
Revisiting immediate consequences operator
on first-order logic programming⋆

Jesús Medina and José Antonio Torné-Zambrano

Department of Mathematics. University of Cádiz. Spain
{jesus.medina, joseantonio.torne}@uca.es

Abstract. Logic programming is a fundamental paradigm based on for-
mal logic with relevant features in the design of automatic intelligence
systems. The computation of the consequences from a given dataset,
modeled by logic rules, is given by the immediate consequences opera-
tor. This paper clarifies the definition of this operator in the first-order
logic programming framework and remarks the consideration of two sets
in the computation of the immediate consequences operator.

1 Introduction

Among all the generalizations of logic programming, it stands out the resid-
uated and multi-adjoint approaches [4,14], which are able to capture different
extensions developed for different purposes such as Generalized Annotated Logic
Programs [11], Fuzzy Logic Programming [17], Hybrid Probabilistic Logic Pro-
grams [5], and Possibilistic Logic Programming [?]. In [14], a propositional ap-
proach considering the multi-adjoint philosophy was studied. Later, a first-order
extension arose [13] as a generalization of the propositional one, which enables
to deal with more complex sentences and reasonings. For example, it allows the
use of a huge variety of different adjoint pairs in the construction of the rules of
a logic program. Consequently, a much more flexible framework is achieved for
the processing of information and the modeling of different scenarios.

The immediate consequences operator is essential to define the semantics of
a logic program [12]. Indeed, it is basic for the fixed-point semantics, in which
models of a program are characterized through the post-fixed points of this
operator and the least model of the program can be obtained by iterating the
immediate consequences operator an ordinal number of times, starting from the
least interpretation.

The use of substitution mappings (or simply substitutions) is also a funda-
mental notion in first-order logic [7,?,16]. The definition of an arbitrary interpre-
tation on general formulas considers substitutions; the matching of formulas also

⋆ Partially supported by the project PID2019-108991GB-I00 funded by MI-
CIU/AEI/10.13039/501100011033, the project PID2022-137620NB-I00 funded by
MICIU/AEI/10.13039/501100011033 and FEDER, UE, by the grant TED2021-
129748B-I00 funded by MCIN/AEI/10.13039/501100011033 and European Union
NextGenerationEU/PRTR, and by the research and transfer program of the Univer-
sity of Cádiz in project PR2022-057

2 J. Medina, J.A. Torné-Zambrano

needs substitutions (unifiers); and the definition of the immediate consequences
operator on first-order logic [16] requires substitutions too, among others. How-
ever, the kind of these substitutions in this last definition and the proper defini-
tion of immediate consequences operator need diverse clarifications. This paper
will prove that the substitutions cannot be arbitrary ones, but ground in the vari-
ables of the rules. Moreover, we will show that the definition of the immediate
consequences operator is based on the computation of two suprema on two no-
table sets. These clarifications will be essential in future extensions and advances
in residuated and multi-adjoint first-order logic programming approaches.

The structure of the paper is as follows. In Section 2 some preliminaries
results about multi-adjoint algebra and first-order multi-adjoint logic program-
ming will be recalled. Section 3 presents the main contribution of the paper
with more clarified definitions of the immediate consequences operator, together
with the characterization of the models as post-fixed points of the immediate
consequence operator and an illustrative example. Finally, in Section 4 some
conclusions and future work are given.

2 Preliminaries

In this section we will present the algebraic structure that we are going to use in
the paper and we will recall the main notions of multi-adjoint logic programming.

2.1 Multi-adjoint algebra

The considered operators in this algebra are the adjoint pairs. Each adjoint pair
is composed of a conjunctor and an implication, which is a generalization of a
t-norm and its residuated implication. We will write the operators defined on an
algebraic structure (poset or lattice) with a dot, and their symbols in a graded
set without dot.

Definition 1 ([16]). Let ⟨P,⪯⟩ be a poset and (←̇, &̇) a pair of binary operators
in P such that

1. The operator &̇ is increasing in both arguments.
2. The operator ←̇ is increasing in the first argument (consequent) and de-

creasing in the second one (antecedent)
3. The adjoint property holds, i.e., x ⪯ (z←̇y) if and only if (x&̇y) ⪯ z, for all

x, y, z ∈ P .

