. Storing all this personal information raises
concerns about how it is being used. To address this, regulations such as the
European Union’s General Data Protection Regulation (GDPR) have been en-
forced, safeguarding user’s data from unauthorized sharing.

Federated Learning (FL), a solution initially introduced by McMahan
et al.[9] and expansively articulated by Yang et al.[11], provides a decentral-
ized framework that facilitates multi-party collaboration on machine learning or
data mining tasks without necessitating the sharing of private raw data. This
mechanism empowers organizations and individuals to undertake collaborative
projects while maintaining the privacy and security of their data. Federated sys-
tems hinge on two key ideas: how data are divided and how many devices are
involved.

Data can be split horizontally or vertically. Horizontal means that each de-
vice has the same features (like age, income) but different data points (specific
people). Vertical means that devices share some data points (same people) but
have different features (one might have income, another location). Most current
applications use horizontal partitioning.

The number of devices involved can also be categorized as cross-device or
cross-silo. Cross-device involves many devices (think millions of phones) with
limited data and processing power each. Cross-silo involves fewer, more powerful
devices (think hospitals or banks) with larger datasets.

2.2 Association Rules

Association rules were formally defined for the first time by Agrawal et al. [1].
The problem consists in discovering implications of the form X → Y where
X,Y are subsets of items from I = {i1, i2, ..., im} fulfilling that X ∩ Y = ∅ in
a database formed by a set of n transactions D = {t1, t2, ..., tn} each of them
containing subsets of items from I. X is usually referred as the antecedent and
Y as the consequent of the rule.

The problem of discovering association rules is divided into two sub-tasks:

– Finding all the sets above the minimum support threshold, where support
is defined as the percentage of transactions in the set. Itemsets exceeding
the imposed threshold for the support, often called minSupp are known as
frequent itemsets.

– Then, rules are discovered as those exceeding the minimum threshold for
confidence or another assessment measurement generally given by the user.
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However, real-world data can come in different formats: numbers, categories,
or even imprecise descriptions. For numbers (like height), we can group them
into ranges (e.g., 1.70-1.90 meters). But how we define these ranges can affect
results. Fuzzy sets offer a better solution. We can use labels like “tall” instead of
a strict range. This makes the data more user-friendly and captures the inherent
fuzziness of some concepts (e.g., not everyone agrees exactly where “tall” begins).
For truly imprecise data, even fuzzy sets might not work. That is where fuzzy
transactions and fuzzy association rules come in [2, 5]. These tools are designed
specifically to handle data that’s too vague for traditional methods.

2.3 Association Rules in a Federated Environment

The works found for federated association rules are developed using privacy pre-
serving implementations. As far as we know, the first work was published by
Kantarcioglu et al., who proposed a secure algorithm based on commutative
encryption and Secure Multiparty Computation (SMC) [8]. However, their al-
gorithm had excessive information leaks and was computationally optimizable.
Tassa et al. [10] corrected the privacy leaks of it and offered a more optimal al-
gorithm. A different proposal is that of Chahar et al. which suffers from lengthy
processing times because it relies on homomorphic encryption [3]. In the follow-
ing, we briefly overview the Tassa’s approach, the one that we are going to be
based in order to mine fuzzy association rules.

2.4 Tassa’s approach

Tassa’s algorithm was proposed in [10]. Its main features are the use of a secure
multi-party protocol for computing the union of private subsets held by different
participants, and a protocol which tests the inclusion of an element held by one
participant in a subset held by another. Their approach is based on the Fast Dis-
tributed Mining (FDM) algorithm [4], a method for finding frequent itemsets in
a distributed dataset without revealing individual data. Its underlying principle
is that any globally frequent itemset must also be frequent locally in at least one
participating site. We summarize the main steps:

– Initialization: Participants have already found all globally frequent item-
sets with size k − 1 (denoted as F k−1

s , i.e. the set of all k − 1-itemsets that
are s-frequent). Now, the goal is to find globally frequent itemsets with size
k, i.e. (F k

s ).
– Candidate Sets Generation: Each participant finds frequent itemsets of

size k − 1 in their local data and are also known to be globally frequent
(achieved through a separate step not mentioned here). Then, they use the
Apriori algorithm to generate candidate itemsets of size k (denoted as Bk,m

s ).
– Local Pruning: Each participant removes any candidate itemset from Bk,m

s

that are not frequent in their local data. This refined set is denoted as Ck,m
s .

– Unifying Candidate Itemsets: All participants share their local frequent
itemsets (Ck,m

s ) to create a combined set of candidate itemsets (Ck
s ).
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– Computing Local Supports: Each participant calculates the support of
all candidate itemsets in Ck

s within their local data.
– Broadcast Mining Results: Participants share their local support cal-

culations. This allows everyone to determine the global support for each
candidate itemset.

– Identifying Frequent Itemsets: The final step involves identifying all
itemsets in Ck

s that have a global support greater than or equal to minsupp.
These itemsets form the set of globally frequent itemsets with size k, named
F k
s .

