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Abstract. This work focuses on the studying of metric-based fuzzy
equivalence and inequality relations within the framework of fuzzy logic.
Namely, our emphasis lies in the examination of transitive fuzzy equiva-
lence and inequality relations, governed by the Archimedean t-norm and
t-conorm, respectively. Subsequently, we study aggregation operators,
which preserve the properties of initial fuzzy equivalence and inequal-
ity relations, and illustrate their construction by employing the additive
generators for different t-norms and t-conorms. Our research contributes
to a deeper understanding of construction of metric-based fuzzy relations
and their aggregation. This knowledge holds practical implications across
diverse domains, enabling effective applications in real-world scenarios.

Keywords: Fuzzy equivalence relation · Fuzzy inequality relation · Ag-
gregation operator.

1 Introduction

The concept of fuzzy equivalence relations was first introduced by Zadeh in
1974 [10]. Since then, extensive research has been conducted in this field, with
notable contributions from various scholars such as [1], [7], [9]. The concept
of fuzzy relations holds a pivotal role in addressing various challenges inherent
in applied sciences, particularly within domains such as artificial intelligence,
decision making, image processing, operations research, data mining and many
others (see eg. [2], [4], [3], [5]).

In our work, we provide an overview of fundamental concepts related to t-
norms, t-conorms, and involution. Following this introduction, we define fuzzy
equivalence relations and demonstrate how they can be constructed using rele-
vant t-norm additive generators and crisp metrics. Additionally, we define fuzzy
inequality relations and illustrate their construction based on relevant t-conorms
additive generators and crisp metrics.

⋆ This research is part of project PID2022-139248NB-I00 funded by
MCIN/AEI/10.13039/501100011033 and ”ERDF A way of making Europe”.
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Furthermore, our research delves into aggregation of fuzzy equivalence and
inequality relations. We offer a comprehensive examination of how these op-
erators are constructed, providing proof of their formulation and detailing the
process for deriving them for any equivalence and inequality. By elucidating the
mechanisms underlying aggregation operators, we enhance our understanding of
their significance in both theoretical frameworks and practical decision-making
scenarios.

Overall, this work aims to provide a comprehensive understanding of metric-
based fuzzy equivalence and inequality relations. Additionally, it explores ag-
gregation operators designed to generate novel fuzzy equivalence and inequality
relations from the initial fuzzy relations. The work provides also multiple exam-
ples which are aimed to be used in practical applications.

The paper is structured as follows. In Section 2, we commence by introducing
the foundational principles of fuzzy logic that are used in the paper. Specifically,
we introduce triangular norms, triangular conorms and subsequently explore
their construction using additive generators. Section 3 is devoted to the fuzzy
equivalence relation. Fuzzy inequality relations are explored in Section 4. Finally,
in Section 5, we conclude the paper.

2 Preliminaries

We start with the definition of a t-norm which represents a generalized con-
junction in fuzzy logic:

Definition 1. [6] A triangular norm (t-norm for short) is a binary operation
T on the unit interval [0, 1], i.e. a function T : [0, 1]2 → [0, 1] such that for all
x, y, z ∈ [0, 1] the following four axioms are satisfied:

(T1) Commutativity: T (x, y) = T (y, x);
(T2) Associativity: T (x, T (y, z)) = T (T (x, y), z);
(T3) Monotonicity: T (x, y) ≤ T (z, y), when x ≤ z;
(T4) Boundary condition: T (x, 1) = x.

Some of often used t-norms are mentioned below:

– Tmin(x, y) = min (x, y) minimum t-norm;
– TP (x, y) = x · y product t-norm;
– T L(x, y) = max (x + y − 1, 0)  Lukasiewicz’s t-norm;
– Hamacher’s t-norm is defined as follows:

TH
λ (x, y) =


0, if λ = x = y = 0

TD(x, y), if λ = ∞
xy

λ+(1−λ)(x+y−xy) , otherwise.

A t-norm T is called Archimedean if and only if, for all pairs (x, y) ∈ (0, 1)2,
there is n ∈ N such that T (n)(x) = T (x, ..., x) < y. Product,  Lukasiewicz and
Hamacher t-norms are Archimedean while minimum t-norm is not.