Then, we say that (←̇, &̇) forms an adjoint pair in ⟨P,⪯⟩.

Now, the definitions of graded set and multi-adjoint lattice are recalled.

Definition 2 ([14]). A graded set is a set Ω with a function which assigns to
each element ω ∈ Ω a number n ≥ 0, called the arity of ω.

Definition 3 ([14]). Let ⟨L,⪯⟩ be a complete lattice. A multi-adjoint lattice L
is a tuple (L,⪯,←1,&1, . . . ,←n,&n) satisfying

Revisiting first-order immediate consequences operator 3

1. ⟨L,⪯⟩ is bounded, i.e., it has a bottom ⊥ and a top ⊤ elements.
2. (←̇i, &̇i) is an adjoint pair in ⟨L,⪯⟩, for all i ∈ {1, . . . , n}.
3. ⊤&̇iϑ = ϑ&̇i⊤ = ϑ, for all ϑ ∈ L and i ∈ {1, . . . , n}.

Next, we recall the definition of multi-adjoint Ω-algebra, where the definition
of Ω-algebra can be consulted in [14].

Definition 4 ([16]). Let Ω be a graded set containing the operator symbols ←i

and &i, for i ∈ {1, . . . , n}, and possibly some extra operators, and let L be
an Ω-algebra on the complete lattice ⟨L,⪯⟩. We say that L is a multi-adjoint
Ω-algebra with respect to the pairs (←i,&i), for i ∈ {1, . . . , n}, if L = (L,⪯
, ←̇1, &̇1, . . . , ←̇n, &̇n) is a multi-adjoint lattice.

Now, an example of multi-adjoint Ω-algebra is introduced.

Example 1. Let Ω =
{
←P,&P,←G,&G,∧ L,@(2,1)

}
be a graded set and L =

⟨[0, 1], I⟩ an Ω-algebra, where &̇P and &̇G are the product and Gödel t-norms
respectively, together with their residuated implications. In addition, we are
considering the Lukasiewicz conjunctor ∧̇ L and the aggregator @̇(2,1). It is easy

to prove that L = ([0, 1],≤, ←̇P, &̇P, ←̇G, &̇G) is a multi-adjoint lattice, and
then L is a multi-adjoint Ω-algebra. These operators are defined as

&̇G(x, y) = min {x, y} z←̇Gy =

{
1 if y ≤ z

z otherwise

&̇P(x, y) = x · y z←̇Py =

{
1 if y ≤ z
z
y otherwise

∧̇ L(x, y) = max {0, x + y − 1} @̇(2,1) (x, y) =
2x + y

3

for all x, y, z ∈ [0, 1]. ⊓⊔

2.2 Multi-adjoint logic programming

First of all, we will present the syntax of multi-adjoint logic programming. Di-
verse relevant notions such as alphabet, language and well-formed formulas can
be consulted in [12,16]. Next, in order to fix the notation and the starting point,
we recall the definition of logic program, which is a set of rules and facts in a con-
sidered first-order extended language Fe, which is the corresponding Ω-algebra
of formulas freely generated from the disjoint union of the set of the symbols
from the first-order language and the lattice [9,16]. From now on, a graded set Ω
containing conjunctor, disjunctor and aggregator symbols, a multi-adjoint lattice
L = (L,⪯, ←̇1, &̇1, . . . , ←̇n, &̇n) and its Ω-algebra L will be fixed.

Definition 5 ([16]). A multi-adjoint logic program is a set P of weighted rules

of the form ⟨H ←i B;ϑ⟩, also denoted as H
ϑ←i B, such that:

4 J. Medina, J.A. Torné-Zambrano

1. The consequent of the implication, H, is an atom called the head.
2. The antecedent of the implication, B, is called the body, and it is a for-

mula built from atoms B1, . . . , Bn, with 0 ≤ n, by the use of conjunctors,
disjunctors and aggregators.

