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Abstract. We propose two practical procedures to construct fuzzy con-
fidence intervals with fuzzy observations. These procedures use the fuzzy
extensions of the quantile function and the concept of fuzzy empirical
distribution. With bootstrapping techniques, we first compute fuzzy em-
pirical distributions of the parameter of interest. We then build fuzzy
confidence intervals by either finding the fuzzy quantiles of the distri-
bution directly or using the fuzzy quantile function to find the relevant
fuzzy quantiles. Our methods are illustrated through a numerical ap-
plication. We construct fuzzy confidence intervals with the advocated
methods and compare them to the fuzzy traditional way of creating such
intervals and their construction using the likelihood ratio as in Berkachy
and Donzé [2].
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1 Introduction

The construction of fuzzy confidence intervals is nothing new. Indeed, for decades,
various approaches have been proposed to build them. In the past, the suggested
methods to find these so-called fuzzy confidence intervals were based on a pre-
defined distribution around a specific parameter. Only recently have some more
general approaches arisen, but they are often limited to a particular context. It
thus would be very advantageous to generalise the previous constructions and
have a practical tool to estimate fuzzy confidence intervals for any parameter
with any distribution in any context. In the fuzzy world, most of the time,
one cannot make any assumption on the fuzzy distribution of a fuzzy parame-
ter. Therefore, we study the fuzzy extensions of the main concepts utilised to
build classical confidence intervals, the fuzzy distribution and the fuzzy quantile
function. We then provide two general methods to construct a fuzzy confidence
interval. The idea behind these methods is first to use bootstrapping techniques
adapted to the fuzzy world to generate a fuzzy empirical distribution of a fuzzy
parameter, then find its fuzzy quantiles and use them to build fuzzy confidence
intervals. We illustrated our methods with an empirical application. It allows
comparing our findings with those obtained in Berkachy and Donzé [2].
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Our work is organised as follows. We begin the study with a small litera-
ture review and define the notation in Sect. 2. The materials and methods for
constructing fuzzy confidence intervals are provided in Sect. 3. The next section
allows us to illustrate our two developed methods by comparing them to the tra-
ditional way of building fuzzy confidence intervals and their construction using
the likelihood ratio. Details about the latter two can be found in Berkachy and
Donzé [2]. Finally, Sect. 5 concludes our study.

2 Literatuve review and notation

In 1987, Kruse and Meyer [12] introduced a theoretical definition for the fuzzy
confidence interval. Their theoretical definition has since then been used and
refined by researchers in many computational procedures. For instance, Viertl
and Yeganeh [15] generalised the concept of confidence regions for fuzzy data.
Their work in this regard mainly concerns Bayesian statistics. Kahraman et
al. [10], [11] studied interval-valued intuitionistic fuzzy sets (IVIFSs) and hes-
itant fuzzy sets (HFS). They then proposed two methods to construct fuzzy
confidence intervals, one for interval-valued intuitionistic fuzzy sets and one for
hesitant ones. Couso and Sanchez [7] provided an approach that considers the
inner and outer approximations of confidence intervals in the context of fuzzy
observations. Moreover, Wu [16] suggested a method to find fuzzy confidence
intervals by considering unknown fuzzy parameters and fuzzy normal random
variables through solving optimisation problems. In this direction, Chachi and
Taheri. [6] also considered gaussian fuzzy random variables and built fuzzy confi-
dence intervals for the mean of these gaussian fuzzy random variables. Based on
Buckley’s approach [5], Parchami and Mashinchi [13] used classical confidence
intervals to model process capability indices as triangular fuzzy numbers. Un-
fortunately, these approaches are based on a pre-defined distribution around a
specific parameter. To overcome this problem, Berkachy and Donzé [4] proposed
a practical and general procedure to construct fuzzy confidence intervals with
the use of the likelihood ratio method and a Bootstrap procedure extended to
the fuzzy environment to estimate the distribution of this likelihood ratio.