Let us proceed with other fuzzy logic operators called an involution and a
t-conorm.
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Definition 2. [6] An involution is a function N : [0; 1] → [0; 1], such that for
all x, y ∈ [0; 1] it holds:

(N1) N(N(x)) = x;
(N2) If x ≤ y, then N(x) ≥ N(y).

Definition 3. [6] A function S : [0; 1]× [0; 1] → [0; 1] is a t-conorm if it satisfies
the following properties for all x, y, z ∈ [0; 1]:

(S1) Commutativity: S(x, y) = S(y, x);
(S2) Monotonicity: S(x, y) ≤ S(z, y) when x ≤ z;
(S3) Associativity: S(x, S(y, z)) = S(S(x, y), z);
(S4) Boundary condition: S(x, 0) = x.

Some examples of t-conorms that are dual to previously mentioned t-norms:

– SM (x, y) = max (x, y) maximum t-conorm;
– SP (x, y) = x + y − x · y product t-conorm;
– SL(x, y) = min (x + y, 1)  Lukasiewicz’s t-conorm;
– Hamacher’s t-conorm is defined as follows

SH
λ (x, y) =


1, if λ = 0, x = y = 1
SD(x, y), if λ = ∞
x+y−xy−(1−λ)xy

1−(1−λ)xy , otherwise.

We proceed recalling an important tool for the construction and study of t-
norms involving single argument real function (additive generator) and addition.
Later we use the same tool for constructing fuzzy equivalence relations. Similar
to the t-norm additive generator we will define additive generator of a t-conorm
that later will be used in construction of fuzzy inequality relations.

Definition 4. [6] Let f : [x, y] → [c, d] be a monotone function, where [x, y]
and [c, d] are closed subintervals of the extended real line [−∞,∞]. The pseudo-
inverse function f (−1) : [c, d] → [x, y] of f is defined by

f (−1)(y) =

 sup{x ∈ [x, y] | f(x) < y}, if f(x) < f(y),
sup{x ∈ [x, y] | f(x) > y}, if f(x) > f(y),
x, if f(x) = f(y).

Definition 5. [6] An additive generator g : [0, 1] → [0,∞] of a t-norm T is
a strictly decreasing function which is also right-continuous in 0 and satisfies
g(1) = 0, such that for all (x, y) ∈ [0, 1]2 we have

g(x) + g(y) ∈ Ran(g) ∪ [g(0),∞],

T (x, y) = g(−1)(g(x) + g(y)).

where Ran(g) is the range of g, g(−1) - pseudo-inverse.

Examples of additive generators g : [0, 1] → [0,∞] and their pseudo-inverse
g(−1) : [0,∞] → [0, 1] functions of previously mentioned t-norms:
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– Additive generator gp and it’s pseudo-inverse g
(−1)
p of a product t-norm:

gp(x) =

{
− lnx, x ̸= 0
∞, x = 0;

g(−1)
p (y) =

{
e−y, y ̸= ∞
0, y = ∞.

– Additive generator g L and it’s pseudo-inverse g
(−1)
 L of a  Lukasiewicz’s t-norm:

g L(x) = 1 − x;

g
(−1)
 L (y) =

{
1 − y, y ∈ [0, 1]
0, otherwise .

– Additive generator gH
λ

and it’s pseudo-inverse g
(−1)
H

λ
: of a Hamacher’s t-

norm:

gH
λ

(x, y) =

{ 1−x
x , if λ = 0

ln λ+(1−λ)x
x , otherwise;

g
(−1)
H

λ
=

{ 1
1+y , if λ = 0

λ
ey−1+λ , otherwise.

Definition 6. [6] An additive generator g : [0, 1] → [0,∞] of a t-conorm S
is a strictly increasing function which is also left-continuous in 1 and satisfies
g(0) = 0, such that for all (x, y) ∈ [0, 1]2 we have

g(x) + g(y) ∈ Ran(g) ∪ [g(1),∞],

S(x, y) = g(−1)(g(x) + g(y)).

where Ran(g) is the range of g, g(−1) - pseudo-inverse.

Examples of additive generators g : [0, 1] → [0,∞] and their pseudo-inverse
g(−1) : [0,∞] → [0, 1] of previously mentioned t-conorms:

– Additive generator gp and it’s pseudo-inverse g
(−1)
p of a product t-conorm

gp(x) =

{
− ln (1 − x), x ̸= 1
∞, x = 1;

g(−1)
p (y) =

{
1 − e−y, y ̸= ∞
1, y = ∞.

