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Abstract. Aggregations of random variables have appeared as a way to
model aggregation processes in which the input data is seen as observa-
tions of random variables. However, its definition includes many other
scenarios that have not yet been studied in detail. This paper is devoted
to define and study several families of aggregations of random variables
that go beyond the aggregation of random inputs. Different character-
izations, the relation between them and some illustrative examples are
provided.
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1 Introduction

Aggregation theory is focused on functions that summarize the information of
several elements into a unique element. This type of functions are widely used in
data analysis (see [7, 13]), in which working with random variables is the com-
mon approach made by Statistics. In [2], the concept of aggregation of random
variables is defined as a way to study the aggregation when dealing with random
inputs. Notice that this approach differs from others more usually considered in
the literature, such as the aggregation of probability distributions, possibilities
distributions or aggregation in Dempster-Shafer theory. We refer the reader to [5]
for a survey in this regard.

However, the definition of aggregation of random variables is not too re-
strictive, and allows many type of functions to be considered as aggregations of
random variables. In this paper, we define some families of aggregations of ran-
dom variables that permit, for instance, to apply a real function after identifying
the distribution of the inputs, to consider a change of the dependence between
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the inputs and the output and to work with randomly behaved parameters. Their
characterization and the relation between them are studied in detail.

The rest of the paper is organized as follows. In Section 2, we introduce some
basic notions about probability theory and aggregation of random variables. In
Section 3 we introduce the class of conditionally determined. Then, aggregations
with the same distribution are studied in Section 4. Section 5 is devoted to
define randomly induced aggregations of random variables. Finally, in Section 6
we study the relation between the introduced families and the conclusions are
discussed in Section 7.

2 Preliminaries

2.1 Probability notions

Along the paper, we will consider a fixed probability space (Ω,Σ, P ), where Ω is
a set, Σ a σ-algebra of measurable subsets of Ω and P a probability measure (see,
for instance, [14]). We will suppose the probability space to be the right continu-
ous adapted probability space associated with a hyperfinite adapted probability
space. Informally, they are probability spaces much bigger than the usual unit
interval with the Lebesgue measure that have the properties we need for some
of the constructions we are going to address. We refer the reader to [9] and [10]
for a proper introduction of such spaces. Before explaining more in detail the
properties of this type of probability space, let us introduce the usual stochastic
order.

Definition 1. [15] Let X and Y be two random vectors of dimension n. Then,
if for any increasing function ϕ : Rn → R such that E[ϕ(X)] and E[ϕ(Y )] exist
it holds E[ϕ(X)] ≤st E[ϕ(Y )], it is said that X is smaller than or equal to Y
with respect to the usual stochastic order, denoted as X ≤st Y .

For random variables, the usual stochastic order is equivalent to the point-
wise comparison of the distribution functions [15]. If X =st Y , it is said that
the random vectors have the same distribution. A notion related with the usual
stochastic order is to be almost surely smaller than or equal to, denoted by
X ≤a.s. Y and defined as P (X ≤ Y ) = 1. It is known, see [15], that X ≤a.s.

Y =⇒ X ≤st Y . Another sufficient condition for having the usual stochastic
order can be stated by using conditional distributions.

Proposition 1. [15] Let X, Y and Z be three random vectors. If [X | Z =
z] ≤st [Y | Z = z] for any z in the support of Z, then X ≤st Y .

Returning to hyperfinite adapted probability spaces, one of the most im-
portant properties is that two random variables with the same distribution are
linked by a measure preserving function. We recall that a measurable function
between two measurable spaces is defined as a function which has measurable
preimages of measurable sets (see [4]).
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Definition 2. [10] Let (Ω,Σ, P ) be a probability space and let ϕ : Ω → Ω be a
measurable function. Then, it is said that ϕ is a measure preserving function if
P (ϕ−1(B)) = P (B) for any B ∈ Σ.

