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Abstract. Radial Basis Function Neural Networks (RBFNN) have be-
come popular machine learning models with a simple structure but at
the same time strong non-linear function approximation and effective
modeling capabilities. In this work, we explore the use of Modular In-
distinguishability Operators (MIO) in RBFNN-like structures to replace
the RBFs that populate the hidden layer, to give rise to MIO-based Neu-
ral Networks (MIO-NN). In this respect, we introduce a new distance
function and prove that it is a modular metric, to next use it to derive
two MIOs to be evaluated as the key component of MIO-NNs. As an ad-
ditional contribution, we describe Self-Defining MIO-NN (SD-MIO-NN)
as an approach capable of configuring MIO-NNs in a parameterless way.
SD-MIO-NN comprises a first step that defines the size of the hidden
layer, a second step that determines the parameters of the hidden neu-
rons and a last step that calculates the weights of the hidden-to-output
layer connections. The experimental results show the effectiveness of the
proposed MIOs for multi-class classification, and by extension of SD-
MIO-NN, which in turn compares well with other similar solutions.

Keywords: Multi-class Classification · RBF Neural Networks (RBFNN)
· Modular Indistinguishability Operators (MIO).

1 Introduction

As part of the continuous development of problem solving methodologies based
on artificial intelligence, Radial Basis Function Neural Networks (RBFNN) have
become popular machine learning models with a simple structure but at the same
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time strong non-linear function approximation and effective modeling capabili-
ties [14]. This has permitted to address both regression and classification prob-
lems, and in fields such as non-linear modeling [22, 29, 11] and forecasting [13,
30, 17], non-linear control [9, 23, 2] and pattern recognition [4, 25, 27, 1], to name
but a few. Besides, this is achieved with a considerably low computational cost,
suitable for energy-limited scenarios, e.g. edge computing devices.

RBFNNs are single-hidden layer neural networks where radial-basis functions
(RBF) play the key role. An RBF is a real-valued function ρ(z) whose value
depends only on the distance d(x, µ) between input samples x and a specific
point µ that is associated with each hidden unit and it is known as its center, so
that z = d(x, µ). Apart from other RBFs [14], the RBF most usually adopted is

the Gaussian function ρ(r) = exp
(
− r2

2σ2

)
, where r2 = ∥x− µ∥22 and σ is known

as the width of the unit. An RBF, as it is defined, can also be regarded as a
similarity function [24], i.e. a function ρ(x, µ) that measures how similar are x
and µ so that ρ → ŝ as r → 0 and ρ → 0 as r → ∞ (with ŝ typically 1).

In this work, we break the typical dependence of ρ on r = ∥x − µ∥2 and

consider the use of more generic similarity functions, i.e. ρ → ŝ as d(x, µ) → d̂

(typically d̂ = 0) and ρ → s̄ < ŝ (typically, s̄ = 0) as d(x, µ) → d̄ > d̂ for a given
dissimilarity function d [24]. Actually, inspired by the distance function proposed
in [20], we define a modular metric m [3] from which we derive several Modular
Indistinguishability Operators (MIO) IT [18], which are in turn integrated in the
hidden neurons of an RBFNN-like network, hence introducing MIO-based Neural
Networks (MIO-NN) as an alternative to the RBFNN concept. In this paper,
we evaluate the performance resulting from these MIOs within the framework
of MIO-NNs in multi-class classification tasks.

In what follows, we enumerate the main contributions of this work:

– Within the context of multi-class classification tasks, we explore the use of
Modular Indistinguishability Operators (MIO) in RBFNN-like structures to
replace the RBFs that populate the hidden layer, to give rise to MIO-based
Neural Networks (MIO-NNs).

– We revise the distance function proposed in [20] and introduce a new metric
m, to next use it to derive two MIOs to be evaluated as the key component
of MIO-NNs. In the appendix, we prove that m is a modular metric.

– We describe SD-MIO-NN as an approach capable of defining MIO-NNs in a
parameterless way.

– The experimental setup for evaluating SD-MIO-NN takes into consideration
a total of 17 datasets comprising samples of a quite diverse nature/source.
The experimental results obtained show competitive performance for MIO-
NNs, and by extension for SD-MIO-NN, which also compares well with other
single-hidden layer algorithms.