– Additive generator g L and it’s pseudo-inverse g
(−1)
 L of a  Lukasiewicz’s t-

conorm
g L(x) = x;

g
(−1)
 L (y) =

{
y, y ∈ [0, 1]
1, otherwise .
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– Additive generator gH
λ

and it’s pseudo-inverse g
(−1)
H

λ
of a Hamacher’s t-

conorm

gH
λ

(x) =

{
x

1−x , if λ = 0

ln λ+(1−λ)(1−x)
1−x , otherwise;

g
(−1)
H

λ
(y) =

{ x
1+x , if λ = 0

1 − λ
ex−1+λ , otherwise.

3 Fuzzy equivalence relation

We continue with an overview of basic definitions and results on fuzzy equiv-
alence relations.

Definition 7. (see e.g. [7], [10]) A fuzzy binary relation R on a set M is a
mapping R : M ×M → [0, 1].

Definition 8. (see e.g. [9]) A fuzzy binary relation E on a set M is called a
fuzzy equivalence relation with respect to a t-norm T (or T -equivalence), if and
only if the following three axioms are fulfilled for all x, y, z ∈ M :

1. E(x, x) = 1 reflexivity;
2. E(x, y) = E(y, x) symmetry;
3. T (E(x, y), E(y, z)) ≤ E(x, z) T -transitivity.

The following result establishes principles of construction of fuzzy equivalence
relations using pseudo-metrics.

Theorem 1. [1] Let T be a continuous Archimedean t-norm with an additive
generator g. For any pseudo-metric d, the mapping

Ed(x, y) = g(−1)(min(d(x, y), g(0)))

is a T -equivalence.

Let us consider 3 examples of fuzzy equivalences that are constructed using
additive generators of previously mentioned t-norms:

Example 1. [ T -equivalence for product t-norm ]

EP (x, y) = e−d(x,y).

Example 2. [ T -equivalence for  Lukasiewicz’s t-norm ]

EL(x, y) = max(1 − d(x, y), 0).

Example 3. [ T -equivalence for Hamacher’s t-norm ]

EHλ
(x, y) =

{
1

1+d(x,y) , if λ = 0
λ

ed(x,y)−1+λ
, if λ ∈]0;∞].
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Fig. 1. T -equivalences E(15, y) for product,  Lukasiewicz’s, and Hamacher’s (with dif-
ferent λ) T -norms.

Now the question is how could we combine equivalences of one type effectively.
The aggregation operator plays a crucial role by mathematically fusing diverse
pieces of information into a consolidated representation. The choice of the ag-
gregation function should be carefully tailored to the specific characteristics of
the equivalences:

Definition 9. (see e.g. [9]) A function

A : ∪n∈N [0, 1]
n → [0, 1]

is called an aggregation operator if it fulfills the following properties:

(A1) A(x1, ..., xn) ≤ A(y1, ..., yn) whenever xi ≤ yi for all i ∈ 1, ..., n;
(A2) A(x) = x for all x ∈ [0, 1];
(A3) A(0, ..., 0) = 0 and A(1, ..., 1) = 1.

Each aggregation operator A can be represented by a family (A(n))n∈N of
n-ary operations, i.e. functions A(n)(x1, ..., xn) = A(x1, ..., xn).

Continuing, the definition of a subadditive function becomes paramount in
metric-based fuzzy equivalence aggregation.

Definition 10. (see e.g. [9]) A function F : [0, c]
n → [0, c] is subadditive on

[0, c], if the following inequality holds for all xi, yi ∈ [0, c] with xi + yi ∈ [0, c]:

F (x1 + y1, ..., xn + yn) ≤ F (x1, ..., xn) + F (y1, ..., yn).

The next theorem formulates the main result for metric-based fuzzy equiva-
lence aggregation, consolidating findings from [9] into a unified statement.
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Theorem 2. Consider a continious, Archimedian t-norm T with an additive
generator g. Furthermore, let A : ∪n∈N [0, 1]

n → [0, 1] be an aggregation oper-
ator. Then A preserves T -transitivity of fuzzy relations Ri : Xi × Xi → [0, 1],
where i ∈ 1, ..., n, if and only if the aggregation operator H : ∪n∈N [0, c]

n → [0, c]
defined by

H(z1, ..., zn) = g(A(g−1(z1), ..., g−1(zn))) (1)

for all n ∈ N and all zi ∈ [0, c] with i ∈ 1, ..., n is subadditive on [0, c]
n
.