Theorem 1. [9] Let (Ω,Σ, P ) be the right continuous adapted probability space
associated with a hyperfinite adapted probability space. Then, given two random
variables X and Y such that X =st Y , there exists a bijective measure preserving
function ϕ : Ω → Ω such that X =a.s Y ◦ ϕ.

The function ϕ in the latter result does not have an easy expression. We
refer the reader to page 134, Proposition 9.2 in [8] for a constructive proof. In
addition, in [9] it is proved that any right continuous adapted probability space
associated with a hyperfinite adapted probability space fulfills the saturation
property, defined as follows.

Definition 3. [11] A probability space (Ω,Σ, P ) is said to have the saturation
property if, given a pair of Polish spaces (complete metrizable topological spaces)
T1 and T2, for any probability measure µ in T1 × T2 and a random element
X : Ω → T1 such that its distribution coincides with the marginal distribution
of µ in T1, there exists a random element Y : Ω → T2 such that (X,Y ) has
distribution function µ.

For the scope of this paper, it is enough to consider as Polish spaces the
Euclidean Spaces Rn with the usual topology. We end this section by introducing
the concept of σ-algebra generated by a random vector.

Definition 4. [4] Let X a random vector defined in a probability space (Ω,Σ, P ).
Then, the σ-algebra generated by X, denoted as σ(X), is the smallest σ-algebra
such that X is measurable in (Ω, σ(X)).

2.2 Aggregations of random variables

Given a non-empty real interval I, a function Â : In → I is an aggregation func-
tion if it is increasing and fulfills inf I = infx∈In Â(x) and sup I = supx∈In Â(x).
Aggregations of random variables are functions that map, given a real interval
I, a random vector with support In to a random variable with support I. The
properties of monotonicity and boundary conditions are redefined in terms of
stochastic orders. Before stating the definition, let us introduce the following
notation.

Ln
I (Ω) = {X : Ω → In | X is measurable} .

If n = 1, we will denote L1
I(Ω) just as LI(Ω). In addition, we will just use the

notation Ln
I , assuming that the probability space is fixed and supposed to be the

right continuous adapted probability space associated with a hyperfinite adapted
probability space.

Definition 5. [2] Let (Ω,Σ, P ) be a probability space and let I be a real non
empty interval. An aggregation function of random variables (with respect to
≤st) is a function A : Ln

I → LI which satisfies:
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– For any X,Y ∈ Ln
I (Ω) such that X ≤st Y , A(X) ≤st A(Y ).

– For any X ∈ LI , there exist X1,X2 ∈ Ln
I such that A(X1) ≤st X ≤st

A(X2).

The second property in the latter definition is known as the boundary con-
ditions. We want to remark that, in the original reference [2], these conditions
are defined in a different but equivalent manner.

Since this paper is devoted to the classification of aggregations of random
variables, we present in the next definition three already known families that
have been proven to be disjoint when the interval do not consist on just one
point (see [3]), although their union is not the whole set of aggregations of
random variables.

Definition 6. [3] Let A : Ln
I → LI be an aggregation of random variables.

Then,

– If A(X) = Â ◦ X for any X ∈ Ln
I with Â : In → I being an aggregation

function, A is said to be induced (by Â).
– If A(X) has degenerate distribution for any X ∈ Ln

I , A is said to be degen-
erate.

– If there exists X ∈ Ln
I and x in the support of X such that [A(X) | X = x]

is not degenerate, A is said to be random.

Induced aggregations of random variables are just usual aggregation func-
tions with random inputs. Degenerate aggregations of random variables appear
when we aggregate location parameters of the associated random vectors and
the random ones represent that there is a random behavior in the aggregation
process, not only in the inputs.

3 Conditional determination

Analyzing the definition of random aggregation of random variables, we can see
that it is based on a negation of a property. In particular, we need the existence
of a random vector X ∈ Ln

I and a value x ∈ In such that [A(X)| X = x] is well
defined and not degenerate. Let us consider the class of aggregations of random
variables that do fulfill this property.

