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Abstract. The paper pursues the study of consequence relations associated with
logical proportions. The latter are special expressions that combine conjunctively
two equivalences between comparison indicators pertaining to two pairs (a, b)
and (c, d) of Boolean variables. Analogical proportions, namely statements of the
form a is to b as c is to d, are a special case of logical proportions in the Boolean
case. There are three kinds of consequence relations in this setting. One is known
for a long time and linked to default reasoning, another has been introduced last
year and deals with the gain or lost of properties. The third one, associated with
a logical proportion named paralogy (which states that what a and b have in
common, c and d have it also and vice-versa) is studied in this paper together with
its interplay with analogical proportions. Moreover, the paper presents multiple-
valued extensions of the consequence relations.
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1 Introduction

Recently, a logic of ordered pairs of Boolean variables has been introduced and de-
scribed [10] [11]. It is based on a relation of consequence logic ⊨ between two ordered
pairs of vectors of Boolean variables (⃗a, b⃗) and (c⃗, d⃗) that states that if a property is
gained when going from a⃗ to b⃗, it is also gained when going from c⃗ to d⃗, and that if a
property is lost when going from c⃗ to d⃗, it was already lost when going from a⃗ to b⃗, as
soon as (⃗a, b⃗) ⊨ (c⃗, d⃗).

The possibility of defining such a logical consequence relation relies on a transi-
tivity property of some logical proportions. Logical proportions [7] are Boolean logic
expressions that state a conjunction of two equivalences between comparison indicators
pertaining to two pairs (a, b) and (c, d) of Boolean variables. These comparison indi-
cators refer to (positive or negative) similarity (the two variables are true, or are false,
together), or to dissimilarity (one variable is true while the other is false). Among log-
ical proportions, a small number of them are reflexive, symmetrical and transitive, and
thus define equivalence relations between pairs. From these equivalence relations, it is
then possible to define logical consequence relation, such that equivalence is retrieved
when the corresponding logical consequence relation holds in both directions.
⋆ This research has been supported by the French ANR project “Analogies: from Theory to Tools

and Applications" (AT2TA), ANR-22-CE23-0023.



2 Henri Prade and Gilles Richard

Among the few logical proportions which define equivalence proportions, there are
analogical proportions “a is to b as c is to d”, which reads “a differs from b as c differs
from d, and conversely, b differs from a as d differs from c”. It gives birth to the conse-
quence logic relation between ordered pairs preserving the gain of property described
at the beginning of this introduction. There exists another family of logical propor-
tions that state equivalence relations between two default rules by asserting that the
two rules have the same examples and the same counter-examples [2]. The associated
consequence relation is at the basis of nonmonotonic reasoning [3][1].

There is a last logical proportion stating an equivalence between pairs, named par-
alogy [7], which expresses that what a and b have in common (positively, or negatively),
c and d have it also and vice-versa. This proportion can be related to analogical propor-
tion, but its associated consequence relation, studied in this paper, is defined between
pairs which are no longer ordered.

After recalling the necessary background in Section 2, we then study paralogical
reasoning and its interplay with the logic of ordered pairs associated with analogical
proportion in Section 3. We present multiple-valued extensions of the consequence rela-
tions introduced, in Section 4; thus, one can express, for instance, that if the satisfaction
of a property is increased when going from a⃗ to b⃗, it increases at least as much when
going from c⃗ to d⃗.

2 Background

We first revisit the concept of logical proportions and highlight the ones associated with
equivalence relations between pairs. Then we take the example of the equivalence be-
tween default rules and its applications to non monotonic reasoning, before considering
analogical proportions and the associated logic of ordered pairs.

2.1 Logical proportions

Logical proportions [7] are quaternary connectors expressing relations between pairs in
propositional logic. They are built as follows. In Boolean logic, there are four indicators
for comparing two variables a and b:

– Two indicators express similarity, either positively as a ∧ b (which is true if both a
and b are true), or negatively as ¬a ∧ ¬b (which is true if a and b are both false).

– The other two are indicators of dissimilarity ¬a ∧ b (which is true if a is false and
b is true) and a ∧ ¬b (which is true if a is true and b is false).

Then a logical proportion T (a, b, c, d) is the conjunction of two equivalences be-
tween an indicator for (a, b) and an indicator for (c, d). For instance, the expression
((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((a ∧ b) ≡ (c ∧ d)) offers an example of a logical proportion,
where the same dissimilarity operator and the same similarity operator are applied to
both pairs.