Indeed, thanks to the work of Bradley Efron (See, e.g. [8]), Bootstrap meth-
ods became very popular among statisticians in the early 1980s. Then, various
fuzzy Bootstrap approaches were found, extending the method to the fuzzy en-
vironment. To cite only a few relatively recent approaches, Berkachy and Donzé
[4] provided two algorithms to constitute the bootstrapped samples mainly using
the location and dispersion characteristics. On the other hand, Grzegorzewski
and Romaniuk [9] described how to perform Bootstrap with epistemic fuzzy
data.

Finally, let us mention two concepts closely linked to confidence intervals: the
quantile function and the notion of distribution. Shvedov [14] extended the quan-
tile function to the fuzzy world by defining the fuzzy quantile function, and Arefi
et al. [1] gave different approaches to construct empirical fuzzy distributions.
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We will use the following notation and conventions below. First, let us define
by x̃ a fuzzy number and by µx̃(·) its membership function. We consider also the
α-cuts of x̃ denoted by x̃α or by its equivalent in interval form by (xL,α, xR,α). In
practice, triangular fuzzy numbers are often used. We denote them by a triplet
x̃ = (xL, x, xR) with xL ≤ x ≤ xR ∈ R. Furthermore, assuming a random
sample X1, . . . , Xn with its realisations x1, . . . , xn, we note by x̃1, . . . , x̃n the
fuzzy equivalent of these quantities and by x̃α

i , i = 1, . . . , n their α-cuts.

3 Fuzzy Confidence Intervals

This section will discuss two constructions of fuzzy confidence intervals for fuzzy
parameters. Based on Kruse and Meyer [12], let us first define a fuzzy confi-
dence interval (see, e.g. Berkachy and Donzé [2], Berkachy [3]). Recall that in
a frequentist approach, the bounds of a confidence interval are functions of the
sample. We note these functions by πi(·), i = 1, 2.

Definition 1 (Fuzzy Confidence Interval).
Let [π1, π2] be a symmetrical confidence interval for the parameter θ at sig-

nificance level γ such that π1 and π2 are functions of the observations, i.e.
π1 := π1(x1, . . . , xn) and π2 := π2(x1, . . . , xn). A fuzzy confidence interval ⊓̃
is a convex and normal fuzzy set, for which its respective left and right α-cuts
[⊓L,α,⊓R,α] are defined as

⊓L,α = inf{a ∈ R : ∃xi ∈ x̃i
α,∀i = 1, ..., n, such that π1(x1, ..., xn) ≤ a},

⊓R,α = sup{a ∈ R : ∃xi ∈ x̃i
α,∀i = 1, ..., n, such that π2(x1, ..., xn) ≥ a}.

Its membership function µ⊓̃(x) can be written as

µ⊓̃(x) = sup{αI[⊓L,α,⊓R,α] : α ∈ [0, 1]}.

This fuzzy confidence interval is said to belong to the 1 − γ confidence region
such that for all parameter θ, we have that

P(⊓L,α ≤ θ ≤ ⊓R,α) ≥ 1− γ,∀α ∈ [0, 1].

3.1 Fuzzy confidence interval: method 1

Let us consider a fuzzy estimator t̃ for the fuzzy parameter θ̃. We can estimate k
new fuzzy parameters t̃∗1, . . . , t̃∗k by Bootstrap. This allows us to build an esti-

mated empirical fuzzy distribution ˆ̃F with the k new estimates plus the original
one. We call this distribution “augmented” in the sense that one estimate comes
from the original data, and the k others are from the bootstrapped samples. Left
and right parts of a fuzzy confidence interval at a given significance level γ for
each α-cut are given by:
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θ̂L,α
γ/2 = tL,α − (t∗L,α

(k+1)(1−γ/2) − tL,α) = 2tL,α − t∗L,α
(k+1)(1−γ/2) (1)

