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Abstract. Any concern about the veracity of predictions made by ar-
tificial intelligence (AI) systems might deter decision makers from using
them to support their decisions. To dismiss such concerns in AI systems
based on support vector machines (SVMs), in this paper we explore the
use of L-grades for dealing with the veracity of SVM predictions and
propose a novel method for obtaining those grades. An illustrative ex-
ample shows how an L-grade can be used for denoting to what extent an
SVM prediction can be trusted, as well as how to obtain L-grades inside
a binary classification process.

Keywords: Trustworthy artificial intelligence · Explainable artificial in-
telligence · Support vector machines · L-grades · Z-numbers.

1 Introduction

Since transparency is deemed a key requirement for trustworthy artificial in-
telligence (TAI) [8, 12], artificial intelligence (AI) systems that yield opaque
predictions can be banned from situations where decision makers must justify
their resolutions [11]. A major problem in this regard is that AI systems based
on support vector machines (SVMs) [23] can be banned from those situations
since their predictions could be difficult for decision makers to understand and,
thus, trust [2, 10].

To amend that, several research lines aiming for the improvement of the
interpretability of SVM predictions have been followed. One of those lines is in
the direction of building simplified twin models with fuzzy rules extracted from
SVM models [1,18]. Another line, which can also be applied to other knowledge
models, is directed toward the construction of local models that behave like
the original SVM models near the vicinity of the objects under study [9, 19]. A
rather new line of research regards the contextualization of SVM predictions by
means of contextualized evaluations [13,14] or through contextualized knowledge
models [16].

⋆ Corresponding author.
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As a complement to the aforementioned research lines, in this paper we ex-
plore how the addition of a veracity component to SVM predictions can help
to improve transparency. More specifically, we look into the use of L-grades [6]
for handling the veracity of SVM predictions and propose a novel method for
eliciting such grades. An L-grade, say l = (s, c) ∈ [0, 1]2, is a special case of a
Z-number [25] where both components are values of the unit interval [0, 1] which
are interpreted as grades that are further processed using fuzzy logic. Analo-
gously to Z-numbers, which have been proposed for dealing with the reliability
of (fuzzy) information, herein L-grades are specifically used for coping with the
reliability of SVM predictions: while the first component of an L-grade denotes
to what extent the evaluation of a proposition having the form “x is (predicted
to be) A” is satisfied by x, the second component indicates to what extent the
first component can be trusted. For instance, if one is 85% confident that the
prediction shown in Fig. 1 is satisfied to an extent of 70%, one can use the
L-grade l = (0.70, 0.85) to express this information3.

is predicted to be Canadian Poplar because 

which has been identified as such.it looks like

Fig. 1. Example of a prediction with explanation.

Prediction veracity refers to the extent that predictions reflect an accepted
knowledge and thus can be trusted (cf. data veracity in [3]). As might be noticed
in the previous example, L-grades can be used for explicitly expressing the extent
to which predictions reflect an accepted knowledge. Thus, L-grades can be used
for handling prediction veracity in AI systems based on SVMs. This is a key
aspect of our proposal since decision makers can be provided with information
that transparently indicates the veracity of a prediction, which can be used along
with an explanation like the one shown in Fig. 1 for making an informed decision.
It is worth mentioning that providing decision makers with appropriate tools for
making such informed decisions is a powerful motivation in our work.

The components of an L-grade, namely the satisfaction and the confidence
grades, are deemed truth values and hence lend themselves to logic computation.
This is another important aspect of our proposal since the logic framework that
has been established for L-grades can be used in situations where a decision needs
to be guided by the veracity of an eventual aggregation of two or more SVM
predictions. For instance, let p : “x is (predicted to be) A” and q : “x is A” be two
propositions related to the predictions made by the contextualized knowledge
models P and Q respectively; and let lp and lq be the L-grades associated in

3 The leaves shown in this example are part of the collection described in [24].
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that order to p and q. In this case, a decision about x can be guided by a
computed veracity of the aggregation of lp and lq.