3. The confidence factor ϑ is an element, a truth-value of L.

A program is completed with particular observations in the form of facts,
which are rules with body ⊤. Moreover, free occurrences of variables in the pro-
gram are considered to be universally quantified.

Note that the ⊤ element in the body of a fact is considered a constant
of the first-order language. Furthermore, the formula B of the body of a rule
can be written from its more basic elements as @ [B1, . . . , Bn], where @ is the
aggregation of the symbols of operators appearing in B, and B1, . . . , Bn are the
atoms of B. Next, we present an example of logic program, which will be used
later in the next section.

Example 2. Consider the multi-adjoint Ω-algebra L introduced in Example 1,
where each operator symbol ω in the graded set Ω has been associated with its
respective interpretation ω̇, with the aim of simplifying the notation. With the
algebraic structure fixed, we can consider the following program P.

R1 : p(a, Y)
0.8←G @(2,1) (q(X)&Gr(Y), s(X, b))

R2 : p(X, b)
0.9←P t(X) ∧ L r(Y)

R3 : q(X)
0.2←P t(X)

In each particular case, specific values are “measured” to some variables.
These variables are called hypotheses and are formally expressed as facts. For
example, we can consider the following facts associated with the ground atoms
r(b), s(a, b) and t(a),

R4 : r(b)
0.6← ⊤

R5 : s(a, b)
0.8← ⊤

R6 : t(a)
0.6← ⊤

The set composed of the previous rules R1, . . . , R6 is an example of multi-
adjoint logic program. ⊓⊔

Now, the semantics of first-order logic programming will be recalled. The
following notion provides a meaning (representative truth-value) to syntactic
formulas of the logic framework.

Definition 6 ([16]). Let P be a multi-adjoint logic program. An interpretation
is a mapping from the set of ground atoms to the lattice of truth-values ⟨L,⪯⟩.
The set of all interpretations of the formulas defined by the Ω-algebra F in the
Ω-algebra L is denoted as IL.

Revisiting first-order immediate consequences operator 5

Although interpretations are defined for ground atoms, thanks to the homo-
morphic extension theorem [14], we can extend the definition of an interpreta-
tion I for all ground formulas of the language, what we will denote as Î. Besides,
taking into account that all formulas are universally closed, we can extend the
definition of an interpretation I for a non-ground formula A as follows.

Î(A) = inf{Î(Aξ) | Aξ is a ground instantiation of A}

The main notion of the semantics in logic programming is the definition of
model.

Definition 7 ([16]). Given an interpretation I ∈ IL, a weighted rule ⟨A←i B, ϑ⟩
is satisfied by I if and only if ϑ ⪯ Î (A←i B). An interpretation I ∈ IL is a
model of a multi-adjoint logic program P if and only if all weighted rules in P
are satisfied by I.

3 Analyzing immediate consequences operator

Fixed-point semantics was studied in the Boolean and fuzzy settings [12,16] in
order to compute the least model of a logic program, which provides the most
relevant information that it is possible to extract from the program, and can be
used for instance in automatic recommendation systems.

This special semantics is based on the immediate consequences operator. This
operator aggregates, for every ground atom A, the information given by each
rule with head H satisfying that A and H unify. Notice that, given a ground
substitution ξ and a rule H ←i B, we obtain the following chain of equalities

Î((H ←i B)ξ) = Î(Hξ ←i Bξ) = Î(Hξ)←̇iÎ(Bξ) = I(Hξ)←̇iÎ(Bξ)

As a consequence, the operator TP : IL → IL defined as

TP(I)(A) = sup
{
ϑ&̇iÎ(Bθ) | ⟨C ←i B, ϑ⟩ ∈ P and A = Cθ

}
(1)

for all interpretation I and ground atom A, was introduced in [16], as a gener-
alization of the Boolean immediate consequences operator given by van Emden
and Kowalski in [6].

However, in Expression (1) it is unclear whether the substitution θ should
be ground in some sense or not. The following example shows that an arbitrary
non-ground substitution cannot be considered in the previous expression, since
in this case the models are not characterized by the fixed-points of TP, as it
happens in the classical case.