It has been established [7] that there are 120 semantically distinct logical propor-
tions. Because of the way they are built, all these proportions T (a, b, c, d) share a re-
markable property: They are true for exactly 6 patterns of abcd values among 24 = 16
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candidate patterns. For instance, the above proportion is true for 0000, 1111, 1010,
0101, 0001, and 0100. The interested reader is referred to [7, 8] for in-depth studies of
the different types of logical proportions.

Among all 120 logical proportions T 1, viewed as defining a relation between two
pairs, only 6 logical proportions are reflexive (T (a, b, a, b) is a tautology), symmetrical
(T (a, b, c, d) = T (c, d, a, b)), and transitive (T (a, b, c, d), T (c, d, e, f) ⇒ T (a, b, e, f))
[7]. These are:

– the 4 following, so-called, conditional logical proportions:
C1(a, b, c, d) = ((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ ¬b) ≡ (c ∧ ¬d)) ;
C2(a, b, c, d) = ((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d)) ;
C3(a, b, c, d) = ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)) ;
C4(a, b, c, d) = ((¬a ∧ b) ≡ (¬c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d)).

– the analogical proportion:
A(a, b, c, d) = a : b :: c : d = ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d))

– the so-called paralogy:
P(a, b, c, d) = ((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d))

In these 6 cases, the logical proportion defines an equivalence relation between pairs
(a, b) and (c, d).
2.2 Conditional proportions and nonmonotonic reasoning

Let us first explain why the 4 proportions C1, C2, C3, C4 given in the previous sub-
section are called “conditional". It comes from the fact that these proportions express
equivalences between conditional statements. Indeed, let us denote a rule “if a then b”
by b|a, which is called a “conditional object" or a “conditional event". Now consider
the proportion C1(a, b, c, d) (which was our example of a logical proportion):

((a ∧ b) ≡ (c ∧ d)) ∧ ((a ∧ ¬b) ≡ (c ∧ ¬d)) (1)

It expresses a semantic equivalence between the two rules “if a then b” and “if c then d”,
or if we prefer between b|a and d|c, which can be also denoted b|a :: d|c by combining
the notation of conditional objects with that of the analogical proportion. Indeed

– (a ∧ b) ≡ (c ∧ d) states they have the same examples since a ∧ b and c ∧ d are true
in the same time;

– (a∧¬b) ≡ (c∧¬d) states that they have the same counter-examples satisfying the
condition parts of the rules and falsifying their conclusions ;

– observe that if a is false then c is false also (otherwise (1) would be false); thus if
rule b|a is not applicable, then rule d|c is not applicable, and conversely.

Indeed a rule “if a then b” can be considered as a three-valued entity, either true, or
false, or undefined, when the rule is not applicable (a false) [3]. The logical consequence
relation between conditional objects b|a ⊨C d|c is defined as [2]:

b|a ⊨C d|c iff a ∧ b ⊨ c ∧ d and c ∧ ¬d ⊨ a ∧ ¬b (2)
1 The interested reader may visit the website https://www.irit.fr/ Gilles.Richard/analogy/logic/

for discovering the different types of logical proportions, their truth valuations and properties.
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which expresses that the examples of the first conditional object are examples of the
second one, and the counter-examples of the second conditional object are counter-
examples of the first one. This entailment is naturally associated with the conditional
proportion b|a :: d|c, since

b|a :: d|c ⇔ b|a ⊨ d|c and d|c ⊨ b|a.

The 4 conditional proportions are closely related together since it can be checked
that C1(a, b, c, d) = b|a :: d|c, C2(a, b, c, d) = a|b :: c|d, C3(a, b, c, d) = a|¬b :: c|¬d,
and C4(a, b, c, d) = b|¬a :: d|¬c (indeed it can be checked that (1) is stable when
changing b into ¬b and d into ¬d).