To present our proposal, the paper is structured as follows. A brief sum-
mary of the definition and semantics of L-grades is presented in Section 2. In
Section 3, we describe how L-grades can be obtained and used for handling
prediction veracity in SVM binary classification. An example illustrating this
process is presented in Section 4. Related work about veracity in SVM predic-
tions is discussed in Section 5. Finally, we present the conclusions and delineate
further work in Section 6.

2 A Brief Summary of L-grades

An L-grade has been conceived as a simplification of a Z-number in which its
components are interpreted as grades that can be processed using fuzzy logic [6].
As such, an L-grade is an ordered pair, say l = (s, c), where s and c are considered
to be graded values in the unit interval [0, 1].

Semantically, the components of an L-grade are interpreted as follows. The
first component, namely s, is called satisfaction grade and denotes to what extent
an object satisfies a given proposition: while s = 0 means that the proposition
is not satisfied at all, s = 1 means that the proposition is completely satisfied.
The second component, namely c, is called confidence grade and denotes to
what extent the satisfaction grade can be trusted: while c = 0 means that (the
value of) s cannot be trusted at all, c = 1 means that s can be fully trusted.
For instance, consider the L-grades lP = (1, 1) and lQ = (1, 0.5) given in that
order by two persons, say P and Q, after evaluating the proposition “x is A”.
According to the satisfaction grades in lp and lQ, both P and Q consider that the
object x fully satisfies the proposition. However, the confidence grades indicate
that while P is completely confident that x fully satisfies the proposition, Q is
only half confident.

Notice in the previous example that both s and c denote the degrees of truth
of two fuzzy propositions: while s indicates the degree of truth of the proposition
“x is A”, c indicates the degree of truth of the proposition “s is trustable” Hence,
s and c can be processed using a logic framework that is truth functional like
the one described in [6].

L-grades can be compared to find the proposition that best suits the prefer-
ences of a decision maker. For instance, let lP = (sP , cP ) and lQ = (sQ, cQ) two
L-grades denoting, in that order, the evaluations of the propositions pP : “x is
A” and pQ : “x is B”. If sP > sQ and cP > cQ, a decision maker will prefer
pP instead of pQ. The same preference will result if sP and sQ are very similar
and cP > cQ. However, if sP > sQ and cP < cQ, the decision maker would need
additional hints to choose between pP and pQ – the interested reader is referred
to [6] for possible ways to handle the latter case.

As might be noticed, an L-grade offers the facility to cope with the veracity
of a satisfaction grade. This aspect is used in the next section for dealing with
the veracity of SVM predictions in a binary classification process.
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3 L-grades in Binary SVM Classification

Classification is usually understood as a process in which one or more objects are
evaluated in order to determine (or predict) the most suitable class for them. In
situations where only two classes have been specified, such a process is deemed
binary classification.

Concerning the binary classification process performed by an SVM classifier,
the idea of a separating hyperplane can be used for explaining how the evaluation
of the objects is performed. Consider Fig. 2, in which two classes of objects,
namely black squares and white circles, as well as three objects, namely x1,
x2 and x3, whose classes are unknown are depicted along with a separating
hyperplane H. If one is asked to evaluate the extent to which the unknown
objects can be classified as black squares, one should say that, since x3 is very
far from H and is located on the side of the black squares, (the proposition) “x3

is a black square” is fully satisfied. One should also say that, since x2 is very far
from H and is located on the opposite side of the black squares, “x2 is a black
square” is not satisfied. However, one should say that “x1 is a black square’ is
hardly satisfied because, although x1 is located on the side of the black squares,
x1 is very close to H.

H

x1

x2

x3

Fig. 2. Idea behind the satisfaction grade binary SVM classification.

As was mentioned in the introduction, we aim to improve the transparency of
SVM predictions by the addition of a veracity component, which, as shown in the
previous section, can be characterized by an L-grade. Hence, we use the afore-
mentioned idea to obtain the first component of an L-grade, i.e., the satisfaction
grade, as follows.