Example 3. Consider the program P introduced in Example 2 and the interpre-
tation I defined on the ground atoms as

I(r(a)) = 0.1 I(r(b)) = 0.6 I(s(a, b)) = 0.8

I(s(b, b)) = 0.1 I(t(a)) = 0.6 I(t(b)) = 0.1

I(q(a)) = 0.12 I(q(b)) = 0.02 I(p(a, a)) = 0.1

I(p(b, b)) = 0.1 I(p(a, b)) = 0.1

6 J. Medina, J.A. Torné-Zambrano

Furthermore, we can extend this definition for non-ground atoms, following
Definition 6, as follows.

Î(q(X)) = inf{I(q(a)), I(q(b))} = inf{0.12, 0.02} = 0.02

Î(s(X, b)) = inf{I(s(a, b)), I(s(b, b))} = inf{0.8, 0.1} = 0.1

Î(r(Y)) = inf{I(r(a)), I(r(b))} = inf{0.1, 0.6} = 0.1

First of all, we will see that I satisfies that TP(I) ⊑ I. We will start proving
it for p(a, b). For this, we need to compute the value TP(I)(p(a, b)). According
to Expression (1), we consider the substitutions θ1 = {X/X ′, Y/b}1 applied to
R1; and θ2 = {X/a, Y/Y ′} applied to the second rule R2.

TP(I)(p(a, b)) = sup
{

0.8&̇GÎ(B1θ1), 0.9&̇PÎ(B2θ2)
}

= sup
{

0.8&̇G@̇(2,1)

(
Î (q (X ′)) &̇GI (r (b)) , Î (s (X ′, b))

)
,

0.9&̇P

(
I (t (a)) ∧̇ LÎ (r (Y ′))

)}
= sup

{
0.8&̇G@̇(2,1)(0.02&̇G0.6, 0.1), 0.9&̇P (0.6∧̇ L0.1)

}
= sup {0.047, 0}
≤ 0.1 = I(p(a, b))

It is easy to prove the inequality TP(I) ⊑ I for the rest of the ground atoms,
as we can see below.

TP(I)(r(a)) = 0 ≤ I(r(a)) TP(I)(r(b)) = 0.6 ≤ I(r(b))

TP(I)(s(a, b)) = 0.8 ≤ I(s(a, b)) TP(I)(s(b, b)) = 0 ≤ I(s(b, b))

TP(I)(t(a)) = 0.6 ≤ I(t(a)) TP(I)(t(b)) = 0 ≤ I(t(b))

TP(I)(q(a)) = 0.12 ≤ I(q(a)) TP(I)(q(b)) = 0.02 ≤ I(q(b))

TP(I)(p(a, a)) = 0.046 ≤ I(p(a, a)) TP(I)(p(b, b)) = 0 ≤ I(p(b, b))

Now, we are going to see that I is not a model for P. Following Definition 2,
we have that I is a model for P if, for every rule ⟨A←i Bi⟩ ∈ P, the following
inequality holds.

ϑ ⪯ Î(A←i Bi) = inf{Î((A←i Bi)ξ) | ξ provides a ground instantiation} (2)

Notice that Expression (2) must be satisfied for every substitution ξ satisfying
that (A←i Bi)ξ is a ground instantiation and, in particular, it should be satisfied
if we consider ξ = {X/a, Y/b} and the ruleR2 = ⟨p(X, b)←P t(X) ∧ L r(Y); 0.9⟩.

1 Notice that the substitution θ1 interchanges in the formula the variable X by the
variable X ′ and Y by b.

Revisiting first-order immediate consequences operator 7

Nevertheless, the following chain of inequalities arises.

Î ((p(X, b)←P t(X) ∧ L r(Y))ξ) = Î((p(a, b)←P t(a) ∧ L r(b)))

= I(p(a, b))←̇P(I(t(a))∧̇ LI(r(b)))

= 0.1←̇P(0.6∧̇ L0.6)

= 0.5

≱ 0.9

Therefore, Expression (2) does not hold and we have found an interpreta-
tion I, such that TP(I) ⊑ I, but I is not a model for P.