A rule may have exceptions. That is, we can have at the same time the rule “if a
then b” and a rule “if (a ∧ c) then ¬b”. The two conditional objects b|a and ¬b|(a ∧ c)
do not lead to a contradiction in the presence of the facts a and c (unlike a modeling of
rules by material implication), in the setting of a tri-valued logic where the conjunction
& is defined by [3]:

b|a & d|c ≜ ((a → b) ∧ (c → d))|(a ∨ c)

where → is the material implication (a → b ≜ ¬a ∨ b) and with the following seman-
tics: val(b|a & d|c)=min(val(b|a), val(d|c)) where the three truth values are ordered
as follows: undefined > true > false.2

It can be shown that this quasi-conjunction ‘&’ (that is its name) is associative.
It expresses that the set constituted by the two rules “if a then b” and “if c then d”
can be triggered if a or c is true, and in this case the triggered rule behaves like the
material implication. This logic constitutes the simplest semantics [1] of the system
P of non-monotonic inference of Kraus, Lehmann, and Magidor [4]. The reader can
consult [3, 1] for more details. Nonmonotonic reasoning is here a two steps-process.
First from a set of conditional events representing a set of default rules, we deduce a
new conditional event whose condition part corresponds exactly to our knowledge of
the current situation under consideration, and then - second step - we apply the new
default rule thus inferred to the current situation.

2.3 Analogical proportion and the logic of pairs

The analogical proportion a is to b as c is to d, whose logical expression is
a : b :: c : d = ((a ∧ ¬b) ≡ (c ∧ ¬d)) ∧ ((¬a ∧ b) ≡ (¬c ∧ d))

expresses that “a differs from b as c differs from d, and b differs from a as d differs
from c”, and is true only for the 6 valuations for abcd given in Table 1. As can be seen
in Table 1, there is no difference between a and b (resp. c and d) in the first 4 lines,
while the differences are the same in the last two.

The analogical proportion is the only logical proportion obeying the following three
postulates:

– Reflexivity : T (a, b, a, b)
2 The negation is defined by ¬(b|a) = (¬b|a); ¬(b|a) is undefined if and only if b|a is.
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a b c d

0 0 0 0

1 1 1 1

0 0 1 1

1 1 0 0

0 1 0 1

1 0 1 0
Table 1. Boolean valuations making a : b :: c : d true

– Symmetry : T (a, b, c, d) ⇒ T (c, d, a, b)
– Stability under central permutation: T (a, b, c, d) ⇒ T (a, c, b, d)

Thus, Table 1 offers the minimal Boolean model assuming reflexivity and stability
under central permutation. This model is symmetrical.

Analogical proportions can be extended componentwise to items represented by
vectors such as a⃗ = (a1, ..., an) defined on the same set of Boolean attributes, namely:

a⃗ : b⃗ :: c⃗ : d⃗ iff ∀i ∈ [1, n], ai : bi :: ci : di.
Let us define

Equ0(⃗a, b⃗) = {i | ai = bi = 0},
Equ1(⃗a, b⃗) = {i | ai = bi = 1},
Equ(⃗a, b⃗) = {i | ai = bi} = Equ0(⃗a, b⃗) ∪ Equ1(⃗a, b⃗),

and
Dif10(⃗a, b⃗) = {i | ai = 1, bi = 0},
Dif01(⃗a, b⃗) = {i | ai = 0, bi = 1},
Dif (⃗a, b⃗) = {i | ai ̸= bi} = Dif01(⃗a, b⃗) ∪Dif10(⃗a, b⃗).

This allows us to state the following result:

a⃗ : b⃗ :: c⃗ : d⃗ if and only if


Equ(⃗a, b⃗) = Equ(c⃗, d⃗)

Dif10(⃗a, b⃗) = Dif10(c⃗, d⃗)

Dif01(⃗a, b⃗) = Dif01(c⃗, d⃗).

(3)

Analogical proportions define equivalence classes of pairs of Boolean vectors; a⃗ :
b⃗ :: c⃗ : d⃗ states that the pairs (⃗a, b⃗) and (c⃗, d⃗) are in the same equivalence class. Follow-
ing property (3), Table 2 partitions the attributes involved in an analogical proportion
into subparts: one where the vectors are equal inside pairs (perhaps in a different way
according to the pair) and a subpart where the same change takes place inside each pair.
Observe that the “All equal” subpart may be empty, without trivializing the analogical
proportion (i.e., the four vectors remain all different), this is not the case for the two
other subparts that cannot be empty.

Condition Equ(⃗a, b⃗) = Equ(c⃗, d⃗) ensures that H (⃗a, b⃗) = H(c⃗, d⃗), where H de-
notes the Hamming distance H (⃗a, b⃗) = | {i | ai ̸= bi} |.