As shown in Fig. 2, the extent to which an object x satisfies the proposition “x
is A” is determined by the location of x in relation to the separating hyperplane
H. Thus, we compute how far x is from H and its relative position by means of

df(x,w, b) =
x ·w + b

||w||
, (1)

where the normal vector w and an intercept term b are the components of the
hyperplaneH, x is a vector representation of x, ‘·’ denotes the inner product, and
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||w|| represents the L2 norm of w – the interested reader is referred to [14] for a
detailed explanation about how the components w and b can be obtained during
an SVM learning process. While the magnitude of df(x,w, b) is an indication
of how far x is from H, the sign of df(x,w, b) is an indication of the side x
is located: a positive sign means that x is located on the side of (the class) A
(specified in the proposition “x is A”), whereas a negative sign means that x is
located on the opposite side of A.

We use Eq. 1 for computing the satisfaction grade of a proposition having
the form “x is (predicted to be) A” through

s(x,w, b) =


1, if df(x,w, b) > M

0, if df(x,w, b) < −M

0.5 + df(x,w,b)
2M , otherwise.

(2)

In this equation, w and b are the components of the hyperplane representing the
knowledge model about A that has been built after performing an SVM learning
process, and M represents the maximum absolute value computed by Eq. 1 for
the objects constituting the training set X0 used during that learning process,
i.e.,

M = max{|df(x,w, b)| : ∀x ∈ X0}. (3)

Notice that df(x,w, b) must be in the interval [−M,M ] when x belongs to the
training set X0. However, when x belongs to the test set X, df(x,w, b) might
be outside of [−M,M ]. Such a situation is handled through the two first cases
stated in Eq. 2.

Regarding the second component of an L-grade, i.e., the confidence grade,
its value is determined by how well the separating hyperplane breaks up the two
classes. Consider Fig. 3, in which an additional separating hyperplane, namely
H∗, has been included. If we are asked to evaluate the extent to which x3 can
be classified as black square in relation to H∗, we should say that, since x3 is
very far from H∗ and is located on the side of the black squares, “x3 is a black
square” is fully satisfied as was done before with H. Nevertheless, we notice
white circles, to be specific x4 and x5, on the side of black squares. Thus, our
confidence about saying so should decrease in this case.

Since our confidence decreases when the separation of the two classes is not
well done, we can use a metric that indicates how well a separating hyperplane
breaks up the two classes in SVM classification. Thus, to compute the confidence
grade we use

c(w, b) = m(w, b), (4)

where m(w, b) represents a metric (e.g., accuracy [21] or recall [22] ) that mea-
sures the performance of the SVM model characterized by the hyperplane whose
components are w and b.

Putting Eq. 2 and Eq. 4 together, we compute the L-grade of an SVM pre-
diction having the form “x is (predicted to be) A” by means of

l(x,w, b) = (s (x,w, b) , c (w, b)) , (5)
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H

x1

x2

x3

H*

x4
x5

Fig. 3. Idea behind the confidence grade in binary SVM classification.

where, as was mentioned above, x is a vector representation of x, and w and b
characterize a particular SVM knowledge model about A.

Notice that Eq. 5 can be used for performing a joint evaluation of both the
extent s to which an object x satisfies the proposition “x is (predicted to be)
A,” and the extent c to which this satisfaction grade can be trusted. Such an
evaluation can be referred to as an L-valuation and can be denoted by the 3-
tuple (x, s, c). Moreover, an assembly of such L-valuations can be referred to
as L-information – cf. the terms Z-valuation and Z-information introduced by
Zadeh in [25]. We consider that L-information extracted from an SVM model
can be very useful. For instance, L-information can be used for summarizing the
performance of an SVM model and, thus, increasing its transparency.

