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Abstract. Processing geospatial data requires to manage many sources
of uncertainties; some appear in classical inference problems, some oth-
ers are specific to this setting. The goal of this paper is to study the
management of these uncertainties via standard intervals and sets when
the inference model considered relies on inverse distance weighting. We
provide a general discussion with examples, together with a study of the
associated optimisation problems induced by different sources of uncer-
tainty. We conclude the paper by an illustration on a semi-synthetic use
case, generated according to data recorded via real studies.
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1 Introduction

We consider the difficult problem of modelling and making predictions from
geospatial data, which are subject to many kinds of uncertainty. Over the recent
years, a number of papers addressed this issue [4, 14], focusing in turn on the
representation [5], modelling [6], or propagation [19, 17] of uncertainty.

Uncertainties are commonly separated into two categories: aleatoric (or stochas-
tic) uncertainty is deemed inherent to the modelled phenomenon, whereas epis-
temic uncertainty [10] comes from a lack of information. Yet, distinguishing
between them is neither easy nor operational: for instance, while measurement
error is usually perceived as stochastic, using its uncertainty model on a single
datum makes it epistemic, as this datum value may reasonably be considered as
non-aleatoric. This paper does not aim at discussing large, general taxonomies
of uncertainty, but rather to focus on classical treatments of geospatial prob-
lems, and to discuss the various uncertainties that may occur in the associated
pipelines, from measured data to final representations.
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For this purpose, and for the sake of simplicity, we will focus on intervals and
on a very simple predictive model for geospatial problems, referred to as the In-
verse Distance Weighted model (IDW), which dates back to the late 60s [20] but
remains nevertheless commonly used (see e.g. the review by [13]). This model
is deterministic: it produces precise output predictions when given precise in-
puts, in opposition to geostatistical models such as kriging [12] that can produce
stochastic outputs from precise inputs (i.e., when using their Gaussian process
interpretation). We voluntarily choose this simple yet popular model to avoid
the inherent additional difficulties that come with the explanation of a complex
model. It should also be noted that while we will consider its simplest version,
IDW can be made more complex and flexible, and remains the focus of recent
research [15].

We introduce the basic ideas of IDW and of interval uncertainty in Section 2.
Section 3 discusses the various sources of uncertainty that can arise in standard
geospatial studies, their handling in interval IDW, and illustrates them with the
help of a simplified running example. Finally, Section 4 presents the results of
considering specific uncertainties in the propagation process.

2 Preliminaries

This section presents the basic inverse distance weighting model, and a formali-
sation of interval- or set-valued uncertainty.

2.1 Geospatial data and IDW model

In basic geospatial problems, we assume that we observe n points of coordinates
sj ∈ R2 (within a restricted domain D ⊆ R2), together with a quantity of interest
Z(sj) ∈ R. We therefore have n observations {sj , Z(sj)}. The goal is then to
estimate from these observations the value z(s) at points s where we do not have
information. IDW is a very simple model to achieve this:

z(s) =

{
z(sj) if d = 0∑N

j=1 wj×z(sj)∑N
j=1 wj

else (1)

with wj := d−u
s,sj , ds,sj a distance measure (we typically consider the Euclidean

distance) between points s and sj , and u ∈ R+ a parameter value which sets
how fast weights are decreasing, and can be identified to a smoothing parameter.
For u → 0, we get that z(s) tends to the average value, and for u → ∞, we get
that z(s) tends to the nearest neighbour value.

2.2 Interval and set-valued uncertainty

When it comes to model uncertainties about a quantity X taking values in X ,
the mathematical tools that are probabilities and (convex) sets are arguably two



Geospatial uncertainties: a discussion 3

extremes of the representation spectrum: probabilities amount to assign a unique
value P (A) ∈ [0, 1] to any event A ⊆ X , while providing a set S ⊆ X of possible
values only allows to know whether an event is necessarily true (S ⊆ A), i.e.
implied by S; necessarily false (S ∩ A = ∅), i.e. inconsistent with S; or totally
possible yet not certain (S ∩A ̸= ∅ and S ∩Ac ̸= ∅). This can be formalised by
the two following binary measures:

PS(A) =

{
1 if S ⊆ A,

0 else;
and PS(A) =

{
1 if S ∩A ̸= ∅,
0 else.