Analogical inference relies on the solving of analogical equations ai : bi :: ci : xi

for some unknown value xi of some attribute i. The solution is unique when it exists,
but it may not exist. Indeed 1 : 0 :: 0 : x and 0 : 1 :: 1 : x have no solution as analogical
equations.
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items All equal Equality by pairs Change (Dif)

a⃗ 1 0 1 0 1 0

b⃗ 1 0 1 0 0 1

c⃗ 1 0 0 1 1 0

d⃗ 1 0 0 1 0 1
Table 2. The 3 subparts of analogical proportion and the associated valuations

In [10, 11] a comparative logic of ordered pairs has been proposed. The items to be
compared are described by vectors of attribute values (here Boolean). When ai = 1
(resp. ai = 0) we understand it as item a⃗ has (resp. has not) feature / property i.

For associating a logical consequence relation ⊨A with analogical proportion, we
follow the same procedure as in the case of conditional logical proportions for defining
⊨C (definition (2)) from the conditional proportion C1 defined by (1). Namely a logical
consequence relation ⊨A between pairs is defined as:

(⃗a, b⃗) ⊨A (c⃗, d⃗) ⇔ ¬a⃗ ∧ b⃗ ⊨ ¬c⃗ ∧ d⃗ and c⃗ ∧ ¬d⃗ ⊨ a⃗ ∧ ¬⃗b (4)

where logical connectives are extended to vectors componentwise:
a⃗∧ b⃗ = (a1 ∧ b1, ..., an ∧ bn); a⃗∨ b⃗ = (a1 ∨ b1, ..., an ∨ bn); ¬a⃗ = (¬a1, ...,¬an).
When we deal with pairs, the valuation (ai, bi) = (0, 1) is understood as: when we

go from a⃗ to b⃗, we acquire feature i (the value of the attribute becomes true). Thus the
meaning of entailment (4) is as follows: features that are acquired when going from a⃗
to b⃗ remain acquired when going from c⃗ to d⃗. Moreover if when going from c⃗ to d⃗ a
feature is lost, it was already the case when going from a⃗ to b⃗.3

It can be checked that we have the following equivalence:

(⃗a, b⃗) ⊨A (c⃗, d⃗) and (c⃗, d⃗) ⊨A (⃗a, b⃗) iff A(⃗a, b⃗, c⃗, d⃗)

In [10, 11], an operation denoted ∨∧, mixing conjunction and disjunction has been
defined:

(⃗a, b⃗) ∨∧ (c⃗, d⃗) = (⃗a ∨ c⃗, b⃗ ∧ d⃗).

This conjunctive-like operation agrees with this semantics of acquired features. Indeed
one can check that (ai ∨ ci, bi ∧ di) = (0, 1) only if (ai, bi) = (ci, di) = (0, 1). But,
if (ai, bi) or (ci, di) = (1, 0), (ai ∨ ci, bi ∧ di) = (1, 0). This shows the conjunctive
nature of ∨∧ with respect to the idea of acquired feature.

Dually, we can define a disjunctive-like operation between pairs:

(⃗a, b⃗) ∧∨ (c⃗, d⃗) = (⃗a ∧ c⃗, b⃗ ∨ d⃗)

Note that (ai ∧ ci, bi ∨ di) = (1, 0) only if (ai, bi) = (ci, di) = (1, 0). By contrast,
if (ai, bi) or (ci, di) = (0, 1), (ai ∧ ci, bi ∨ di) = (0, 1). Thus, ∧∨ cumulates acquired
features.

3 The choice of definition (4), rather than (⃗a, b⃗) ⊨ (c⃗, d⃗) ⇔ a⃗∧¬⃗b ⊨ c⃗∧¬d⃗ and ¬c⃗∧d⃗ ⊨ ¬a⃗∧b⃗,
is governed by the need here to privilege the gain of features rather than their loss. Indeed the
alternative definition given in this footnote says that features that are lost when going from a⃗
to b⃗ remain lost when going from c⃗ to d⃗, and that if when going from c⃗ to d⃗ a feature is gained,
it was already the case when going from a⃗ to b⃗.
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There is a De Morgan duality between ∨∧ and ∧∨ with respect to the operation ⟲
defined by

⟲ (⃗a, b⃗) = (⃗b, a⃗)

which has a negation flavor since if a feature is gained from a⃗ to b⃗, it is lost when going
from b⃗ to a⃗. Namely