To make an L-grade more understandable to decision makers, linguistic terms
can be used for expressing the values of its components [4,20]. For instance, the
linguistic terms set shown in Fig. 4 can be used for putting into words the
satisfaction grades computed with Eq. 2 and, thus, making statements like “the
proposition ‘x is A’ is enough satisfied (to an extent of 80%) with a confidence
of 95%.”

0.5 +
1
2𝑀

0.5 −
1
2𝑀

0.50 1

1

Definitively not satisfied Hardly satisfied

Not satisfied Enough satisfied

Satisfied

Fig. 4. Linguistic terms associated to satisfaction grades.
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In the next section, we illustrate how this method can be used for computing
L-grades that denote the veracity of SVM predictions.

4 Illustrative Example

To show how L-grades denote the veracity of SVM predictions in binary classi-
fication, a toy data set consisting of 18 black squares and 18 white circles was
used. The training set consists of 6 black squares whose coordinates are (0, 3),
(1, 2), (2, 1), (3, 3), (0, 0), and (−1,−1), and 5 white circles whose coordinates
are (−1, 0), (−3, 1), (3,−1), (−2, 1) and (0,−4). The test set consists of 3 black
squares whose coordinates are (1, 2), (1, 5), and 4, 3), and 4 white circles whose
coordinates are (−3.5,−3.5), (2,−1), (−1, 1), (−3, 0).

The training set and the library presented in [15] were used for training two
SVM models with linear kernels and regularization parameters C1 = 0.1 and
C2 = 1 respectively. The separating hyperplanes H1 and H2 that characterize
the resulting models are depicted in Fig. 5. The objects surrounded by a ring
are the support vectors.

6 4 2 0 2 4 6
6

4

2

0

2

4

6
H1

Model 1 (C=0.1)

6 4 2 0 2 4 6
6

4

2

0

2

4

6
H2

Model 2 (C=1)

Fig. 5. Separating hyperplanes characterizing the resulting models.

After that, the training set along with the normal vector and the intercept
term of each model were used as inputs of Eq. 3 for computing M1 = 1.9 and
M2 = 2.5. These values were used as inputs in Eq. 2 for computing the extent
to which each object x in the test set satisfies the proposition “x is A”, where
A represents the black squares.

Then, accuracy was established as the metric that measures the performance
of the models and was used along with the test set for computing their confidence
grades with Eq. 4. The computed confidence grades for Model 1 and Model 2
are 0.7143 and 0.8571 respectively.
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Finally, the computed satisfaction grades and confidence grades were used as
inputs of Eq. 5 to assemble the resulting L-grades for each object in the test set.
The linguistic terms shown in Fig. 4 were used for making the resulting L-grades
more understandable.

The results are shown in Fig. 6. Notice in this figure that, instead of just
saying “x0 is (predicted to be) A” (i.e., a black square), one can say that since
“x0 is A” is enough satisfied with a confidence of 85.71% according to Model 2, x0

is predicted to be a black square. We consider that this additional information
about the veracity of this prediction will help a person to make an informed
decision.

6 4 2 0 2 4 6
6

4

2

0

2

4

6

x0 is A
Enough satisfied
71.43% confident

x1 is A
Definitively not satisfied
71.43% confident

x2 is A
Satisfied
71.43% confident

x3 is A
Hardly satisfied
71.43% confident

x4 is A
Satisfied
71.43% confident

x5 is A
Hardly satisfied
71.43% confidentx6 is A

Not satisfied
71.43% confident

H1

Model 1 (C=0.1)

6 4 2 0 2 4 6
6

4

2

0

2

4

6

x0 is A
Enough satisfied
85.71% confident

x1 is A
Definitively not satisfied
85.71% confident

x2 is A
Satisfied
85.71% confident

x3 is A
Hardly satisfied
85.71% confident

x4 is A
Satisfied
85.71% confident

x5 is A
Not satisfied
85.71% confidentx6 is A

Not satisfied
85.71% confident

H2

Model 2 (C=1)

Fig. 6. Computed L-grades.