In this paper, we mostly consider convex subsets of R, that is, intervals [x, x];
or convex subsets of R2, in which case we will restrict ourselves to rectangles
[x1, x1] × [x2, x2], where xj denotes the projection of x onto the jth dimension
of the space.

Note that a set S can be interpreted in two ways: either as expressing the
imprecise measurement of a fixed, yet unknown quantity, or as being associated
to the set of all probabilities that has S for support, i.e. PS = {P : P (S) =
1}. While in general this does not change how one will compute from them,
this shows that the mathematical model and its interpretation are two different
things, as intervals can be perceived as modelling pure epistemic uncertainty,
or as modelling an unknown probability defined only by its support, possibly
modelling an underlying ill-known aleatoric uncertainty.

3 Uncertainties in geospatial problems: a discussion

In this paper, we consider the simple pipeline described in Figure 1. We discuss
various sources of uncertainties within this pipeline, and how they impact the
handling of the IDW model. Note also that we will not deal explicitly with the
problem of model estimation from data, and will only mention it as a natural
way to build uncertainty in the model (whether in a geostatistical approach or
for deterministic models). Indeed, while model estimation is an important step
of data-driven approach, it is not intrinsically linked to uncertainty (as one could
well pick a single estimate).

Observations
{sj , Z(sj)}

Model (IDW)
Prediction
z(s) at s

Representation

Fig. 1: Classical geospatial treatment pipeline

Two features distinguish this problem from classical uncertainty quantifica-
tion: first, values si are spatial, which should be accounted for in their treatment
(e.g., by modelling spatial dependence); furthermore, the end result should not
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be only a prediction (as would be the case in a standard classification or regres-
sion setting), but a representation as a map. This latter user-oriented step is
particularly important, as the conveyed information may be of a critical nature
(e.g., pollution concentrations in soil as a support for urban planning). Figure 2
provides an illustration of a use case considered in Section 4, where each dot
represents a sampled location, and its colour indicates the pollution level.

Fig. 2: Synthetic use-case for the Loiret department in France: dots represent the
50 sampled locations, colours indicate the pollution level

In the remaining of this section, we also consider the following running ex-
ample to illustrate our various points. Though multiple predictors (covariates)
can be considered in the prediction task, we only consider here geographical
coordinates.

Example 1. Consider the very simple toy problem pictured in Figure 3, where
we have four points and want to evaluate the value in a given point. Coordinates
are explicitly specified in the figure, and outputs and distances are provided in
the associated table. In this case, the resulting estimate with u = 2 is z(s) = 2.7.

x1

x2

0 1 2 3 4 5 6
0

0.5
1

1.5
2

2.5
3

3.5
4

4.5
5

5.5
6

s1

s2

s3

s4

s point si s1 s2 s3 s4
output Z(si) 3 1 5 2
distance ds,si 1.6 2.1 2.7 3.6

Fig. 3: Geospatial toy example
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3.1 Uncertainties in a datum

In the following, we refer to any tuple {si, z(si)} as datum. Two kinds of uncer-
tainties can affect this datum, on the measured quantity of interest and on the
localisation.

Measurement A first kind of uncertainty concerns the measurement z(si) itself.
Such uncertainties usually comes from measurement errors, that arise from the
sensor or even from the situation—for instance, if one wants to measure a con-
centration in a soil, the obtained value will vary according to the soil volume
considered or extracted (see the discussion in [3]). Censored data, i.e., measure-
ments below below the limit of detection (LoD) ŷ of a quantity, also induce
uncertainties in the form of intervals [0, ŷ]. Generally speaking, the measure-
ment then becomes interval-valued, i.e. we have z(si) ∈ [z(si), z(si)]. Should we
be interested in assessing the value z(s) at position s, we would have to compute
the interval [z(s), z(s)] defined by

z(s) =

∑N
j=1 d(s, sj)