⟲(⟲ (⃗a, b⃗) ∨∧ ⟲(c⃗, d⃗)) = (⃗a, b⃗) ∧∨(c⃗, d⃗).
It can be checked that ∨∧ behaves like a conjunction, and ∧∨ like a disjunction, in

the sense that
(⃗a, b⃗) ∨∧ (c⃗, d⃗) ⊨A (⃗a, b⃗) ⊨A (⃗a, b⃗) ∧∨ (c⃗, d⃗)

In [10, 11], the use of the disjunction ∧∨ that cumulate acquired properties, has been
suggested for enlarging a set of ordered pairs representing pairs of items where desirable
properties are acquired by the second item of the pair. This enlargement provides a
better basis for creativity by analogical inference.

3 Paralogical reasoning

We now consider the paralogical proportion. We first recall its definition, its main prop-
erties, and its interplay with analogical proportion. Then we introduce a paralogical
consequence relation and we study its behavior.

3.1 Paralogy

The paralogical proportion
P(a, b, c, d) = ((a ∧ b) ≡ (c ∧ d)) ∧ ((¬a ∧ ¬b) ≡ (¬c ∧ ¬d))

expresses that what a and b have in common (positively or negatively), c and d have it
also and vice-versa. P(a, b, c, d) is true only for the 6 valuations in Table 3. As can be
seen,

– either both a and b are false (resp. true) and both c and d are false (resp. true) as
well; this corresponds to the first two lines in the table; ‘

– or a and b have different truth values and c and d have different truth values as well.

a b c d

0 0 0 0

1 1 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0
Table 3. Boolean valuations making P (a, b, c, d) true

But these pairs are no longer ordered while they are ordered in the case of an analogical
proportion. Thus, P (a, b, c, d) = P (b, a, c, d) = P (a, b, d, c) = P (b, a, d, c).

As the analogical proportion, paralogy is code independent, this means that 1 and 0
play symmetrical roles and can be exchanged: namely P (a, b, c, d) = P (¬a,¬b,¬c,¬d),
as we have A(a, b, c, d) = A(¬a,¬b,¬c,¬d). See Tables 1 and 3.

The paralogical proportion is the only logical proportion T obeying the following
three postulates:
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– T (a, b, b, a) (reverse reflexivity);
– T (a, b, c, d) = T (c, d, a, b) (symmetry);
– T (a, b, c, d) = T (b, a, c, d) (stability under lateral permutation).

Moreover paralogy satisfies reflexivity T (a, b, a, b) also. Note that Table 3 is the mini-
mal Boolean model satisfying both T (a, b, b, a) and T (a, b, a, b). In the Boolean setting,
these two properties are thus enough to have symmetry, stability under lateral permu-
tation, and ... transitivity. If we agree that “black is to white as white is to black”, we
should adopt paralogy (instead of analogy)!

Note also that if T (a, b, c, d) is an analogical proportion, and T (c, d, e, f) is a par-
alogical proportion then T (a, b, e, f) is an analogy or a paralogy. The same holds if
T (a, b, c, d) is a paralogy and T (c, d, e, f) an analogy. This is due to the fact that equa-
tions such as T (1, 1, x, y) or T (0, 1, x′, y′) have solutions compatible with analogy
(x = y = 1 or x = y = 0, and x′ = 0, y′ = 1) and solutions compatible with paralogy
(x = y = 1 and x′ = 0, y′ = 1 or x′ = 1, y′ = 0 ).

Paralogical proportions can be extended to vectors describing items on the same set
of Boolean attributes. Thus P (⃗a, b⃗, c⃗, d⃗) is defined componentwise:

P (⃗a, b⃗, c⃗, d⃗) iff ∀i ∈ [1, n], P (ai, bi, ci, di).
Yet, paralogical and analogical proportions are closely related. Indeed P (⃗a, b⃗, c⃗, d⃗) =

A(⃗a, d⃗, c⃗, b⃗)4. This can be checked by permuting the order of the lines in Table 2, as
done in Table 4 where we recognize, vertically, the valuations making true a paralogy.

items

a⃗ 1 0 1 0 1 0

d⃗ 1 0 0 1 0 1

c⃗ 1 0 0 1 1 0

b⃗ 1 0 1 0 0 1
Table 4. Paralogy obtained by permuting the lines of the table of an analogical proportion

The truth table of the paralogy enables us to state the following result:

P (⃗a, b⃗, c⃗, d⃗) if and only if


Dif (⃗a, b⃗) = Dif(c⃗, d⃗)