The rest of the paper is organized as follows: Section 2 reviews the RBFNN
concept and links it to MIOs; Section 3 revises a known distance function, intro-
duces a new modular metric taking inspiration from such a distance, and finally
derives a number of MIOs from it; Section 4 describes SD-MIO-NN in detail;
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Section 5 reports on the effectiveness of the MIOs defined in Section 3 as well as
on the performance attained by SD-MIO-NN on a number of publicly available
datasets; finally, Section 6 concludes the paper summarizing the main findings
and outlining future work.

2 Preliminaries

A Radial Basis Function Neural Network (RBFNN) is a special class of artificial
neural network [19], whose main differences with Feed-Forward Neural Networks
(FFNN) are the fact that an RBFNN typically comprises, apart from the input
and output layers, a single hidden layer, and the fact that the hidden neurons
implement an instance of a radial basis function ρ(z) instead of the usual dot
product wT x between connection weights w and the neuron input x. The value
of an RBF depends on the distance from x to the center vector or prototype µj

associated to the neuron, i.e. ρ(z) = ρ(d(x, µj)), and hence they become radially
symmetric about µj . Common elections are the Euclidean norm for the distance
d(x, µj) and a Gaussian as the radial basis function:

ρ
(
d(x, µj)

)
= ρ
(
∥x− µj∥2

)
= exp

[
−
∥x− µj∥22

2σ2
j

]
= exp

[
−
r2x,j
2σ2

j

]
(1)

where σj is the width of the hidden unit j. In the context of a classification
problem involving C classes, output Φk (for class k = 1, . . . , C) of an RBFNN
with nh hidden neurons is then given by:

Φk(x) =

nh∑
j=1

wk,j ρ
(
d(x, µj)

)
+ bk (2)

with bk as the bias of the output neuron k.
Other RBFs considered in the literature are e.g. the inverse multiquadric

ρ(r) = 1/
√
1 + r2/c2, for c > 0, and the logistic function ρ(r) = 2/(1 +

exp[r2/σ2]) [21, 10]. These functions, together with the Gaussian of Eq. (1),
behave as similarity functions and produce values in the interval [0, 1], with

ρ → ŝ = 1 as r → d̂ = 0 and ρ → s̄ = 0 as r → d̄ = ∞.
In this paper, we consider several modular indistinguishability operators that

behave as similarity functions in the sense outlined above, and also depend
on a dissimilarity function. Because of the dissimilarity function adopted, the
receptive fields of the hidden neurons are not hyper-spherical, as corresponds to
the Gaussian RBF, but they exhibit a different shape and properties.

3 Modular Indistinguishability Operators (MIO)

In this section, we introduce a new modular metric which is used to build two
Modular Indistinguishability Operators (MIO) in the sense of [18] by means of
the technique described by Miñana and Valero in [18, Theorem 5].
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3.1 A modular metric on [0,∞[n

The mapping d0 : [0, 1]n × [0, 1]n → [0, 1] given by d0(⃗0, 0⃗) = 0 and

d0(p, q) =

∑n
i=1 |pi − qi|∑n

i=1 max {pi, qi}
elsewhere , (3)

for each p, q ∈ [0, 1]n with p = (p1, . . . , pn) and q = (q1, . . . , qn), was already
introduced in the literature and proved to be a metric in [20]. Nevertheless, it is
not hard to check that d0 is also a metric on Dn, where D = [0,∞[ and n ∈ N.
Inspired by d0, we define the mapping m :]0,∞[×Dn ×Dn → [0, 1] given by

m(t, p, q) =

∑n
i=1 |pi − qi|

t+
∑n

i=1 max {pi, qi}
for each t ∈]0,∞[ and p, q ∈ Dn . (4)

In the Appendix, we demonstrate that m is a modular metric on Dn.

3.2 Modular indistinguishability operators built from m

In this section, we present two modular indistinguishability operators IT that
can be induced from the modular metric m, being T a continuous Archimedean
t-norm with f as an additive generator (for a detailed treatment on t-norms
theory we refer the reader to [15]). Both MIOs have been generated by means
of the method based on the use of the pseudo-inverse of the additive generator
f introduced in [18, Theorem 5], which can be stated as follows: Let (X,m)
be a modular metric space and let T be a continuous Archimedean t-norm with
additive generator f . Then, IT = (f (−1) ◦m) is a T -modular indistinguishability
operator on X.