−u × z(sj)∑N
j=1 d(s, sj)

−u
, z(s) =

∑N
j=1 d(s, sj)

−u × z(sj)∑N
j=1 d(s, sj)

−u
. (2)

Example 2. Consider Example 1 with the following intervals:

[z(s1), z(s1)] = [2, 4], [z(s2), z(s2)] = [0, 1.5],

[z(s3), z(s3)] = [4.5, 5.5], [z(s4), z(s4)] = [2, 2],

with the second being possibly a censored measurement, and the fourth is precise.
Setting u = 2, we get the interval-valued prediction [z(s), z(s)] = [1.86, 3.38].

Localisation A second uncertainty may come from an ill-known location modelled
here as a box [s]i = [s1i , s

1
i ] × [s2i , s

2
i ]. The cause may be a bad registration, or

a localisation device with limited accuracy. For instance, measuring air quality
in a city through a phone using GPS localisation would cast uncertainty on the
exact location of the measurement point.

The precision of the localisation can vary greatly even within the same set of
recorded data, depending on the GNSS receiver quality, the kind of area (urban,
agricultural, forest , etc), or the data treatment of the localisation process. This
uncertainty can range from centimeters to kilometers [21], with the vast majority
being within the 500 meter range.

Note that in this case, how one can get interval bounds from Equation (1)
when values sj become imprecise is not obvious. First, one has to compute re-
sulting lower/upper bounds over d(s, sj); if d is Euclidean, then this is fairly easy
(for d(s, sj): the closest coordinate to s should be considered for each dimension,
and conversely the furthest for d(s, sj))—see for example [1, proposition 1].

Second, one has to find for which values of d(s, sj) ∈ [d(s, sj), d(s, sj)] the
minimum/maximum of Equation (1) is reached, given a value z(sj). For simplic-
ity, let us consider that wj = d(s, sj)

−u, and note that as all sets are convex and
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all functions are continuous, optimising over [s]j or over [wj , wj ] is equivalent.
We then have to find

z(s) = inf
wj∈[wj ,wj ]

∑N
j=1 wj × z(sj)∑N

j=1 wj

, z(s) = sup
wj∈[wj ,wj ]

∑N
j=1 wj × z(sj)∑N

j=1 wj

. (3)

It can easily be checked that taking the partial derivative of z(s) with respect
to a given wj , we get

∂z′(s)

∂wj
=

z(sj)×
∑N

i=1 wi −
∑N

i=1 wi × z(si)

(
∑N

i=1 wi)2
=

∑N
i=1 wi(z(sj)− z(si))

(
∑N

i=1 wi)2
, (4)

meaning that z(s) is monotone in wj , as the partial derivative does not depend
on it (as z(sj)− z(sj) = 0), but can be either positive (z(s) increasing in wj) or
negative (decreasing), depending on the values taken by the uncertain wi (note
that z(sj)− z(si) can be positive or negative, but are known).
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Fig. 4: Localisation un-
certainty

This means that the solutions to Equation (3) are
obtained on the bounds of intervals [wj , wj ]: they can
reasonably be identified with a search procedure if the
number of imprecise locations is limited, but not if this
latter is high due to the exponential increase of extreme
points. In this latter case, notice also that Equation (1)
is a fraction of two linear functions of wj , with the do-
main of [w]j being bounded and wj ≥ 0,∀j: hence,
one can also use linear fractional programming and the
Charnes-Cooper transform [7] to solve this problem ef-
ficiently.

Example 3. Consider the two sets in Figure 4 for [s]1
and [s]2: we then get

[ds,s1 , ds,s1 ] = [1, 2.23], [ds,s2 , ds,s2 ] = [1.5, 2.92].

Setting u = 2, we then have that [z(s), z(s)] = [2.20, 2.97], with the value 2.20
obtained for ds,s1 = 2.23 and ds,s2 = 1.5, and the value 2.97 for ds,s1 = 1 and
ds,s2 = 2.92.