Notice also in Fig. 6 that the proposition “x5 is A” is not satisfied with a
confidence of 85.71% according to Model 2 and, thus, x5 is predicted to be a
white circle. However, according to Model 1, “x5 is A” is hardly satisfied with a
confidence of 71.43% and, thus, x5 is predicted to be a black square. In this case,
a decision maker will probably accept the prediction made by Model 2 since the
confidence grade of this prediction is greater than the confidence grade of the
prediction made by Model 1.

As was mentioned in the introduction, an advantage of using L-grades for
characterizing the veracity of SVM predictions is that the logic framework estab-
lished for them can be used. Using that framework, one can, e.g., request the AI
system that has been used for building Fig. 6 to show only the predictions that
have been enough satisfied with a confidence greater than 80%. As indicated in
the previous section, this opens the possibility of extracting useful L-information
from SVM models, which is recommended and subject to further study.
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5 Related Work

These days it is common to find AI systems that automatically learn from the
data, identify patterns, make predictions and some of them can even make pre-
dictions from experience without human intervention or assistance, as in the case
of AI of things [5]. So, handling explainability and veracity are important tasks
that impact decision-making processes, in particular when decision makers are
prone to use predictions generated by AI systems. The authors in [26] present a
comprehensive review for the use of AI in public governance which includes the
benefits of AI to support decision makers.

Regarding the veracity of classification predictions, to the best of our knowl-
edge, the available literature is nonexistent. So, there is a long path to pave
regarding veracity in predictions and this proposal contributes towards that di-
rection. However, several articles on data veracity can be found in the literature.
One of them focuses on veracity as one of the characteristics of big data [3].
Another describes methods for performing veracity assessments [17]. In [7], the
authors present a multi-dimensional framework for handling veracity in multi-
criteria decision making.

6 Conclusions

We have studied how the addition of a veracity component into SVM predic-
tions can improve their transparency, which is a fundamental requirement for
trustworthy AI. L-grades have been used in this paper for characterizing such
a veracity component since those grades enable the assessment of confidence
criteria that reflect the performance of SVM knowledge models. Enabling such
assessment is deemed crucial for handling veracity of SVM predictions.

We have proposed a novel method for computing L-grades of SVM predictions
made during a binary classification process. The satisfaction grade, which is the
first component of an L-grade, denotes the extent to which a proposition having
the form “x is (predicted to be) A” is satisfied by an object x. Thus, an indication
of the location of x in relation to the separating hyperplane that characterizes an
SVM model is used for computing the satisfaction grade. The second component,
called confidence grade, denotes the extent to which the satisfaction grade is
trustable. Hence, a metric that measures the performance of the SVM model
used for computing the satisfaction grade can be used in this case for computing
the confidence grade.

An example has illustrated how L-grades provide additional information
about the veracity of SVM predictions that can help decision makers to make
informed decisions. Moreover, the example has shown how linguistic terms can
make L-grades easier to understand for them.

The possibility of extracting L-information, which can be obtained and fur-
ther be processed by means of the logic framework proposed for handling L-
grades, has been also exposed in the example. Processing such L-information
with the aim of identifying SVM models that are appropriate for a given data
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set is planned and highly recommended as future work. Studying how such L-
information can be used for aggregating two or more contextualized SVM models
is also planned.

Acknowledgments. This work was supported by the Flemish Government under

the “Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen” programme, and

by ESPOL Polytechnic University under the research project “Interpretable Artificial

Intelligence (XAI) in Group Decision-Making (FIEC-200-2020).”

References

1. Barakat, N.H., Bradley, A.P.: Rule Extraction from Support Vector Machines: A
Sequential Covering Approach. IEEE Transactions on Knowledge and Data Engi-
neering 19(6), 729–741 (2007). https://doi.org/10.1109/TKDE.2007.190610
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6. De Tré, G., Peelman, M., Dujmović, J.: Logic reasoning under data veracity
concerns. International Journal of Approximate Reasoning 161, 108977 (2023).
https://doi.org/10.1016/j.ijar.2023.108977
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