Modular indistinguishability operators on Dn for the product t-norm
Let TP be the product t-norm. It is well-known that an additive generator of
TP is given by fP (x) = −(log x) for all x ∈ [0, 1], and that the pseudo-inverse of

this additive generator is given by f
(−1)
P (y) = e−y for all x ∈ [0,∞]. Then, for

each t ∈ ]0,∞[ and p, q ∈ Dn we have:

IP (t, p, q) =
(
f
(−1)
P ◦m

)
(t, p, q) = e−m(t,p,q) (5)

Modular indistinguishability operators on Dn for a Hamacher t-norm
(λ = 0) We first recall that the family

(
Tλ
H

)
λ∈[0,∞]

of Hamacher t-norms is given

by

Tλ
H(x, y) =


TD(x, y), if λ = ∞
0, if λ = x = y = 0

xy
λ+(1−λ)(x+y−xy) otherwise

(6)

For our construction we only consider the Hamacher t-norm with λ = 0,
i.e., TH(x, y) = xy

x+y−xy (note that TP ≤ TH). An additive generator of TH is
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given by fH(x) = 1−x
x for all x ∈ [0, 1], and the pseudo-inverse of that additive

generator is given by f
(−1)
H (y) = 1

1+y for all x ∈ [0,∞]. Then, for each t ∈ ]0,∞[
and p, q ∈ Dn we have

IH(t, p, q) =
(
f
(−1)
H ◦m

)
(t, p, q) =

1

1 +m(t, p, q)
(7)

4 Overview of SD-MIO-NN

To build MIO-NN models, we define the SD-MIO-NN (Self-Defining MIO-NN )
algorithm, which comprises three steps: (1) the training data is clustered by
means of a Self-Organizing Map (SOM) to locate areas in feature space populated
by samples; (2) the hidden layer of the MIO-NN is set up with as many neurons as
clusters are defined in the SOM after training, using the cluster representatives
as neuron centers µj , while the neuron widths σj are set on the basis of the
inter-sample distances between centers, and ρ in Eq. (2) is defined as a MIO IT ;
(3) the hidden layer-to-output layer weights are found by means of regularized
least squares. Additional details can be found in the following sections.

SOM building and training A SOM is a special class of artificial neural
network that comprises a single computational layer of neurons arranged in
a lattice, i.e. each hidden neuron nij is assigned a cell (i, j) in a grid. Using
a combination of competitive and cooperative training, SOM neurons learn a
weight vector ωij with the same dimensionality as the input samples x ∈ Rn

which represent populated areas of the input space. After training, the network
is expected to get organized so that neighbouring samples in the input space
map to the same or neighbouring cells in the lattice. Accordingly, samples are
arranged into clusters/classes through the grid. (For more details, see [16] among
many others.)

In SD-MIO-NN, the SOM is defined as a 2D rectangular grid with a number
of neurons nsom such that nsom = 5

√
N for N training samples. The size n1 ×

n2 of the SOM grid is defined by the ratio of the two largest eigenvalues λ1,
λ2 of the covariance matrix of the training set (i.e. n1 × n2 ≈ nsom, λ1/λ2 =
n1/n2), while the initial weights ωij(0) for each neuron are determined using
PCA. This defines a rectangular grid whose directions and extent match the two
main directions and range of the data, so as to initialize the grid weights ωij with
points of the feature space regularly spaced throughout the input data subspace.
Due to the way how the SOM is defined and trained, the initialization step of
SD-MIO-NN does not require setting any critical parameter, in particular the
number of clusters, unlike, for example, K-means and many others, or setting
up any other parameter e.g. related to the density of samples (in DBSCAN and
others). Moreover, the SOM makes use of the same distance function adopted
in the hidden layer neurons, to be coherent in the measurement of dissimilarity
from end to end.
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MIO-NN definition Once the SOM has been built, each training sample x
is associated to the SOM neuron whose weight ωij is closest to x, i.e. its BMU
(best maching unit), what leads to non-empty and empty cells depending on
whether any training sample has got associated to the neuron or not, i.e. contain
samples (it can happen that some cells, though initialized with a reasonable
weight ωij(0), do not get associated to any sample and thus get empty). After
this association process, each non-empty cell of the SOM gives rise to a neuron
nk in the hidden layer of the MIO-NN, whose center µk is the final weight vector
ωij(tmax) attained by that SOM cell.