3.2 Data imperfection

A second kind of data imperfection concerns the population level. These uncer-
tainties mainly come from the fact that places where samples can be taken are
often constrained, e.g., by the situation (for instance, one cannot sample soil
under a building). As such aspects typically require to work at the population
level and to integrate them within the model capabilities, we will only briefly
sketch them.



Geospatial uncertainties: a discussion 7

Outliers Outliers are anomalous measurements, or “out-of-distribution” samples
that can greatly affect the end-result of the inferred values. In our example, this
could correspond to having a measure Z(si) = −10000.

Clearly, a data can be deemed an outlier only with respect to the others,
hence the need to consider the whole population (or a representative sample
thereof). Classical approaches to address this issue either detect the outliers [8]
and possibly remove them, or use statistical approaches robust to outliers [11], for
example replacing a weighted average in Equation (1) by a (weighted) median.
Note that outliers do not really induce additional uncertainty, but they induce
errors (in terms of higher variance or systematic bias) which should be avoided.

Data clustering and sparsity A simple look at Figure 2 shows that some regions
have a high density of sampled values, as opposed to others.

As for outliers, regions of clustered samples do not really induce additional
uncertainties, but their influence should also be mitigated, as their importance
could easily be overestimated, for instance in the IDW model. Sparse regions, on
the other hand, do induce some kind of uncertainty, as predictions are made in
these regions from scarce, less reliable information, at least from a distance-to-
sample perspective. Geostatistical approaches such as kriging [12] typically try to
address this issue by providing confidence intervals and proposing specific (var-
iogram) estimation strategies; one could also think of other strategies such that
using a local density estimation procedure, akin to inverse sampling-intensity
weighting [9].

3.3 Model and prediction uncertainties

Another source of uncertainty comes from the inference process performed when
computing z(s), even when the data and their amount is deemed sufficient to
have reliable inferences.

Model parameters When the model depends on parameters, for instance the
exponent u in the IDW model, it is clear that different parameter choices lead to
different inferences. It seems then natural to allow the parameter to be uncertain
or to vary, so that a sensitivity analysis can be conducted. In our case, this would
amount to consider an interval [u, u] and to compute

z(s) = inf
u∈[u,u]

∑N
j=1 wj × z(sj)∑N

j=1 wj

, z(s) = sup
u∈[u,u]

∑N
j=1 wj × z(sj)∑N

j=1 wj

, (5)

with wj = d−u
s,sj . This optimisation problem is trickier to solve, yet u being here

one-dimensional means that a grid-search is possible.

Prediction uncertainty It is clear that any propagation of uncertainty in the
data or in the model to z(s) induces an uncertainty on the predictions made—
see Equations (2), (3), and (5)), although prediction uncertainty may arise from
other sources such as the assumption that the relation between the input s and
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the observed output z(s) is non-deterministic: this may for instance be due to
error measurements, or more generally to Z(s) being a random variable—note
that this assumption within geostatistics has been discussed in [16], as commonly
used models remain precise for sampled data). Statistical approaches can then
be used to derive confidence or credibility intervals on the predictions, including
for the IDW model [2].

3.4 Representation

As stated above, the final representation is often of a critical importance in
geospatial applications, since produced maps will often be used to make impor-
tant decisions such as where to position new constructions and more generally
for urban planning. It often happens that final representations consist of re-
gions rather than point-wise estimates, as end-users may be interested in such
regions (e.g. aggregation of the results over some administrative districts). Such
representation choices being purely subjective, accounting for the uncertainty
resulting from these choices can be done in various ways.

In the case where one is only interested in the values for regions, all other
things being precise, the problem corresponds to considering a set-valued region
[s], e.g., a square or a region corresponding to some administrative entity, in
which case we can define the bounds

z([s]) = min
s∈[s]

z(s), z([s]) = max
s∈[s]

z(s) (6)

which again may be more or less easy to obtain depending on the nature of the
region and of the model. For instance, a typical way to represent maps is through
raster, i.e., using a grid of regular squares whose size can vary. In general, the
idea is that discretising the representation by computing a partition may have a
significant effect on the final representation.