Proof. First let us prove that if A preserves T -transitivity then it leads to H
being subadditive.

First, we show that if an aggregation operator A preserves T -transitivity
then T (A(x1, ..., xn),A(y1, ..., yn)) ≤ A(T (x1, y1), ..., T (xn, yn)) holds for every
xi, yi ∈ [0, 1], where i ∈ {1, . . . , n}.
Let X1 × X2 × ... × Xn contains at least three elements a = (a1, ..., an); b =
(b1, ..., bn); c = (c1, ..., cn). Then we define a T -transitive binary fuzzy relation Ri

on Xi, i ∈ {1, . . . , n}, by Ri(ai, bi) = Ri(bi, ai) = xi, Ri(bi, ci) = Ri(ci, bi) = yi
and T (xi, yi) = Ri(ai, ci) = Ri(ci, ai). Further let Ri(d, d) = 1 for all d ∈ Xi

and Ri(d, e) = 0 for all d ̸= e and for d or e different from ai, bi, ci. For proving
T -transitivity of Ri, we have to show that the following inequality holds for all
x, y, z ∈ Xi: T (Ri(x, y), Ri(y, z)) ≤ Ri(x, z). If any of the arguments x, y or z
belongs to Xi \ {ai, bi, ci} the inequality is trivially fulfilled. Now we prove the
T -transitivity of Ri for arguments x, y, z ∈ {ai, bi, ci}:

T (Ri(ai, bi), Ri(bi, ci)) = T (xi, yi) = Ri(ai, ci),

T (Ri(bi, ci), Ri(ci, ai)) = T (yi, T (xi, yi)) ≤ min (xi, yi) ≤ xi = Ri(bi, ai),

T (Ri(ci, ai), Ri(ai, bi)) = T (T (xi, yi), xi) ≤ min (xi, yi) ≤ yi = Ri(ci, bi).

The other three inequalities are similar to the previous ones.
Thus, for arbitrary x = (x1, ..., xn), y = (x1, ..., xn) ∈ [0, 1]n we can find T -
transitive binary fuzzy relations Ri on Xi which fulfills xi = Ri(ai, bi), yi =
Ri(bi, ci). Therefore, taking into account that A preserves T -transitivity of fuzzy
relations Ri : Xi ×Xi → [0, 1], we conclude

T (A(x1, ..., xn),A(y1, ..., yn)) =

= T (A(R1(a1, b1), ..., Rn(an, bn)),A(R1(b1, c1), ..., Rn(bn, cn))) =

= T (R(a, b), R(b, c)) ≤ R(a, c) = A(R1(a1, c1), ..., Rn(an, cn)) =

= A(T (x1, y1), ..., T (xn, yn)).

Now we can rewrite

T (A(x1, ..., xn),A(y1, ..., yn)) ≤ A(T (x1, y1), ..., T (xn, yn))

as

g(−1) (min{g(0), g(A(x1, . . . , xn)) + g(A(y1, . . . , yn))}) ≤

≤ A
(
g(−1) (min{g(0), g(x1) + g(y1)}) , . . . , g(−1) (min{g(0), g(xn) + g(yn)})

)
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Consider some n ∈ N . Note that for arbitrary ui, vi ∈ [0, c] and i ∈ {1, . . . , n}
with ui + vi ∈ [0, c] and i ∈ {1, . . . , n}, there exist unique xi, yi ∈ [0, 1] such that
ui = g(xi) and vi = g(yi) for all i ∈ {1, . . . , n}. Moreover, applying g to both
sides of last inequality, we get

min{(g(0), g(A(x1, ..., xn)) + g(A(y1, ..., yn)))} ≥

≥ g(A(g(−1)(u1 + v1), ..., g(−1)(un + vn)))

Now let’s define H(n) : [0, c]
n → [0, c] by

H(n)(u1, ..., un) = g(A(g(−1)(u1), ..., g(−1)(un))), (2)

then H(n) is non-decreasing mapping fulfilling

H(n)(0, ..., 0) = g(A(1, ..., 1)) = g(1) = 0,

H(n)(c, ..., c) = g(A(0, ..., 0)) = g(0) = c,

H(n)(u1 + v1, ..., un + vn) ≤ min{(g(0),H(n)(u1, ..., un) + H(n)(v1, ..., vn))} ≤

≤ H(n)(u1, ..., un) + H(n)(v1, ..., vn),

i.e., for arbitrary H(n) is n-ary aggregation operator, which is subadditive on
[0, c].