Regarding the neuron widths σk of standard RBFNNs, they do not appear
in the MIOs of Eqs. (5) and (7) as explicitly as in the case of a Gaussian RBF.
However, parameter t of the modular metric m, Eq. (4), can be related to the
size of the receptive field of the hidden unit when m is written as follows:

m(t, p, q) =

∑n
i=1 |pi − qi|

t

1 +

∑n
i=1 max {pi, qi}

t

. (8)

In what follows, we will keep using σ to denote the width of the hidden unit (in
order not to change the usual nomenclature), although it must be understood
that σk = tk for neuron k when the modular metric m is used. Further, inspired
by [19], widths are automatically defined as σj = αw davg,∀j, where davg is the
average of the distances between every center µj and its nearest center µj′, and
αw ∈ [1, 2] is a parameter.

Output layer training SD-MIO-NN adopts an uncoupled approach to train
the model, which means that the hidden-to-output layer connection weights
wk,j in Eq. (2) are determined separately once neuron centers and widths have
been set. Weights wk,j are found through the following regularized least-squares
formulation to counteract overfitting:

min
1

2

N∑
i=1

C∑
k=1

yi,k −

 nh∑
j=1

wk,j ρ
(
d(x, µj)

)
+ bk

2

+ λ
1

2

C∑
k=1

nh∑
j=1

w2
k,j (9)

where nh is the number of neurons of the hidden layer, C is the number of classes
and yi,k is the one-hot encoding of class labels and λ is the regularization factor.

5 Experimental Results

In the following, we evaluate the performance of SD-MIO-NN within the context
of multi-class supervised classification tasks using standard metrics and publicly
available well-known datasets. In more detail, classification performance is re-
ported in terms of accuracy (A) and the F1 score, which is the harmonic mean
of the precision (P) and recall (R) metrics:

A =
TP+ TN

N
, P =

TP

TP+ FP
, R =

TP

TP+ FN
, F1 =

2PR

P+ R
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Table 1. Main features of the datasets considered. (IR stands for imbalance ratio,
expressed by the quotient no. samples majority class / no. samples minority class [28].)

no. no. no.
dataset features classes samples IR

1. Iris 4 3 150 1.00
2. Penguins 6 3 333 2.15
3. Wine 13 3 178 1.50

4. Wisconsin breast cancer (original, WBC-org) 9 2 683 1.86
5. BUPA liver disorders 6 2 345 1.38
6. PIMA Indians Diabetes 8 2 768 1.87
7. Lower Back Pain Symptoms (LBPS) 11 2 310 2.10
8. Phoneme 5 2 5404 2.41

9. Segment 19 7 2310 1.00
10. Wisconsin breast cancer (WBC) 30 2 569 1.68
11. Satimage 36 6 6430 2.45
12. Digits 64 10 1797 1.05
13. DNA 180 2 3186 2.16
14. Sonar 60 2 207 1.16

15. Heart 13 5 297 12.31
16. Glass 9 6 214 8.44
17. Yeast 8 10 1484 92.6

where TP, TN, FP and FN are, respectively, the true positives, true negatives,
false positives and false negatives, and N is the total number of samples. All
the performance values reported in this section correspond to the average of the
metric values after stratified 5-fold cross validation, using weighted-averaging for
the multi-class datasets (that is to say, the weights match the support for each
class, i.e. the number of true instances). In all cases, we use αw = 1.2 (Section 4)
and λ = 0.01 (Eq. (9)).

The evaluation of SD-MIO-NN considers a benchmark comprising several
sorts of datasets, whose main features are summarized in Table 1, grouped in a
first basic set (datasets 1-3), followed by a second set of two-class (moderately)
imbalanced datasets [26] (datasets 4-8), datasets comprising high-dimensional
samples (datasets 9-14) and a final subset with highly imbalanced classes (datasets
15-17). All datasets can be found in public repositories, e.g. UCI-ML, Kaggle or
DataHub. All of them have been normalized (using max-min normalization)
before training and building the MIO-NN through SD-MIO-NN.

Table 2 collects relevant data on the performance of SD-MIO-NN for all the
datasets and considering the two MIOs IH and IP introduced in Section 3: size of
the SOM involved in the first step, number of hidden neurons resulting from the
second step, and classification accuracy and F1 values, given as minimum and
maximum values attained, average value and standard deviation, all calculated
over the results of the 5 folds of the cross-validation process. We also compare
the performance achieved with a Gaussian RBFNN that is fed by the SOM-
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based initialization step of SD-MIO-NN. As can be observed, the resulting MIO-
NN models outperform the model making use of the Gaussian RBF and the
Euclidean distance in all datasets. As a final comment, notice that the differences
that can be observed in the size of the hidden layer (column NH in Table 2) come
from the fact that SD-MIO-NN applies the same distance function when building
both the SOM and the hidden layer: i.e. m as defined in Eq. (4) when using the
MIOs, and the Euclidean distance when using the Gaussian RBF.