Thus, we have obtained that the characterization of models based on the
post-fixed points of the immediate consequences operator does not hold. ⊓⊔

As a consequence, it is clear that the substitution θ must provide a ground
instantiation of the rule in Expression (1). The following definition clarifies this
fact in the definition of immediate consequences operator given in [16].

Definition 8. The immediate consequences operator TP maps interpretations
to interpretations and it is defined in such a way that, given an interpretation I
and a ground atom A, TP(I)(A) is computed as

sup
{
ϑ&̇iÎ(Bξ) | ⟨C ←i B, ϑ⟩ ∈ P, A = Cξ, and (C ←i B)ξ is ground

}
The set of variables in a rule R will be denoted as V(R). Hence, the last

property in the definition of TP(I)(A) can be written as: “ξ is a substitution
ground in V(⟨C ←i B, ϑ⟩)”. The following result provides a different point of
view of the definition of the TP operator. We need to remark that Definition 8
really computes two suprema, one on the substitutions and the other one on the
rules of the program. Computationally, it does not change, but it is interesting
for studying more properties and future generalizations of the operator.

Theorem 1. Let P be a program, an interpretation I and a ground atom A. We
obtain that

TP(I)(A) = sup {SI(ϑ&iBθ) | ⟨C ←i B, ϑ⟩ ∈ P, and θ = mgu{A,C}}

where the mapping SI : Fe → L is defined for every ϕ ∈ Fe as SI(ϕ) = sup{Î(ϕξ) |
ξ is a ground substitution}.

Proof. Given a ground atom A and an interpretation I, for each rule R =
⟨C ←i B, ϑ⟩ ∈ P, such that there exists θ = mgu{A,C}, we must compute

in Definition 8 the value sup
{
ϑ&̇iÎ(Bθξ) | ξ is a ground substitution

}
, which is

given by the mapping SI : F→ L. Finally, the computation of TP(I)(A) arises as
the supremum of this value, SI(ϑ&iBθ), for all such rules R = ⟨C ←i B, ϑ⟩ ∈ P,
satisfying that there exists θ = mgu{A,C}. ⊓⊔

8 J. Medina, J.A. Torné-Zambrano

Notice that it is not necessary for θ to be a ground substitution. This last
definition is taken into consideration to assert that this operator just allows the
characterization of models of a given program P through the post-fixed points of
the immediate consequences operator, which also clarifies the proof given in [16].

Theorem 2. An interpretation I is a model of a multi-adjoint logic program P
if and only if TP(I) ⊑ I.

Proof. Given a model I for P and a ground atom A, we will prove that TP(I) ⊑ I.
On the one hand, if there is no rule in P matching with A, then TP(I)(A) =
sup∅ = ⊥ ⪯ I(A), and the result is trivially obtained.

On the other hand, consider an arbitrary rule R = ⟨C ←i B, ϑ⟩ of P, such as
there exists θ = mgu{A,C}. Moreover, given a ground substitution ξ, we have
that θξ is also ground and, by hypothesis, the following chain of inequalities
holds, where σ denotes a substitution.

ϑ
(∗)

⪯ Î (C ←i B)

= inf{Î ((C ←i B)σ) | (C ←i B)σ is a ground instantiation of C ←i B}
⪯ Î ((C ←i B)θξ)

= Î (Cθ ←i Bθξ)

= Î(Cθ)←̇iÎ(Bθξ)

where (∗) holds due to the fact that I is a model for P. Applying the adjoint
property, we can write

Î((ϑ&iBθ)ξ) = ϑ&̇iÎ(Bθξ) ⪯ Î(Cθξ) = I(Aξ) = I(A)

where the last equality holds because the atom A is ground. Therefore, taking
suprema on the set of ground substitutions, we reach

SI(ϑ&iBθ) = sup{Î((ϑ&iBθ)ξ) | ξ is a ground substitution} ⪯ I(A)

Now, taking suprema on the set of rules such that there exists θ = mgu{A,C},
the following inequality arises.