But the FDM algorithm raises some privacy concerns. Broadcasting locally fre-
quent itemsets and their support sizes from individual databases reveals infor-
mation about the underlying data, potentially compromising confidentiality. To
address these shortcomings, Tassa et al. proposed secure multi-party protocols.
These protocols enable participants to compute the union (or intersection) of
their private datasets without revealing the individual data points. Addition-
ally, they introduced a separate protocol that allows participants to securely
check if a specific item exists within another participant’s private subset.

2.5 Fuzzy Association Rules

For introducing fuzzy association rules, we first define what we consider a fuzzy
transaction [2, 5].

Definition 1 Let I be a set of items. A fuzzy transaction, τ , is a non-empty
fuzzy subset of I in which the membership degree of an item i ∈ I in τ is
represented by a number in the range [0, 1] and denoted by τ(i).

By this definition a crisp transaction is a special case of fuzzy transaction.
We denote by D̃ a fuzzy transactional database. For an itemset, A ⊆ I, the
degree of membership in a fuzzy transaction τ is calculated as the minimum of
the membership degree of all its items τ(A) = min

i∈A
τ(i).

Then, a fuzzy association rule X → Y is satisfied in D̃ if and only if τ(X) ≤
τ(Y ) for all τ ∈ D̃, i.e. the degree of satisfiability of Y in D̃ is greater than or
equal to the degree of satisfiability of X for all fuzzy transactions t in D̃. Using
this model the support and confidence measures are defined using a semantic
approach based on the evaluation of quantified sentences as proposed in [2, 5].
Using the GD-method [5] and the quantifier QM (x) = x the support of a fuzzy
rule X → Y results:

FSupp(X → Y ) =
∑

αi∈Λ(X∩Y )

(αi − αi−1)
|(X ∩ Y )αi

|
|D̃|

(1)

where Λ(X ∩ Y ) = {α1, α2, . . . , αp} is an ordered set of α-cuts with αi > αi+1

and αp+1 = 0.
Analogously the confidence is computed as follows:

FConf(X → Y ) =
∑

αi∈Λ(X∩Y )

(αi − αi−1)
|(X ∩ Y )αi |

|Xαi
|

(2)
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3 Fuzzy association Rules in a federated environment

Our proposal aims to extend the functioning of Tassa’s algorithm when each of
the participants contain fuzzy transactional data.

The outline of the proposal is the following:

– Definition of Λ: a set of predefined α-cuts for the unit interval is defined.

– Mining Frequent Itemsets per α-cut:

For each α-cut level:

• We apply Tassa’s algorithm to identify frequent itemsets within the data.

• The output is a set of frequent itemsets with their associated support in
that level.

– Computing Final Support and Confidence:

• The final support of a fuzzy rule is determined using the individual
supports from each α-cut and formula (1).

• Following a similar level-wise approach, confidence for each frequent
fuzzy rule is computed using formula (2).

4 Experimentation

In our experimental setup, we focused on evaluating the performance of the
implemented algorithm for the case of fuzzy transactions in a federated environ-
ment. For that, we analyze its performance under various parameters. For this
purpose, we use an adaptable configuration technique which provides the agility
needed to assess the algorithm under diverse conditions and scenarios.

4.1 Dataset

For our experimentation, we opted for the comprehensive ‘CDC Diabetes Health
Indicators’ dataset from the UCI Machine Learning repository. This dataset
contains healthcare statistics about people and their associated diagnosis about
diabetes. It comprises 253680 instances and an expanded 34 fully binary features,
offering a rich source for extracting significant information about diabetes and
associated health factors. Although our analysis here focuses on this dataset,
it serves as a foundational evaluation of our proposed algorithm. We plan to
investigate its performance across a broader range of datasets in future work.

A process of fuzzification of the dataset has been carried out using the library,
and the process published in [7].

Next section explains the architecture employed in order to simulate a fede-
rated environment.
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4.2 Simulated Environment

We have selected Python for implementing the simulate environment. This is
primarily due to its fast development speed, familiarity with potent libraries
such as Pandas and Numpy, and easy integration with a variety of tools including
Docker.

For the system architecture we employed Docker and Docker Compose [6] to
replicate the federated data mining environment and its collaborative dynam-
ics accurately (see Figure 1). Docker containerization technology encapsulates
each participant node as an independent, autonomous unit, thus mirroring real-
world entities in a federated setup. Docker Compose coordinates these containers,
recreating the interaction between distributed nodes in a controlled setting.

Indispensable to the architecture are our participating nodes that simulate
independent collaborators in the federated data mining process. In addition,
the system includes a ‘Database controller’ designed to manage data distribu-
tion through the participants in the experimental setting, which allow users to
replicate conditions mimicking real-world scenarios.

In this way, the implementation and system architecture aim at creating a
flexible and scalable environment for testing and refining our federated data
mining process and facilitating the transition from an experimental to a real-
world setting.

Fig. 1. Representation of a federated setting with the described technologies.