Equ1(⃗a, b⃗) = Equ1(c⃗, d⃗)

Equ0(⃗a, b⃗) = Equ0(c⃗, d⃗)

(5)

This indicates that two pairs of vectors {a⃗, b⃗} and {c⃗, d⃗} (we use braces instead of
parentheses since the pairs are not ordered) form a paralogy P (⃗a, b⃗, c⃗, d⃗) if the values
in each pair differ simultaneously, and if when they are equal, they are equal to the
same value. Condition Dif (⃗a, b⃗) = Dif(c⃗, d⃗) ensures that H (⃗a, b⃗) = H(c⃗, d⃗), where
H is the Hamming distance. As can be seen, (5) contrasts with the equation (3) describ-
ing analogical proportion between vectors where the directions of change inside pairs
should be the same, while elsewhere the vectors may be equal in a different ways from

4 Equivalently A(⃗a, b⃗, c⃗, d⃗) = P (⃗a, d⃗, c⃗, b⃗) = P (⃗a, d⃗, b⃗, c⃗), and thus it yields another equivalent
formula for an analogical proportion, namely A(a, b, c, d) = (a∧d ≡ b∧c)∧(a∨d ≡ b∨c),
since (¬a ∧ ¬d ≡ ¬b ∧ ¬c) is the same as (a ∨ d ≡ b ∨ c).
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a pair to the other. Here in (5) this is the converse, vectors in a pair should be equal in
the same way, and dissimilarity is no longer oriented.

Thus the attributes with respect to a paralogy can be partitioned in three subsets
as in Table 5. The paralogy is non trivial (i.e., the four vectors are different) when
both the two subparts “non ordered Dif” and “ordered Dif” are non empty. The subpart
“identity” may remain empty.

items non ordered Dif ordered Dif Identity

a⃗ 1 0 1 0 1 0

b⃗ 0 1 0 1 1 0

c⃗ 0 1 1 0 1 0

d⃗ 1 0 0 1 1 0
Table 5. The 3 parts of paralogical proportion and the associated valuations

Paralogical inference amounts to solve equation of the form P (ai, bi, ci, xi) for
some feature i where the value xi is unknown. The solution when it exists is unique.
But, P (1, 1, 0, x) and P (0, 0, 1, x) have no paralogical solution. Indeed there is no di
such that what is both common (positively or negatively) to ai and bi is also common
to ci and di, if ci misses what is common to ai and bi.

Permuting a⃗ and c⃗ in Table 3 leads to the truth table of A for c⃗, b⃗, a⃗, d⃗, meaning that
P (⃗a, b⃗, c⃗, d⃗) ≡ A(c⃗, b⃗, a⃗, d⃗). An immediate consequence of this equivalence is the fact
that the equation A(ai, bi, ci, xi) is solvable iff the equation P (ci, bi, ai, xi) is solvable
and they have the same solution. For instance, A(0, 0, 1, x) is solvable with x = 1
and this is equivalent to P (1, 0, 0, x) is solvable with the same solution 1. A(1, 0, 0, x)
is not solvable just as P (0, 0, 1, x). Thus paralogical inference is just another way of
presenting analogical inference.

The paralogical proportion establishes a parallel between pairs. Two pairs, in the
same class of equivalence, are “parallel” if inside each pair, they differ on the same
features, and the four vectors all identical on the remaining features.

3.2 Paralogical consequence relation

Taking inspiration of analogical proportion, one can define a paralogical consequence
relation ⊨P in the following way:

{a⃗, b⃗} ⊨P {c⃗, d⃗} ⇔ a⃗ ∧ b⃗ ⊨ c⃗ ∧ d⃗ and ¬c⃗ ∧ ¬d⃗ ⊨ ¬a⃗ ∧ ¬⃗b (6)

Equation (6) states that if a feature i is common to the items in {a⃗, b⃗} it is also com-
mon for the items in {c⃗, d⃗}, and conversely if missing in both items in {c⃗, d⃗}, it is
also missing in both items in {a⃗, b⃗}, i.e., ∀i, (ai, bi) = (1, 1) ⇒ (ci, di) = (1, 1)
and ∀i, (ci, di) = (0, 0) ⇒ (ai, bi) = (0, 0). As shown in the left part of Table 6, if
(ai, bi) = (0, 1) or (1, 0), then (ci, di) ̸= (0, 0); if (ai, bi) = (0, 0), (ci, di) is uncon-
strained. Thus ⊨P privileges the preservation of common features that are present (but
not those that are absent).5