TP(I)(A) = sup {SI(ϑ&iBθ) | ⟨C ←i B, ϑ⟩ ∈ P, and θ = mgu{A,C}}
⪯ I(A)

Consequently, the inequality TP(I) ⊑ I holds. Now, we consider an interpre-
tation I satisfying that TP(I) ⊑ I, and we will see that I is a model for P. For
this, we consider an arbitrary weighted rule R = ⟨C ←i B, ϑ⟩ in P and we need
to prove that

ϑ ⪯ Î(C ←i B)

= inf{Î((C ←i B)σ) | (C ←i B)σ is a ground instantiation of C ←i B}

Revisiting first-order immediate consequences operator 9

that is, ϑ ⪯ Î((C ←i B)σ) for all substitution σ such that (C ←i B)σ is a ground
instantiation of C ←i B.

Hence, given one of these substitutions σ and a ground substitution ξ, ap-
plying that TP(I) ⊑ I, we have that

ϑ&̇iÎ(Bσ) = ϑ&̇iÎ(Bσξ) = Î((ϑ&iBσ)ξ) ⪯ SI(ϑ&iBσ)
(∗)

⪯ TP(I)(Cσ)⪯I(Cσ)

where (∗) follows from the definition of TP. Now, by the adjoint property, we
obtain ϑ ⪯ I(Cσ)←̇iÎ(Bσ) = Î((C ←i B)σ) and finally, taking infima on the
substitutions σ, we obtain the required inequality. ⊓⊔

Notice that we cannot ensure the following expressions are equal:

sup{ϑ&̇iÎ(Bθξ) | ξ is a ground substitution} (3)

ϑ&̇i sup{Î(Bθξ) | ξ is a ground substitution} (4)

because of the operator &̇i could not preserve the supremum in the second
argument (see for example [1,2,3]). This fact caused the need to consider the
extended language Fe, including the truth-values in the language, due to Î(Bξ)
is an element of L. With the following example, we will show how the value of
the immediate consequences operator is obtained according to Theorem 1.

Example 4. Consider Example 2 and the interpretation J given by

J(r(a)) = 0 J(r(b)) = 0.6 J(s(a, b)) = 0.8

J(s(b, b)) = 1 J(t(a)) = 0.6 J(t(b)) = 0

J(q(a)) = 1 J(q(b)) = 1

We are going to compute the value TP(J)(p(a, b)) considering the substi-
tutions θ1 = {X/X ′, Y/b} and θ2 = {X/a, Y/Y ′}, which are ground on the
variables of rules R1 and R2.

TP(J)(p(a, b)) = sup {SJ (0.8&GB1θ1), SJ (0.9&P(B2θ2))}
= sup

{
SJ

(
0.8&G

(
@(2,1) (q(X)&Gr(Y), s(X, b)) θ1

))
,

SJ (0.9&P((t(X) ∧ L r(Y)) θ2))}
= sup

{
SJ

(
0.8&G@(2,1) (q(X ′)&Gr(b), s(X ′, b))

)
,

SJ (0.9&P (t(a) ∧ L r(Y ′)))}

10 J. Medina, J.A. Torné-Zambrano

= sup
{

sup
{

0.8&̇GĴ
(
@(2,1) (q(a)&Gr(b), s(a, b))

)
,

0.8&̇GĴ
(
@(2,1) (q(b)&Gr(b), s(b, b))

)}
,

sup
{

0.9&̇PĴ (t(a) ∧ L r(a)) , 0.9&̇PĴ (t(a) ∧ L r(b))
}}

= sup
{

sup
{

0.8&̇G@̇(2,1)

(
J(q(a))&̇GJ(r(b)), J(s(a, b))

)
,

0.8&̇G@̇(2,1)

(
J(q(b))&̇GJ(r(b)), J(s(b, b))

)}
,

sup
{

0.9&̇P (J(t(a))∧̇ LJ(r(a))), 0.9&̇P (J(t(a))∧̇ LJ(r(b)))
}}

= sup
{

sup
{

0.8&̇G@̇(2,1)

(
1&̇G0.6, 0.8

)
, 0.8&̇G@̇(2,1)