Definition 7. Let A : Ln
I → LI be an aggregation of random variables. It is

said that A is conditionally determined if for any X ∈ Ln
I and x ∈ In for which

[A(X) | X = x] is well defined, [A(X) | X = x] has degenerate distribution.

Being conditionally determined can be interpreted as having the value of the
output of the aggregation totally determined when knowing the input random
and its value. We want to remark that, unlike induced aggregations, the value
could change depending on the input random vector. Trivially, any aggregation
of random variables is conditionally determined or random. Let us introduce an
example in this regard.
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Example 1. Given a fixed value z ∈ I, let A : In → I be the aggregation of
random variables given by A(X) = min(X) if X ≤st x1, A(X) = max(X) if
X ≤st x1 and A(X) = x1 otherwise. A is conditionally determined, but is not
induced.

In the following result, we give two alternatives characterizations of this type
of aggregations of random variables.

Theorem 2. Let A : Ln
I → LI be an aggregation of random variables. The

following properties are equivalent.

(1) A is conditionally determined.
(2) For any X, A(X) is σ(X)-measurable.
(3) There exists a family of functions (GX ,X ∈ Ln

I ) such that A(X) =a.s. GX ◦
X for any X ∈ Ln

I .

Proof. Suppose that A fulfills (1). For any X ∈ Ln
I , let CX = {x ∈ In | [A(X)

| X = x] is well-defined}. Define GX : In → I as the function such that
GX(x) = λ with λ the value that [A(X) | X = x] takes with probability 1
if x ∈ CX and GX(x) = 0 otherwise. Since P (X ∈ C) = 1, it is concluded that
A(X) =a.s. GX ◦X for any X ∈ Ln

I . Then (3) holds.
Suppose that (3) holds. Then, for any measurable set B of R, one has

(GX(X))−1(B) = X−1(G−1
X (B)) ∈ σ(X). Then, (2) holds.

Suppose that (2) holds. Then, given X = x, one has that X−1(x) is a mea-
surable set that does not contains any other measurable set (in σ(X)). Then,
A(X) should take an unique value on X−1(x). Then, A is conditionally deter-
mined and (1) holds. ⊓⊔

The third point in last result gives us a comprehensible characterization of
conditional determination. We first identify the random vector X we are aggre-
gating and select a particular function GX and then we apply it to X to obtain
the aggregated random variable. Of course, not all choices of (GX ,X ∈ Ln

I ) are
suitable to define an aggregation of random variables. Measurability, monotonic-
ity and the boundary conditions should be guaranteed.

This property appears naturally in some areas of statistics. For mean esti-
mation, the function that is applied to the random sample varies depending on
the distribution. For instance, the best estimator for Gaussian distributions is
the arithmetic mean and for uniform distributions is the average between the
maximum and the minimum [14].

Notice that induced and degenerate aggregations of random variables are
contained in the conditionally determined ones. In particular, if GX = Â with
Â an usual aggregation function for all X ∈ Ln

I , then A is induced. Similarly, if
for any X ∈ Ln

I one has that GX only takes one value, A is degenerate.

4 Equality in distribution

In the previous section, we gave an understandable characterization of condi-
tionally determined aggregations of random variables. However, it remains to
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study more in detail the random ones, which can be seen as aggregations with
a random behavior in the aggregation process.

If we look at Definition 5, the monotonicity focuses on the distribution of X
and A(X), but not on the dependence between them. In particular, the mono-
tonicity implies X =st Y =⇒ A(X) =st A(Y ), but it does not imply neither
X =st Y =⇒ (X, A(X)) =st (Y , A(Y )) nor X =a.s. Y =⇒ A(X) =a.s.

A(Y ). This allows some particular type of aggregation of random variables to
be defined. Let us start with a simple example.

Example 2. Let A : Ln
I → LI be an induced aggregation. Consider U a uniform

random variable. For any X ∈ Ln
I , define B(X) = F−1

A(X)(U), where F−1
A(X) is

the quantile function of A(X). Trivially, B(X) =st A(X). Thus B : Ln
I → LI

is an aggregation of random variables. However, B is not induced. Moreover, is
random, because the value of the aggregated random variable depends on U .