5 Obviously there exists a dual consequence relation that privileges the preservation of common
features that are absent (but not those that are present):{a⃗, b⃗} ⊨P

′′ {c⃗, d⃗} ⇔ c⃗ ∧ d⃗ ⊨ a⃗ ∧ b⃗

and ¬a⃗ ∧ ¬⃗b ⊨ ¬c⃗ ∧ ¬d⃗. We have then ∀i, (ai, bi) = (0, 0) ⇒ (ci, di) = (0, 0) and
∀i, (ci, di) = (1, 1) ⇒ (ai, bi) = (1, 1).
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a b c d (a, b) ⊨P (c, d) (c, d) ⊨P (a, b) P (a, b, c, d) (a,b) ⊨P ′(c,d) (c,d) ⊨P ′(a,b)

0 0 0 0 1 1 1 1 1
0 0 0 1 1 0 0 0 1
0 0 1 0 1 0 0 0 1
0 0 1 1 1 0 0 0 0
0 1 0 0 0 1 0 1 0
0 1 0 1 1 1 1 1 1
0 1 1 0 1 1 1 1 1
0 1 1 1 1 0 0 1 0
1 0 0 0 0 1 0 1 0
1 0 0 1 1 1 1 1 1
1 0 1 0 1 1 1 1 1
1 0 1 1 1 0 0 1 0
1 1 0 0 0 1 0 0 0
1 1 0 1 0 1 0 0 1
1 1 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1

nb of values ‘true’ 11 11 6 10 10
Table 6. Entailments defined by (6) vs. paralogical proportion vs. entailments defined by (7)

It can be checked in Table 6 that we have the following equivalence:

(⃗a, b⃗) ⊨P (c⃗, d⃗) and (c⃗, d⃗) ⊨P (⃗a, b⃗) iff P (⃗a, b⃗, c⃗, d⃗).

As in the case of ⊨A, one may think of defining conjunctive or disjunctive combi-
nations of ordered pairs, agreeing with the consequence relation (6) and making sense
with respect to the interpretation of pairs. Natural componentwise definitions, including
negation, satisfying a De Morgan duality, seem to be :

(⃗a, b⃗) ∧ (c⃗, d⃗) = (⃗a ∧ c⃗, b⃗ ∧ d⃗);

(⃗a, b⃗) ∨ (c⃗, d⃗) = (⃗a ∨ c⃗, b⃗ ∨ d⃗).

¬(⃗a, b⃗) = (¬a⃗, ¬⃗b)

Note that ¬(⃗a, b⃗) ̸=⟲ (⃗a, b⃗) = (⃗b, a⃗). With ¬ one changes absent features into present
features and vice-versa, while with ⟲ one changes loss into gain and vice-versa. Clearly
if a⃗ and b⃗ share a feature i, also shared by c⃗ and d⃗, then feature i is shared by a⃗ ∧ c⃗ and
b⃗ ∧ d⃗.

It can be shown that

(⃗a, b⃗) ∧ (c⃗, d⃗) ⊨P (⃗a, b⃗) ⊨P (⃗a, b⃗) ∨ (c⃗, d⃗).

Indeed (ai∧ci)∧(bi∧di) ⊨ (ai∧bi) and ai∧bi ⊨ (ai∨ci)∧(bi∨di). Besides, the second
condition defining ⊨P , namely ¬ci ∧ ¬di ⊨ ¬ai ∧ ¬bi is the same as ai ∨ bi ⊨ ci ∨ di,
and thus we do have ai∨bi ⊨ (ai∨ci)∨ (bi∨di). Note that ∧, ∨ ensure that if a feature
is common to the vectors of two pairs, it is also common to the vectors of the combined
pair.
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Another option for defining a consequence relation from paralogy, now preserving
both common features that are present and common features that are absent, are as
follows:

(⃗a, b⃗) ⊨P ′ (c⃗, d⃗) ⇔ a⃗ ∧ b⃗ ⊨ c⃗ ∧ d⃗ and ¬a⃗ ∧ ¬⃗b ⊨ ¬c⃗ ∧ ¬d⃗ (7)

As can be seen in the right part of Table 6, {a⃗, b⃗}, i.e., ∀i, (ai, bi) = (1, 1) ⇒ (ci, di) =
(1, 1) and ∀i, (ai, bi) = (0, 0) ⇒ (ci, di) = (0, 0). Moreover we have, if (ci, di) =
(0, 0) (resp. = (1, 1)) then (ai, bi) ̸= (1, 1) (resp. ̸= (0, 0)).