(
1&̇G0.6, 1

)}
,

sup
{

0.9&̇P (0.6∧̇ L0), 0.9&̇P (0.6∧̇ L0.6)
}}

= sup {sup {0.67, 0.73} , sup {0, 0.18}}
= 0.73

⊓⊔

4 Conclusions and future work

In this paper, we have revised the notion of the immediate consequences op-
erator given in [16] and we have clarified the use of ground substitutions in
its definition. This clarification ensures the characterization of the models for
a program P as the post-fixed points of the immediate consequences operator,
i.e., TP(I) ⊑ I. Furthermore, we have remarked the use of two suprema in the
definition of the immediate consequences operator, which will be fundamental in
future extensions and studies of this operator. For example, a procedural seman-
tics [15] based on reductants [8,9,10] will be analyzed and the approaches based
on generalized quantifiers [?,?] and ordered weighted averaging (OWA) opera-
tors [?] will be studied in the first-order setting. Moreover, the comparison with
recent approaches, such as fuzzy order-sorted feature logic [?], will be discussed.

References

1. M. E. Cornejo, J. Medina, and E. Ramı́rez-Poussa. A comparative study of adjoint
triples. Fuzzy Sets and Systems, 211:1–14, 2013.

2. M. E. Cornejo, J. Medina, and E. Ramı́rez-Poussa. Multi-adjoint algebras ver-
sus non-commutative residuated structures. International Journal of Approximate
Reasoning, 66:119–138, 2015.

3. M. E. Cornejo, J. Medina, and E. Ramı́rez-Poussa. Adjoint negations, more than
residuated negations. Information Sciences, 345:355 – 371, 2016.

4. C. V. Damásio and L. M. Pereira. Monotonic and residuated logic programs.
In Symbolic and Quantitative Approaches to Reasoning with Uncertainty, EC-
SQARU’01, pages 748–759. Lecture Notes in Artificial Intelligence, 2143, 2001.

Revisiting first-order immediate consequences operator 11

5. A. Dekhtyar and V. S. Subrahmanian. Hybrid probabilistic programs. Journal of
Logic Programming, 43:187–250, 2000.

6. M. v. Emden and R. Kowalski. The semantics of predicate logic as a programming
language. Journal of the ACM, 23(4):733–742, 1976.

7. F. Formato, G. Gerla, and M. Sessa. Similarity-based unification. Fundamenta
Informaticae, 41(4):393–414, 2000.

8. P. Julián, G. Moreno, and J. Penabad. An improved reductant calculus using fuzzy
partial evaluation techniques. Fuzzy Sets and Systems, 160:162–181, 2009.

9. P. Julián-Iranzo, J. Medina, and M. Ojeda-Aciego. On reductants in the framework
of multi-adjoint logic programming. Fuzzy Sets and Systems, 317:27 – 43, 2017.

10. P. Julián-Iranzo, J. Medina, and M. Ojeda-Aciego. Revisiting reductants in the
multi-adjoint logic programming framework. Lecture Notes in Artificial Intelli-
gence, 8761:694–702, 2014.

11. M. Kifer and V. S. Subrahmanian. Theory of generalized annotated logic program-
ming and its applications. Journal of Logic Programming, 12:335–367, 1992.

12. J. Lloyd. Foundations of Logic Programming. Springer Verlag, 1987.
13. J. Medina and M. Ojeda-Aciego. On first-order multi-adjoint logic programming.

In XI Congreso Español sobre Tecnoloǵıas y Lógica Fuzzy, ESTYLF 2002; León
(España), 2002.

14. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Multi-adjoint logic programming
with continuous semantics. In Logic Programming and Non-Monotonic Reasoning,
LPNMR’01, pages 351–364. Lecture Notes in Artificial Intelligence 2173, 2001.

15. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. A procedural semantics for multi-
adjoint logic programming. In Progress in Artificial Intelligence, EPIA’01, pages
290–297. Lecture Notes in Artificial Intelligence 2258, 2001.

16. J. Medina, M. Ojeda-Aciego, and P. Vojtáš. Similarity-based unification: a multi-
adjoint approach. Fuzzy Sets and Systems, 146:43–62, 2004.

17. P. Vojtáš. Fuzzy logic programming. Fuzzy sets and systems, 124(3):361–370, 2001.

	Revisiting immediate consequences operator on first-order logic programming