Now let us prove that if H is subadditive then A preserves T -transitivity of
fuzzy relations.
For a given subadditive aggregation operator H :

⋃
n∈N [0, c]

n → [0, c], define
A :

⋃
n∈N [0, 1]

n → [0, 1] by

A(x1, ..., xn) = g(−1)(H(g(x1), ..., g(xn))).

Evidently, A is an aggregation operator. Due to subadditivity of H we get

H(u1 + v1, ..., un + vn) ≤ H(u1, ..., un) + H(v1, ..., vn)

and that inequality can be rewritten using A as

g(A(g(−1)(u1 + v1), ..., g(−1)(un + vn))) ≤

≤ g(A(g(−1)(u1), ..., g(−1)(un))) + g(A(g(−1)(v1), ..., g(−1)(vn)))

by applying g(−1) for both sides of the inequality we get

A(T (x1, y1), ..., T (xn, yn)) ≥ T (A(x1, ..., xn),A(y1, ..., yn)).

Now we will show, that because of the last inequality, A preserves T -transitivity.
Therefor we have to show that R̃ = A(R1, ..., Rn) is T -transitive for some binary,
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T -transitive relations Ri on Xi with i ∈ {1, . . . , n} and some n ∈ N .
Consider arbitrary a, b, c ∈ X1 × ...×Xn, then we get

T (R̃(a, b), R̃(b, c)) =

= T (A(R1(a1, b1), ..., Rn(an, bn)),A(R1(b1, c1), ..., Rn(bn, cn))) ≤

≤ A(T (R1(a1, b1), R1(b1, c1)), ..., T (Rn(an, bn), Rn(bn, cn))) ≤

≤ A(R1(a1, c1), ..., Rn(an, cn)) = R̃(a, c).

Thus we obtain the following formula for finding an aggregation operator A
for any fuzzy equivalence relation.

Corollary 1. Let A : ∪n∈N [0, 1]
n → [0, 1] be an aggregation operator defined

as:

A(x1, ..., xn) = g(−1)(min (g(0),

n∑
i=1

pig(xi)),

where

– g - additive generator;
– pi - weights such that 1 ≤

∑n
i=1 pi,

then E((x1, ..., xn), (y1, ..., yn)) = A(E1(x1, y1), E2(x2, y2), ..., En(xn, yn)) is the
fuzzy equivalence relation (T -equivalence) if Ei are fuzzy equivalence relations
(T -equivalence) for all i = 1, ..., n.

Some examples of aggregation operators A for previously mentioned fuzzy
equivalences, where pi are weights such that 1 ≤

∑n
i=1 pi:

– Ap(Ep(x1, y1), Ep(x2, y2), ..., Ep(xn, yn)) = e−
∑n

i=1 pid(xi,yi) aggregation op-
erator of Ep defined as in Example 1;

– Aggregation operator of E L defined as in Example 2 is defined as follows:

A L(E L(x1, y1), ..., E L(xn, yn)) = 1−min (1,

n∑
i=1

pi · (1 − max (0, 1 − d(xi, yi))));

– Aggregation operator of EH defined as in Example 3 is defined as follows

AHλ
(EH(x1, y1), EH(x2, y2), ..., EH(xn, yn)) =

{
1

1+
∑n

i=1 pid(xi,yi)
, λ = 0

λ

e
∑n

i=1
pid(xi,yi)−1+λ

, λ ̸= 0.

4 Fuzzy inequality relations

We proceed with an overview of basic definitions and results on fuzzy inequal-
ity relations, dual operation to equivalence relations.

Definition 11. A fuzzy binary relation D on a set S is called a fuzzy inequality
relation with respect to a t-conorm S (or S-inequality), if and only if the following
three axioms are fulfilled for all x, y, z ∈ M :
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1. D(x, x) = 0 reflexivity;

2. D(x, y) = D(y, x) symmetry;

3. D(x, z) ≤ S(D(x, y), D(y, z)) S-transitivity.

The following result establishes principles of construction of fuzzy inequality
relations using pseudo-metrics.