In the latter example, we construct a random aggregation of random vari-
ables in which the outputs have the same distribution as another one, but the
dependence between them and the inputs is different. In this direction, given
A,B : Ln

I → LI two aggregations of random variables, if A(X) =st B(X) for
any X ∈ Ln

I , we will say that A and B have the same distribution. In the fol-
lowing result, we study the extension of the family of conditionally determined
aggregations of random variables by considering the aggregations that have the
same distribution. We recall that the set of mass points of a random vector are
the values that the random vector takes with probability greater than 0.

Theorem 3. Let A : Ln
I → LI be an aggregation of random variables. The

following properties are equivalent.

(1) A has the same distribution as a conditionally determined aggregation of
random variables.

(2) There exists a family of measure preserving transformations (ϕX ,X ∈ Ln
I )

and random vectors (ZX ,X ∈ Ln
I ) such that A(X) ◦ϕX =a.s. ZX and ZX

is (σ(X))-measurable for any X ∈ Ln
I .

(3) For any X ∈ Ln
I , if SX denotes the set of probability of mass points of

X and SA(X) denotes the probability of mass points of A(X), there exists
L : SX → SA(X) such that:∑

x∈L−1(x)

P (X = x) ≤ P (A(X) = x)

for any x ∈ SA(X)

Proof. Suppose that (1) holds. Then, there exists a conditionally determined
aggregation of random variables B : Ln

I → LI such that B(X) =st A(X) for
any X ∈ Ln

I . Then, (2) holds by using Theorem 1 and (2) in Theorem 2.
Suppose that (2) holds. For any X ∈ Ln

I , since ϕX is a measure preserving
transformation, A(X) =st A(X) ◦ ϕX . Applying (2) on Theorem 2, A(X) ◦ ϕX

is conditionally determined, thus (1) holds.
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Suppose that (1) holds. Applying (3) in Theorem 2, for any X ∈ Ln
I , there

exist a function GX such that GX(X) =st A(X). Define L : SX → SA(X) as
L(x) = GX(x). Then, P (A(X) = x) = P (X ∈ L−1(x)) ≥

∑
x∈L−1(x) P (X =

x) for any x ∈ SA(X). It is concluded that (3) holds.

Suppose that (3) holds. Decompose the distribution function of X as FX =
λF d

X + (1 − λ)F c
X , with Fd being the distribution function of a discrete ran-

dom vector, Fc being the distribution function of a continuous random vector
and λ =

∑
x∈SX

P (X = x). Similarly, decompose the distribution function of

A(X) as FA(X) = µF d
A(X) + (1 − µ)F c

A(X) with µ =
∑

x∈SX
P (A(X) = x).

Given a random vector Y with distribution function F d
X , consider the transfor-

mation L(Y ) with L given by (3). In addition, given a random vector Z with
distribution function F c

X , the first component Z1 has a continuous distribution
function F1, and F1(Z1) is a uniform random variable. By the inequality given
in (3), one has that λ ≤ µ, that is, the discrete part of X is smaller than the
discrete part of A(X). Therefore, FA(X) = λFL(Y ) + (µ− λ)F̂ + (1− µ)F c

A(X),

where (in the case of µ − λ ̸= 0) if W has distribution F̂ one has that P (W =

x) = 1
µ−λ

(
P (A(X) = x)−

∑
x∈L−1(x) P (X = x)

)
≥ 0. If λ ̸= 1, denote F0 =

1
1−λ (µ − λ)F̂ + (1 − µ)F c

A(X) and consider the corresponding quantile function

F−1
0 . Now, consider the function GX : Rn → R defined as GX(x) = L(x)

if x ∈ SX and GX(x) = F−1
0 (F1(x1)) in other case. By construction, it is

clear that GX has distribution function FGX(X) = λFL(Y ) + (1 − λ)F0 =

λFL(Y ) + (µ − λ)F̂ + (1 − µ)F c
A(X) = FA(X). If λ = 1, then F0 can be any

function. It is concluded that, for any X ∈ Ln
I , there exists a family of functions