θ̂R,α
1−γ/2 = tR,α − (t∗R,α

(k+1)(γ/2) − tR,α) = 2tR,α − t∗R,α
(k+1)(γ/2) (2)

where, for the left α-cut, t∗L,α
(k+1)(1−γ/2) is the (1 − γ/2)-quantile, and for the

right α-cut, t∗R,α
(k+1)(γ/2) is the γ/2-quantile of the augmented distribution. The

bootstrapped fuzzy confidence interval at confidence level 1−γ is given by ⊓̃α
=

[⊓L,α,⊓R,α] = [θ̂L,α
γ/2 , θ̂

R,α
1−γ/2]. Let us prove that the latter is a fuzzy confidence

interval.

Proof.

1. By construction, we have,

[(θ̂γ/2)
L,α1 , (θ̂1−γ/2)

R,α1 ] ⊂ [(θ̂γ/2)
L,α2 , (θ̂1−γ/2)

R,α2 ] (3)

for α2 < α1, α1, α2 ∈ (0, 1]. Let µ⊓̃ be the membership function of ⊓̃. Choose
x1 ∈ [(θ̂γ/2)

L,α1 , (θ̂1−γ/2)
R,α1 ] = ⊓̃α1 and x2 ∈ [(θ̂γ/2)

L,α2 , (θ̂1−γ/2)
R,α2 ] =

⊓̃α2 . As α2 < α1, µ⊓̃(x1) ≥ min(µ⊓̃(x2)). Let x3 = tx1 + (1− t)x2, t ∈ [0, 1].
Then, µ⊓̃(x3) ≥ min(µ⊓̃(x1), µ⊓̃(x2)), which proves the convexity of ⊓̃.

2. First, observe that (3) implies that the left and right membership functions
are respectively monotonically non-decreasing and non-increasing. Then, let
x ∈ [(θ̂γ/2)

L,α, (θ̂1−γ/2)
R,α], ∀α ∈ (0, 1]. For α = 1, µ⊓̃(x) = 1. Thus,

sup(µ⊓̃(x)) = 1, which proves the normality;
3. Finally, by construction, it is evident that P(⊓L,α ≤ θ ≤ ⊓R,α) ≥ 1−γ,∀α ∈

[0, 1]. ⊓⊔

3.2 Fuzzy confidence interval: method 2

The second method we propose consists of building quantile functions of a fuzzy
random variable. Shvedov [14, p. 478] gives us a detailed definition.

Let us again consider a fuzzy estimator t̃ for the fuzzy parameter θ̃. Suppose

that
˜̂
F gives its fuzzy empirical distribution. Similar to method 1, a bootstrap-

ping technique generates this one, augmented by the estimate based on the

initial dataset. At a given α-cut, we write that t̃α = (tL,α, t, tR,α) ∼ ˆ̃Fα =
(F̂L,α, F̂ , F̂R,α). The fuzzy p quantiles of this fuzzy empirical distribution are

the quantiles of the left, centred and right part of
˜̂
F , i.e.

Q̃(p, ˆ̃F ) =
(
Q(p, F̂L,α), Q(p, F̂ ), Q(p, F̂R,α)

)
, α ∈ (0, 1],

with

Q(p, F̂L,α) ≤ Q(p, F̂ ) ≤ Q(p, F̂R,α) (4)

and where Q(·) is the quantile function.
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Based on these quantities, assuming p < (1− p), three intervals can be built:

IU,α
p = [Q(p, F̂L,α);Q(1− p, F̂R,α)] (5)

Ip = [Q(p, F̂ );Q(1− p, F̂ )] (6)

IL,α
p =

{
[Q(p, F̂R,α);Q(1− p, F̂L,α)] if Q(p, F̂R,α) < Q(1− p, F̂L,α)

∅ otherwise.
(7)

One can verify that

IU,α
p ⊇ Ip ⊇ IL,α

p .