Theorem 3. Let S be a continuous Archimedean t-conorm with an additive
generator g. For any pseudo-metric d, the mapping

Dd(x, y) = g(−1)(min(d(x, y), g(1)))

is a S-inequality.

Let us consider 3 examples of fuzzy inequalities that are constructed using
additive generators of previously mentioned t-conorms:

Example 4. [S-inequality for product t-conorm ]

DP (x, y) = 1 − e−d(x,y).

Example 5. [S-inequality for  Lukasiewicz’s t-conorm ]

DL(x, y) = min (1, d(x, y)).

Example 6. [S-inequality for Hamacher’s t-conorm ]

DHλ
(x, y) =

{
d(x,y))

1+d(x,y) , if λ = 0

1 − λ
ed(x,y)+λ−1

, λ ∈]0;∞[.

In the figure 2 we see the graphics of these inequality relations.

Similar to fuzzy equivalences, we can construct an aggregation operator for
fuzzy inequalities as well. Unlike aggregation operator of fuzzy equivalence, the
aggregation operator of fuzzy inequality should remain property of S-transitivity.
The proof is similar to one mentioned above, and we get the following formula
for aggregation operator of fuzzy inequalities:

Theorem 4. Consider a continuous, Archimedian t-conorm S with an additive
generator g. Furthermore, let A : ∪n∈N [0, 1]

n → [0, 1] be an aggregation oper-
ator. Then A preserves S-transitivity of fuzzy relations Ri : Xi × Xi → [0, 1],
where i ∈ 1, ..., n, if and only if the aggregation operator H : ∪n∈N [0, c]

n → [0, c]
defined by

H(z1, ..., zn) = g(A(g−1(z1), ..., g−1(zn))) (3)

for all n ∈ N and all zi ∈ [0, c] with i ∈ 1, ..., n is subadditive on [0, c]
n
.
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Fig. 2. S-inequality D(15, y) for product,  Lukasiewicz’s, and Hamacher’s (with differ-
ent λ) T -conorms.

Corollary 2. Let A : ∪n∈N [0, 1]
n → [0, 1] be an aggregation operator defined

as:

A(x) = g(−1)(min (g(1),

n∑
i=1

pig(xi))),

where

– g - additive generator of a t-conorm S;

– pi - weights such that 1 ≤
∑n

i=1 pi,

then D((x1, ..., xn), (y1, ..., yn)) = A(D1(x1, y1), D2(x2, y2), ..., Dn(xn, ..., xn)) is
the fuzzy inequality relation (S-inequality) if Di are fuzzy inequality relations
(S-inequalities) for all i = 1, ..., n.

Some examples of aggregation operators A for previously mentioned fuzzy
inequalities:

– Ap(Dp(x1, y1), Dp(x2, y2), ..., Dp(xn, yn)) = 1− e−
∑n

i=1 pid(xi,yi) aggregation
operator of Dp defined as in Example 4;

– A L(D L(x1, y1), D L(x2, y2), ..., D L(xn, yn)) = min (1,
∑n

i=1 pid(xi, yi)) aggre-
gation operator of D L defined as in Example 5;

– Aggregation operator of DH defined as in Example 6 is defined as follows:

AH(DH(x1, y1), ..., DH(xn, yn)) =

{ ∑n
i=1 pid(xi,yi))

1+
∑n

i=1 pid(xi,yi))
, λ = 0

1 − λ

e
∑n

i=1
pid(xi,yi)−1+λ

, λ ̸= 0.
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5 Conclusions

In summary, our research has provided valuable insights into the theoretical
aspects of fuzzy logic, particularly focusing on fuzzy equivalence and inequality
relations, as well as their aggregation operators. We have contributed by proving
formulas for constructing aggregation operators for fuzzy equivalences and deriv-
ing similar concepts for aggregation operators for inequality relations. Through
rigorous analysis, we have deepened our understanding of metric-based fuzzy re-
lations, laying a solid foundation for future research and practical applications in
decision-making processes. We believe that our contributions will inspire further
advancements in this field and pave the way for innovative applications of fuzzy
relations in various domains.
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