4 An illustrative semi-synthetic use-case

The following use-case focuses on the spatial prediction of soil organic carbon
stock (denoted OCS, expressed in Mg/ha) in the 0–30 cm layer. The data is
synthetic, and is meant to reproduce the main difficulties encountered in practice
for spatial interpolation (clustering of data, limited number of data, etc.). For
this purpose, we sub-sample a set of data from the soilgrid dataset (version 2)
in [18] by considering the Loiret department in France. In our study, we use a
sub-sample of 50 data points displayed in Figure 2 which corresponds to a case
of sparsely distributed points.

The data is interpolated using IDW and represented through a regular square
grid with cells of 1km sides. Figure 5 shows two different values of the u param-
eter. A classical choice is u = 2; using larger values results in the model getting
close to a Voronoi diagram—as suggested by the case u = 8 displayed in Fig-
ure 5. In our case, we will use u = 4, as we have seen that u = 8 is too strong
and u = 2 too weak.
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(a) u = 2 (b) u = 8

Fig. 5: IDW Interpolation on Loiret dataset with varying u parameter value

We first start with measurement uncertainty: measurements are intervals
[z(s), z(s)], with z(s) = Z(s)−Z(s)×β and z(s) = Z(s)+Z(s)×β. We assume
the level of uncertainty to be homogeneous over our dataset: we set β = 0.1 for
this application.

(a) Lower Bound (b) Upper Bound

Fig. 6: Measurement uncertainty for the Loiret application

In our dataset, the measurements span the interval [35, 50]. As a consequence,
the measurement uncertainty is limited to the [3.5, 5] range, i.e. the differences
between upper and lower measurement bounds are close.

This could have been anticipated from Equation (2), since setting the differ-
ence between lower and upper bounds to a fixed value (which is almost the case
here) results in distances between their weighted averages being the same. This
is hinted by Figure 6: the maps of lower and upper bounds are very similar to
each other, with the main difference being the values.

Location uncertainty can also be treated as an interval. Since we consider 2D
locations, as mentioned in Section 3, the area representing the possible actual
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positions for a given observation is assumed to be a square. Note that we consider
not all observations to be subject to location uncertainty: we randomly select
a number of them, so as to visually exemplify the effect of location uncertainty
in different parts of the map. Finally, even though the area in our use case is
quite large and contains different kinds of environments, we consider location
uncertainty to be homogeneous over the affected observations. Due to the size
of the area, the uncertainty on position will be expressed as a percentage of the
total length of the map.

(a) Minimized values (b) Maximized values

Fig. 7: Pessimistic and optimistic concentration measurements for the Loiret use-
case with observations with uncertain locations

Fig. 8: Measurement uncertainty for the Loiret use-case with observations with
uncertain locations

Figure 8 displays the differences between the two maps in Figure 7. These
differences span the interval [0, 6], with the majority of them being less than 1.
The map also points out where location uncertainty is prominent. It becomes
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obvious that location uncertainty mitigates the impact of an observation on the
interpolation.

5 Conclusion and perspectives

This paper discusses the sources of uncertainties frequently encountered in geospa-
tial studies, focusing on the representation of uncertainty through intervals, and
using the inverse distance weighting model, which remains very popular in the
geospatial literature. More precisely, we show how intervals can be used to rep-
resent these kinds of uncertainty, and provide several examples which give an
intuition of the effects of these uncertainties on the inference made by the model.

This preliminary study, however, can be extended in various directions. We
may investigate how intervals compare to probabilities or more general uncer-
tainty models. Another important problem is that of estimating parameters from
data pervaded with uncertainty. Last, when uncertainty is propagated through-
out the model (which therefore corresponds to sets of interpolation functions),
how the quality of its predictions can be fairly assessed remains open.
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ber: ANR-22-CE56-0006).
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