To finish, Table 3 compares SD-MIO-NN with other approaches in terms of
classification accuracy and number of hidden neurons: GAP-RBF [12], FGAP-
RBF [31], AANN [8], CP-NN [7], BeeRBF [5] and GA-IPSO-CSRBF [28]. We
include them in the comparison because they all deal with single-hidden layer
networks focusing on classification (it must be noticed that this is not the typ-
ical situation of RBFNNs since, in general, these models focus on regression,
e.g. [6]). Furthermore, the above-mentioned methods have been published as
self-adjusting schemes, i.e. they apply iterative processes of refinement to adjust
the structure of the network to the task at hand; this is the reason why some of
them finish with a low number of neurons in general, e.g. AANN. The accuracy
values that we report come directly from the original publications, which do not
show F1 values and hence we cannot include them in Table 3.

From the table, one can observe that SD-MIO-NN outperforms other solu-
tions, i.e. the highly imbalanced datasets heart and yeast, the high-dimensional
dataset sonar, and the datasets wine and wbc-org, or achieves almost the same
performance level, i.e. datasets iris, bupa, pima and wbc. As for the size of the hid-
den layer, SD-MIO-NN does not optimize it as already discussed, contrary to the
rest of algorithms included in the comparison; nonetheless, SD-MIO-NN, even
given the aforementioned, gives rise to contained layer sizes and even reduces
considerably the number of neurons for some datasets, i.e. phoneme, satimage
and dna, achieving similar performance than models produced by other methods.

6 Conclusions and Future Work

In this work, we have explored the use of Modular Indistinguishability Operators
(MIO) in RBFNN-like architectures to replace the Gaussian RBFs that normally
populate the hidden layer in this kind of structures, to give rise to MIO-based
Neural Networks (MIO-NN). In this respect, we have introduced a modular
metric m on [0,∞[n to next use it to define MIOs that can be integrated in
MIO-NNs. As an additional contribution, we have described SD-MIO-NN as an
approach capable of defining MIO-NNs in a parameterless way.

SD-MIO-NN has been evaluated in the context of multi-class classification
tasks by means of a total of up to 17 datasets featuring different number of
classes, imbalance ratios and number of dimensions. SD-MIO-NN in combination
with the different MIOs has been shown to be able to attain a high level of
performance, with slight differences among the MIOs considered. SD-MIO-NN
has also shown competitive performance against other algorithms for single-
hidden layer neural networks.
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Table 2. Performance achieved by MIO-NNs populated with IP and IH neurons (Eqs. 5
and 7) against a Gaussian RBFNN, for all datasets of the benchmark. (SOM: size of
the SOM, n1 × n2; NH: nr. of neurons of the hidden layer, nh; AMM: A max/min;
AAS: A avg ± std; FMM: F1 max/min; FAS: F1 avg ± std)
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Table 3. Accuracy (1st row) and number of hidden neurons (2nd row) of SD-MIO-NN
against other single hidden layer approaches. (The best result is indicated in red.)