(GX ,X ∈ Ln
I ) such that GX(X) =st A(X) and, applying (3) in Theorem 2,

that (1) holds. ⊓⊔

The change of the dependence between the inputs and the output can be
expressed in terms of the measure preserving transformations that appear in the
second characterization of the latter result. These transformations play a very
important role in the study of stationary time series, in particular in ergodic
theory (see [12]).

Informally, the last characterization says that if we can find functions that
fit the probability mass points of the inputs in the probability mass points of
the outputs, then we have an aggregation of random variables that has the same
distribution as a conditionally determined one. The most simple example of a
scenario in which this not happens is when a degenerate random vector has
associated an aggregated random variable that is continuous.

5 Random parameters

As explained before, not all aggregations of random variables have the same
distribution as a conditionally determined one. One of the cases in which this
happens is when we have random parameters in the aggregation. For instance,
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in a weighted mean with continuous random parameters, the aggregated random
variables can be continuous even in the case of a degenerate input.

Random parameters appear in many real life situations. One of the most
important scenarios is the one in which the parameters of a family of aggregation
functions are fitted using data, see, for instance, [13]. If we consider the training
data as realizations of random variables, then also the parameters have a random
behavior. In addition, there are scenarios in which the theoretical parameters are
considered to be random, see [1].

In the construction of aggregations of random variables with random param-
eters, one may think to model the random parameters by considering a random
vector. However, this election is not adequate in terms of monotonicity. Let us
illustrate this problem with a simple example.

Example 3. Let U1, U2 and U3 be three standard independent uniform random
variables. Consider the function A : L2

I → LI such that A(X1, X2) = U1X1+(1−
U1)X2. It can be seen as a weighted mean with countermonotone (with perfect
negative dependence) and uniform weights. However, the monotonicity cannot
be fulfilled because (U1, U2) =st (U2, U3) but A(U1, U2) = U2

1 + (1 − U1)U2 ̸=st

U1U2 + (1− U1)U3 = A(U2, U3).

As illustrated in the last example, the main problem of random parameters
fixed as a random vector is that one can have inputs with the same distribution
but a different dependence with the random parameters, resulting in a different
output distribution, which breaks the monotonicity.

A solution for that is to fix the distribution of the random parameters and
their dependence with the inputs and construct, for each of the cases, a random
vector fulfilling these properties. Some sufficient conditions are given in the next
result.

Theorem 4. Let I be a real interval and Â : In × Rd → I be a measurable
function and let (λX ,X ∈ Ln

I ) be a family of random vectors such that:

– For any z ∈ Rd, the function B̂z : In → I defined as B̂z(x1, . . . , xn) =
Â(x1, . . . , xn, z1, . . . , zd) is an aggregation function.

– If I does not have a lower [upper] bound, for any x ∈ I there exists x ∈ In

such that Â(x, z) < [>]x for any z ∈ Rn.
– λX has the same distribution for any X ∈ Ln

I

– X ≤st Y =⇒ [X | λX = z] ≤st [Y | λY = z] for any X,Y ∈ Ln
I .

Then, the function A : Ln
I → LI defined as A(X) = Â(X,λX) is an aggre-

gation of random variables.

Proof. Noticing that since Â is measurable and its image is I, it is clear that
A : Ln

I → LI is well-defined. For the monotonicity, use that B̂z is increasing for

any z ∈ Rn, B̂z([X | λX = z]) ≤st B̂z([Y | λY = z]) if well-defined. Finally,
since λX =st λY , applying Proposition 1, one has that A(X) = Â(X,λX) =
B̂λX

(X) ≤st B̂λY
(Y ) = Â(Y ,λY ) = A(Y ).
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For the boundary conditions, suppose that I has a lower bound a. If X =st

(a, . . . , a), by the boundary conditions of Âz one has that Âz(X) =st a for any
z ∈ Rd, thus A(X) =st a.