It can be checked that we have the following equivalence also (see right part of
Table 6):

(⃗a, b⃗) ⊨P ′ (c⃗, d⃗) and (c⃗, d⃗) ⊨P ′ (⃗a, b⃗) iff P (⃗a, b⃗, c⃗, d⃗)

However ⊨P ′ has no good behavior wrt to conjunction / disjunction of pairs, be them
defined with (∧,∨) or with (∨∧,∧∨).

4 Multiple-valued extensions

The definition of the analogical consequence relation ⊨A enforces that features gained
when going from a to b should be also gained when going from c to d, and conversely
for the features lost. More generally, features may be a matter of degree, and we may
want to state that if a feature is increased when going from a⃗ to b⃗, it is also increased
when going from c⃗ to d⃗. Let us assume that the ai’s, bi’s, ci’s, di’s may be a matter
of degree. In the following we drop the index i in the notation. Now the consequence
relation defined by (4) can be extended to multiple-valued vectors by

(a, b) ⊨A (c, d) iff

{
min(1− a, b) ≤ min(1− c, d)

min(1− c, d) ≤ min(1− a, b)
(8)

Here a ∈ [0, 1] (resp. 1−a) estimates to what extent the feature is present (resp. absent),
min is used as a conjunction (other choices may be considered), and ≤ is the usual
entailment between graded properties. If both (a, b) ⊨A (c, d) and (c, d) ⊨A (a, b),
then c = a and d = b, or c = 1− b and d = 1− a, in both cases we have b− a = d− c.
This agrees with the two possible definitions of graded analogical proportions [9]:

a : b ::L c : d =


1− | (a− b)− (c− d) |,

if a ≥ b and c ≥ d, or a ≤ b and c ≤ d

1−max(|a− b |,|c− d |),
if a ≤ b and c≥ d, or a ≥ b and c ≤ d

(9)

a : b ::C c : d = min(1−|max(a, d)−max(b, c)|, 1−|min(a, d)−min(b, c)|) (10)

which are equal to 1 when c = a and d = b.
The paralogical consequence relation (6) can be extended similarly by

{a⃗, b⃗} ⊨P {c⃗, d⃗} iff

{
min(a, b) ≤ min(c, d)

min(1− c, 1− d) ≤ min(1− a, 1− b)
(11)
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Note that the second inequality is equivalent to max(a, b) ≤ max(c, d) just as ¬c⃗ ∧
¬d⃗ ⊨ ¬a⃗ ∧ ¬⃗b is equivalent to a⃗ ∨ b⃗ ⊨ c⃗ ∨ d⃗. If we have both {a, b} ⊨P {c, d} and
{c, d} ⊨P {a, b}, then either c = a and d = b or d = a and c = b, which agrees with
the following definition of the multiple-valued paralogy (which is equal to 1 in these
cases):

P (a, b, c, d) = min(1− | min(a, b)−min(c, d) |, 1− | max(a, b)−max(c, d) |).

5 Conclusion
This paper has provided an overview of the different logical proportions that can be
associated with consequence relations. Beyond the fact that both analogical and par-
alogical proportions are reflexive, symmetrical and transitive, and thus define equiva-
lence relation between pairs, these two proportions are very different. Indeed they obey
different postulates, have different semantic interpretations; moreover paralogy, being
reverse reflexive, includes valuations such as (0, 1, 1, 0) and (1, 0, 0, 1) in its truth ta-
ble, two valuations known as maximizing analogical dissimilarity [5] and having max-
imal Kolmogoroff complexity [9], while the valuations making true the analogy have
a smaller complexity. Even if a close parallel can be made between analogical and
paralogical inference, the corresponding proportions seem to serve purposes that are
quite different. Yet, while default and analogical reasoning have clear applications, the
use of paralogical reasoning as another way of presenting analogical reasoning is an
open question. The parallel between analogical and nonmonotonic reasoning modes,
first discussed in [6], also calls for a more detailed study in the light of the consequence
relations discussed in this paper; see [8] for a parallel in the inference mechanisms.
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