GAP-RBF FGAP-RBF AANN CP-NN BeeRBF GA-IPSO- ... SD-MIO-NN
dataset [12] [31] [8] [7] [5] [28] IP IH

iris – – – 0.95 0.96 – 0.95 0.95
– – – 21.0 11.6 – 51.0 51.0

wine – – – – 0.97 – 0.97 0.98
– – – – 18.7 – 55.0 55.0

wbc-org – – – – – 0.96 0.97 0.97
– – – – – – 98.0 98.0

bupa – – – – – 0.68 0.66 0.65
– – – – – – 84.0 84.0

pima – – – – 0.77 0.74 0.75 0.76
– – – – 35.8 – 125.0 125.0

lbps – – – – – 0.81 0.72 0.72
– – – – – – 85.0 85.0

phoneme 0.77 0.87 – – – – 0.83 0.83
150.4 996.5 – – – – 121.0 121.0

segment 0.89 0.96 – – – – 0.92 0.91
42.7 423.9 – – – – 82.0 82.0

wbc – – 0.67 0.66 0.97 0.96 0.96 0.96
– – 9.0 22.0 71.2 – 117.0 117.0

satimage – 0.92 – – – – 0.88 0.87
– 1455.0 – – – – 151.0 151.0

dna – 0.93 – – – – 0.89 0.88
– 638.4 – – – – 86.0 86.0

sonar – – – – 0.59 – 0.83 0.80
– – – – 40.0 – 53.0 53.0

heart – – – – 0.53 – 0.59 0.58
– – – – 11.4 – 37.0 37.0

glass – – – – 0.73 – 0.72 0.73
– – – – 18.6 – 55.0 55.0

yeast – – 0.55 0.52 – – 0.59 0.58
– – 9.0 43.0 – – 195.0 195.0

’–’ means the value is not reported in the corresp. publication.

As for future work, the adaptation and evaluation of SD-MIO-NN for regres-
sion tasks is a topic we are working on at the moment. On the other side, it
is under study the adoption of other modular metrics and MIOs for enhanced
net properties and performance, as well as the development of other method-
ologies for linking the parameter t of the modular metric with the classifica-
tion/regression task to solve.

Appendix: Proof that m is a modular metric

According to V.V. Chytiakov (see [3]), a function w :]0,∞[×X×X → [0,∞] is a
modular metric on a non-empty set X if for each x, y, z ∈ X and each t, s ∈]0,∞[
the following axioms are fulfilled:

(MM1) w(t, x, y) = 0 for all t ∈]0,∞[ if and only if x = y;
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(MM2) w(t, x, y) = w(t, y, x);
(MM3) w(t+ s, x, z) ≤ w(t, x, y) + w(s, y, z).

In such a case, we say that (X,w) is a modular metric space.
Let m :]0,∞[×Dn ×Dn → [0, 1] be the mapping given in (4). To prove that

m is a modular metric, we just need to prove that (MM3) is satisfied, since
showing that (MM1) and (MM2) are fulfilled by m is immediate.

Now, let t, s ∈]0,∞[ and p, q, r ∈ Dn, where p = (p1, . . . , pn), q = (q1, . . . , qn)
and r = (r1, . . . , rn). Fix λ = max{t, s}. Next we prove that

m(λ, p, q) ≤ m(λ, p, r) +m(λ, r, q).

Observe that the function mp,q :]0,∞[→ [0, 1] is non-increasing, where mp,q(t) =
m(t, p, q) for all t ∈]0,∞[. Thus the previous inequality yields the next one

m(t+ s, p, q) ≤ m(λ, p, q) ≤ m(λ, p, r) +m(λ, r, q) ≤ m(t, p, r) +m(s, r, q),

which shows that (MM3) is fulfilled.
We distinguish two possible cases:

Case 1: ri ≤ max{pi, qi} for all i ∈ {1, . . . , n}. Then, max{pi, ri} ≤ max{pi, qi} and
max{ri, qi} ≤ max{pi, qi} for all i ∈ {1, . . . , n}. Therefore,

m(λ, p, r) +m(λ, r, q) =

n∑
i=1

|pi − ri|

λ+
n∑

i=1

max{pi, ri}
+

n∑
i=1

|ri − qi|

λ+
n∑

i=1

max{ri, qi}
≥

≥

n∑
i=1

|pi − ri|

λ+
n∑

i=1

max{pi, qi}
+

n∑
i=1

|ri − qi|

λ+
n∑

i=1

max{pi, qi}
=

=

n∑
i=1

(|pi − ri|+ |ri − qi|)

λ+
n∑

i=1

max{pi, qi}
≥

n∑
i=1

|pi − qi|

λ+
n∑

i=1

max{pi, qi}
= m(λ, p, q).

Case 2: There exists (at least one) i0 ∈ {1, . . . , n} such that ri0 > max{pi0 , qi0}.
In the subsequent argument, the next lemma, whose easy proof we omit,
plays a key role.

Lemma 1 Let α, β ≥ 0 and γ, λ ≥ 0, with γ + λ > 0 and γ ≥ α. We define
a function fα,β,γ,λ : [β,∞[→ D given by

fα,β,γ,λ(x) =
x− β + α

λ+ x+ γ
,

for each x ∈ [β,∞[. Then f is non-decreasing.
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Now let I ⊂ {1, . . . , n} be the set of indices such that ri > max{pi, qi} for
all i ∈ I and J = {1, . . . , n}\ I. Note that we have rj ≤ max{pj , qj} for each
j ∈ J .
Let r′ = (r′1, . . . , r

′
n), where

r′i =

{
max{pi, qi}, if i ∈ I

ri, if i ∈ J
.