If I has not a lower bound, consider X ∈ LI . For each k ∈ I ∩ Z, consider
xk ∈ In such that Â(x, z) < x for any z ∈ Rn, that exists by hyphotesis. Then,
define the function h : I → In as h(x) = xk if x ∈ [k, k+1)∩I. Notice that since
h is measurable and its image is In, one has that h(X) ∈ Ln

I . By construction,
A(h(X)) <a.s. X and it is concluded that for any X ∈ LI there exists X ∈ Ln

I

such that A(X) ≤st X. For the upper bound, the proof is the same. ⊓⊔

The conditions over (λX ,X ∈ Ln
I ) might seem very strong, but a simple case

in which they are hold is when X and λX are independent for any X ∈ Ln
I .

Notice that these type of structures can be defined in our probability space since
it fulfills the saturation property introduced in Definition 3. More involved cases
maybe can be found by fixing a vector copula (see [6]) between X and λX . For
the second condition of the theorem, it is enough to consider, for instance, the
aggregations B̂z to be internal, i.e. between the maximum and the minimum.

Random induced aggregations of random variables includes the induced ones
and are not contained in the ones that have the same distribution as a condi-
tionally determined. Of course, random parameters can be combined with the
change of dependence considered in Section 4 or the consideration of a family of
functions in Section 3.

For the first one, we can consider the family of aggregations of random vari-
ables that have the same distribution as a randomly induced aggregation of
random variable. This family is bigger, and it does not contain the set of condi-
tionally determined aggregation functions, since Example 2 is not included.

In the second case, if we consider the aggregations of random variables such
that exist a family of random vectors (λX ,X ∈ Ln

I ) and (GX ,X ∈ Ln
I ) such

that A(X) =a.s. GX(X,λX), we obtain the set of all aggregations of random
variables (for the considered interval I). In particular, it suffices to consider λX

to be an univariate random variable that is almost surely equal to any possible
value of A(X) and GX(X,λX) = λX for any X ∈ Ln

I .

6 Relation between the families of aggregations of
random variables

As already mentioned before, induced and degenerate aggregations of random
variables are two disjoint families that are contained in the conditionally deter-
mined ones. In the next result, the relation between other families is studied.

Proposition 2. Let A : Ln
I → LI be an aggregation of random variables. Then,

(1) A is almost surely equal to an induced aggregation if and only if is condition-
ally determined and is almost surely equal to a randomly induced aggregation.

(2) A has the same distribution as an induced aggregation of random variables
if and only if it has the same distribution as a conditionally determined and
a randomly induced aggregations of random variables.
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(3) If A has the same distribution as a conditionally determined aggregation of
random variables and is randomly induced, then it is induced.

(4) If A has the same distribution as a degenerate aggregation of random vari-
ables, then it is degenerate.

Proof. For (1), proving that being induced implies being conditionally deter-
mined and randomly induced is straightforward. If A is almost surely equal to
a randomly induced aggregation, then A(X) =a.s. Â(X,λX) for any X ∈ Ln

I

with Â : In×Rd → I and (λX ,X ∈ Ln
I ) as in Theorem 4. If A is also condition-

ally determined, applying (3) in Theorem 2 we also have A(X) =a.s. GX(X) for
any X ∈ Ln

I . Then, Â(X,λX) =a.s GX(X). The expectation E[Â(x,λX)],
since equals GX(X), always exists for any x ∈ In and X ∈ Ln