4.3 Results

In this section, we delve into the significance of the experimental parameters, ex-
ploring how variations in the number of participants, transactions, features, and
data distribution can help us understand the algorithms’ scalability, efficiency,
and effectiveness. To perform the experiments, a subset of 5000 instances of the
main dataset have been selected, with no data splitting and a default min sup
value of 0.5, with the number of participants being set to 10.
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Number of participants. This parameter determines the size and complexity
of our simulated federated environment. Varying the number of participants
allows us to understand the scalability of our federated association rule mining
algorithms. Due to hardware constraints, the number of participants we can
simulate does not enter into the cross-device category (1010), but enough insight
can be obtained even from this small variance. For this experiment, the number
of participants has been iteratively set to values in the range [3, 20], with all
other parameters remaining equal.

Fig. 2. Total execution time vs a number of participants for the algorithm.

However, it is interesting to observe that in Tassa’s algorithm, the sent mes-
sage size growth is exponential, as can be seen in Figure 3; this is due to the
utilization of Shamir’s secret sharing technique, which requires participants to
send N shares of their information to other participants.

After this experiment, it is clear that Tassa’s algorithm performs well. How-
ever, further testing would be needed to understand how a large number of
participants would affect the algorithm’s exponential communications.

Number of transactions. The number of transactions in our dataset is crucial
as it impacts the data participants need to share and process. This parameter
influences the communication overhead and computational requirements of the
federated learning process, making it essential to explore how the algorithms
perform under varying transaction loads. To perform this experiment, the num-
ber of transactions has been iteratively set to values in the range [1000, 50000]
with all other parameters remaining equal (Participants = 10, minsupp = 0.5
and n items = 36).
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Fig. 3. Effect of the parameter N participants on the size of the shared messages.

The shared data size can be examined to understand the effect of data di-
mensionality on the implemented algorithm. In Figure 4, we can deduce that the
growth pattern is linear, meaning that the algorithm reacts stably to a growth
in the number of data instances.

Fig. 4. Effect of the number of transactions on the size of the sent messages in Tassa’s
algorithm.

After an analysis of other metrics, no significant difference has been found
in the performance of the algorithms when exposed to the same dimensionality
changes.

Number of features. The number of features in our dataset is significant
because it affects the complexity of the mining task. Increasing the number of
features can challenge the algorithms in terms of computational efficiency and
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the discovery of meaningful association rules. Exploring this parameter helps
assess algorithm adaptability to high-dimensional data. For this experiment, the
number of selected features has been iteratively set to values in the range [5, 36]
with all other parameters remaining equal (Participants = 10, minsupp = 0.5
and n transactions = 5000).

The first metric to consider is the total execution time. We can see a linear
time in Figure 5.

Fig. 5. Effect of the number of features on the execution times of Tassa’s algorithm.

After this experimentation, we can conclude that a higher data dimensional-
ity affects the algorithm performance.

This experiment has been very useful for analyzing the performance of an
algorithm when varying one of the most important parameters in frequent item-
set and association rule mining, the minimum support threshold. It has been
observed that, while most metrics behave similarly, mining costs are drastically
diverse and could pose a real challenge in a production setting.

4.4 Discussion

In examining the experimental results, we have closely investigated the perfor-
mance and behavior of our approach in different scenarios. The experiments have
offered insights into various aspects, including mining efficiency, and overall exe-
cution. We will now cover the main takeaways from these experiments, in hopes
of highlighting the current limitations of the implemented algorithms.

Some of the key aspects inferred from the experimentation are:

– The communication cost of Tassa’s algorithm has exponential growth, and
while performing correctly in a non-massive setting, further testing needs
to be implemented to study how a massive number of participants could
negatively impact the algorithm’s performance.
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– The importance of the base frequent itemset mining algorithm cannot be
understated. The experimentation has allowed for the understanding that
Tassa’s use of the Apriori algorithm presents a massive challenge in certain
settings, and thus an alternative needs to be considered.

5 Conclusions

This work addresses the challenge of mining fuzzy association rules in a federated
setting while preserving data privacy. Our proposed algorithm enables secure
pattern discovery from participants’ fuzzy transactional data.

The experimental results exhibited the versatility and scalability of our al-
gorithm in variable settings. It was tested in various scenarios with differing
numbers of transactions, features, and participants. Despite these variances, the
algorithm maintained correct functionality and demonstrated operational adapt-
ability and scalability. Whether dealing with higher volumes of transactions, a
greater number of features, or a larger set of participants, the algorithm con-
sistently delivered accurate and efficient performance. These results underscore
the capability of the algorithm to scale seamlessly and cater to diverse opera-
tional requirements, demonstrating its strength when applied to high-level and
complex data environments.

While this work demonstrates the effectiveness of fuzzy association rule min-
ing in federated environments, there are exciting avenues for future exploration.
One direction involves exploring methods for incorporating background knowl-
edge or domain expertise into the fuzzy logic framework that could further en-
hance the interpretability and relevance of the mined rules. Furthermore, inves-
tigating the integration of advanced privacy-preserving techniques beyond those
employed in this work could offer even stronger guarantees for data confidential-
ity in sensitive domains like healthcare. Finally, applying the proposed algorithm
to other real-world datasets can prove the system’s scalability.
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