Note that for each i ∈ I we have max{pi, r′i} = r′i = max{r′i, qi} and so
ri > r′i.
Clearly p, q and r′ satisfy the condition of Case 1, i.e., r′i ≤ max{pi, qi} for
all i ∈ {1, . . . , n}. Hence

m(λ, p, q) ≤ m(λ, p, r′) +m(λ, r′, q).

Next, we show that m(λ, p, r′) ≤ m(λ, p, r).

m(λ, p, r) =

n∑
i=1

|pi − ri|

λ+
n∑

i=1

max{pi, ri}
=

∑
i∈I

|pi − ri|+
∑
j∈J

|pj − rj |

λ+
∑
i∈I

max{pi, ri}+
∑
j∈J

max{pj , rj}
=

=

∑
i∈I

ri −
∑
i∈I

pi +
∑
j∈J

|pj − rj |

λ+
∑
i∈I

ri +
∑
j∈J

max{pj , rj}
.

In the same manner, we can verify that

m(λ, p, r′) =

∑
i∈I

r′i −
∑
i∈I

pi +
∑
j∈J

|pj − r′j |

λ+
∑
i∈I

r′i +
∑
j∈J

max{pj , r′j}
=

∑
i∈I

r′i −
∑
i∈I

pi +
∑
j∈J

|pj − rj |

λ+
∑
i∈I

r′i +
∑
j∈J

max{pj , rj}
.

Let β =
∑
i∈I

pi, α =
∑
j∈J

|pj − rj | and γ =
∑
j∈J

max{pj , rj}. Then we have that

α, β ≥ 0, γ + λ > 0 and γ ≥ α.
Since ri > r′i ≥ pi for each i ∈ I, we obtain that

∑
i∈I

ri >
∑
i∈I

r′i ≥
∑
i∈I

pi. Thus∑
i∈I

ri,
∑
i∈I

r′i ∈ [
∑
i∈I

pi,∞[. Therefore, by Lemma 1, we deduce that

m(λ, p, r) = fα,β,γ,λ

(∑
i∈I

ri

)
≥ fα,β,γ,λ

(∑
i∈I

r′i

)
= m(λ, p, r′).

Similar arguments apply to show that m(λ, r′, q) ≤ m(λ, r, q).
Therefore, we conclude that

m(λ, p, q) ≤ m(λ, p, r′) +m(λ, r′, q) ≤ (λ, p, r) +m(λ, r, p).
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Hence, (MM3) is satisfied.
It must be pointed out that, given a modular metric space (X,w) and fixed

t ∈]0,∞[, the function wt : X×X → [0,∞] is not a distance (metric) in general.
However, it is not hard to check that mt is a distance (metric) on Dn for all
t ∈]0,∞[.
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11. Henneron, T., Pierquin, A., Clénet, S.: Surrogate Model Based on the POD Com-
bined with the RBF Interpolation of Nonlinear Magnetostatic FE Model. IEEE
Transactions on Magnetics 56(1), 1–4 (2020)

12. Huang, G.B., Saratchandran, P., Sundararajan, N.: An Efficient Sequential Learn-
ing Algorithm for Growing and Pruning RBF (GAP-RBF) Networks. IEEE Trans-
actions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(6), 2284–2292
(2004)

13. Huang, K.Y., Shen, L.C., Weng, L.S.: Radial Basis Function Network for Well Log
Data Inversion. In: Proc. International Joint Conference on Neural Networks. pp.
1093–1098 (2011)

14. Keller, J.M., Liu, D., Fogel, D.B.: Fundamentals of Computational Intelligence:
Neural Networks, Fuzzy Systems, and Evolutionary Computation. John Wiley &
Sons - IEEE Press (2016)

15. Klement, E.P., Mesiar, R., Endre, P.: Triangular Norms. Springer, 1st edn. (2000)



14 A. Ortiz et al.

16. Kohonen, T.: Self-Organizing Maps. No. 30 in Series in Information Sciences,
Springer, 3rd edn. (2001)

17. Liu, T., Chen, S., Liang, S., Gan, S., Harris, C.J.: Fast Adaptive Gradient RBF
Networks for Online Learning of Nonstationary Time Series. IEEE Transactions
on Signal Processing 68, 2015–2030 (2020)
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