The interval Ip gives us a classical crisp interval and can be interpreted as
the core of a fuzzy interval. The limits of this fuzzy interval are those of IU,α

p .

The last interval, IL,α
p , has no interest because it is included in the core.

Proof. Analogue to the latter one. ⊓⊔

4 Numerical Application

Let us discuss and compare the resulting fuzzy confidence intervals for the mean
˜̄x = (1.8, 2.8, 3.8) from Table 2 arising from our two methods described above,
the fuzzy traditional way of constructing such intervals and by the likelihood
ratio. The latter two are explained thoroughly in Berkachy [3, p. 101–112] and
Berkachy and Donzé [2]. The set of observations shown in Table 1 used to build
such confidence intervals for the mean is from Berkachy and Donzé [2].

4.1 Discussion and comparison

First, notice how both the cores and left and right parts of the fuzzy confidence
intervals from methods 1 and 2 encapsulate the ones arising from the fuzzy
traditional method and the likelihood ratio approach. Thus, in this example,
methods 1 and 2 generate larger, i.e. fuzzier confidence intervals. Moreover, we
can also say that the core of the confidence interval found by the likelihood ratio
approach is different than the cores found with the three other methods. This
effect could come from the fuzzy modelling choice of the maximum likelihood
estimator needed in the likelihood ratio approach. When comparing the results of
methods 1 and 2, we can see that the left and right parts of the fuzzy confidence
interval given by method 1 are the left and right parts found by using method 2
minus a factor 0.06̄. The reason behind this effect can be understood by looking
at (1) and (2). Indeed, one observes that to build confidence intervals, method 1
starts from the value of the original estimate and then uses the quantiles of the
augmented distribution of the mean. This thus yields a slightly different result
than method 2, which only considers the quantiles of the mean’s augmented
distribution when constructing such confidence intervals, as described by (6)
and (7).
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5 Conclusion

Based on the work of Berkachy and Donzé [2] and Shvedov’s fuzzy quantile
function [14], we developed two methods to find fuzzy confidence intervals for
any parameter and any distribution. The idea behind the two methods consisted
of constructing an augmented fuzzy empirical distribution of a fuzzy parame-
ter with bootstrapping techniques adapted to the fuzzy environment and then
finding the fuzzy quantiles of this distribution. The main difference between the
two methods is that the first considers the original estimate when constructing
the fuzzy intervals. In contrast, the second method directly picks the quantiles
of the augmented distribution to build fuzzy confidence intervals. We also pro-
vided an empirical application. We discuss the results and compare them with
other methods. This comparison showed that our developed methods give larger
fuzzy confidence intervals. Lastly, given that our methods are simple, easy to
implement, and present no particular computational difficulties, they seem to be
a promising way to build fuzzy statistical inference procedures.

Table 1. Fuzzy observations (See Berkachy and Donzé [2])

Index xi x̃i

1 4 (3, 4, 5)
2 1 (0, 1, 2)
3 3 (2, 3, 4)
4 2 (1, 2, 3)
5 3 (2, 3, 4)
6 2 (1, 2, 3)
7 5 (4, 5, 6)
8 2 (1, 2, 3)
9 3 (2, 3, 4)
10 3 (2, 3, 4)

x̄ = 2.8 ¯̃x = (1.8, 2.8, 3.8)

Table 2. Fuzzy confidence intervals for the fuzzy mean (1.8, 2.8, 3.8) at confidence
level 1 − γ = 1 − 0.05 obtained by the fuzzy traditional method, the likelihood ratio
approach, the methods 1 and 2.

Methods Fuzzy Confidence Interval

Fuzzy traditional method (1.0965, 2.0965, 3.5034, 4.5034 )
Likelihood ratio approach (1.3674, 2.2175, 3.3838, 4.2332 )
Method 1 (0.9333, 1.9333, 3.6000, 4.6000 )
Method 2 (1.0000, 2.0000, 3.6667, 4.6667 )
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