I . In addi-

tion, since λX has the same distribution for all X ∈ Ln
I , E[Â(x,λX)] takes

always the same value for a fixed x ∈ In and any X ∈ Ln
I . Then, define

B̂ : In → I as B̂(x) = E[Â(x,λX)]. Since Â is increasing in the first n com-
ponents, E[Â(x1,λX)] ≤ E[Â(x2,λX)] if x1 ≤ x2. If I has a lower bound a,
then it is clear that E[Â(a1,λX)] = a. If I does not have a lower bound, for
any x ∈ I there exists x ∈ In such that Â(x, z) < x for any z ∈ Rn. Then,
E[Â(x1,λX)] < x. Proceeding similarly for the upper bound, we have that B̂ is
increasing and fulfils the boundary conditions, thus is an aggregation function.
It is concluded that A(X) =a.s. GX(X) =a.s B̂◦X with B̂ being an aggregation
function.

The proof of (2) is equivalent as the latter one but replacing =a.s. by =st.
Let us now prove (3). For any x ∈ In, consider the random vector X such

that P (X = x) = 1, then since A has the same distribution as a conditionally
determined aggregation of random variables, A(X) should be degenerate. But,
since it is randomly induced, one has that A(X) = Â(X, λX). Recall that λX

has the same distribution for any X ∈ Ln
I . If the distribution of λX is not

degenerate, then there exists a function B̂ : In → I such that B̂(x) = Â(x, z) for
any z ∈ Rd. If λX is degenerate with P (λX = z) = 1, then define B̂ : In → I as
B̂(x) = Â(x, z). In both cases, it is clear that A(X) = B̂(X) and A is induced.

Finally, for (4) consider B a degenerate aggregation of random variables such
that A(X) =st B(X) for any X ∈ Ln

I . If for any X ∈ Ln
I there exists x ∈ I

such that P (B(X) = x) = 1, then it is straightforward that P (A(X) = x) = 1
and, therefore, A is degenerate. ⊓⊔

It remains to see if there exists a conditionally determined aggregation such
that it has the same distribution as an induced one but it is not induced. We pro-
vide an example in this regard by using countermonotone (with perfect negative
dependence) random variables.

Example 4. Let A : Ln
I → LI be an aggregation of random variables defined as

A(X) = max(X) for any X such that max(X) is not continuous and A(X) = Y
with Y being a random variable that has the same distribution as max(X)
and such that Y and max(X) are countermonotone if max(X) is continuous.
Then, A has the same distribution as the induced random variable max(X), is
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conditionally determined since A(X) can be expressed as a function of max(X),
that is a function of X, but is not induced.

Now, with all the relations between the different families already studied, we
can represent them as in Figure 1, in which each family is associated to a subset
of the plane and in which the intersection of those sets represent the intersection
of the families.

Degenerate

Induced

=st induced

Conditionally determined

=st as conditionally determined

=st as randomly induced

Randomly induced

Fig. 1. Representation of families of aggregations of random variables.

In addition, the study is also useful to identify the different scenarios that
aggregations of random variables can model. In particular, we have seen that,
in addition to aggregations with random inputs, it is possible to identify the
random vector we are aggregating in order to change the function we apply,
to change the dependence between the inputs and the output and to consider
random parameters. In Figure 2, the resulting aggregations of random variables
that appear when we consider the different scenarios are represented.

7 Conclusions and future work

In this paper, several families of aggregations of random variables are defined,
characterized and their relations are studied. These families can be seen as exam-
ples in which the concept of aggregation of random variables goes further than
to simply apply usual aggregation functions to random inputs. Some examples,
among others, include the application of a real function that changes depending
on the distribution of the input, a procedure that is common in Statistics, and
the incorporation of randomness in the aggregation process by the uncertainty
of fitted parameters.

As an open question, we wonder if this classification still makes sense when
considering the aggregation of other random structures such that stochastic pro-
cesses, random elements in bounded lattices or random sets.
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Identify the random vector

Change the dependence Random parameters

Conditionally determined

=st induced
Randomly
induced

All

All

=st ran-
domly
induced

=st condi-
tionally de-
termined

Fig. 2. Families of aggregations of random variables that appear when identifying the
random vector, changing the dependence and/or considering random parameters.
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