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Abstract. In this paper, we propose to use an alternative to the classical
Kalman filter (KF) to slave the movement of a robot manipulator to
the measurements delivered by a far-infrared reflectometry sensor. This
alternative, called Guess filter (GF), uses fuzzy rought set theory and
possibilistic inference. It is particularly suited to measurements that are
both imprecise and inaccurate. We compare the ability of GF and KF
approaches to be used to control a robot on a simulated experience that
favors neither approach.
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1 Introduction

The aim of this work is to verify the glue bead assembly of a windscreen in
the automotive industry. This could be done by video if the windscreen wasn’t
obscured by a black strip, the role of which is to protect the glue bead from
UV rays. To meet industrial demand, we use a sensor that emits a wave in the
far infrared and measures the intensity of this wave after reflection. This is a
scanning sensor, which means that at each instant of measurement we have a line
of power of reflection measurements as presented in Figure (2). The fundamental
assumption in this work is that the glue bead has sufficient continuity to track
it with a transverse measurement performed by the sensor.

We use a robot to move the sensor along the bead to measure the bond.
As the position of the bead is poorly known, the robot is servo-controlled. The
control’s role is to deduce, from the measurement at each instant, the transverse
position enabling the bead measurement to be maintained at the center of the
linear image, and the sensor orientation to be maintained perpendicular to the
bead.

The position of the robot end effector that carries the sensor is represented
in Figure (1). The glue bend used for this picture has been removed from an
assembly for visual inspection.

Figure (2) shows a typical bead measurement situation. Since bonding is
carried out on a metal part, there is a large difference between the reflection of
the metal substrate and that of the adhesive bead.

The method we use to control the robot is as follows. For each measure-
ment, we estimate the position of the center and the width of the cordon using
a watershed method. Since we know the relationship between the pixel measure-
ments and the metric measurements, we can deduce from the position of the
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Fig. 1. Frame of the robot effect or w.r.t. the glue bend.
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Fig. 2. A measure provided by the sensor.
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center of the bead in the image the deviation the robot needs to make to restore
this position to the center of the image. For the orientation measurement at a
given instant, the ratio between the estimated width of the bead at the previous
instant and the measured width at the current instant is used. If this ratio is
greater than one, the bead is clearly shrinking. On the other hand, if the ratio
is less than one, this may be symptomatic of a change in bead orientation. Let
a be the width of the glue bead while b is the width of current measurement of
the width – see Figure (3). θ, the angle of rotation to be used to reposition the
sensor perpendicular to the bead is such that a = b.cos(θ). The values of both
this angle and the position of the bead center are used to correct the robot’s
position before the next iteration.

As the measurements involved in this servoing are both imprecise (due to the
sampling of the reflection measurement) and uncertain (due to measurement
noise), we propose to use a filtering method called Guess Filter (GF) to take
this type of condition into account. This filtering approach has been proposed
in [5] in the context of estimating the heading of an underwater robot. The
work presented in this article differs from the previously cited article in two
respects: 1/ estimates from the GF are used directly in the robot’s servo loop;
2/ a technique is proposed for estimating a data item that depends non-linearly
on the measurements.

a
b

θ

glue bed

Fig. 3. Angular estimation principle diagrams.

The rest of this article is subdivided as follows. In Section 2, we present a
brief overview of the GF and an extension of this method to take into account
the situation where the filtered quantity is not measured directly. In Section
3, we present an experiment of the robot servoing process based on filtered
measurement, comparing this approach with that using a Kalman filter. We
conclude in Section 4.

2 Guess filter

2.1 Some notation

– R is the real line.
– ρ ∈ Rn is a vector of Rn.
– A being a fuzzy subset of R, µA is the membership function of A.
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2.2 Guess filter principle

The Guess Filter (GF) principle is described in [5]. It is based on the granulation
principle defined by Pawlak in his work [4] extended by Dubois and Prade in [1].

Let θ(t) be a time varying signal. It is assumed that a sensor delivers uncer-
tain, imprecise and discrete measure m(t) of this signal in the form of a random
interval Mk where k ∈ N is the sample number corresponding to time t = k.T ,
where T ∈ R is the sampling period. The aim of the GF is to provide, for
each sample, an imprecise estimate Θk such that θ(kT ) ∈ Θk is as probable as
possible.

First, let us suppose that θ is a stationary signal, i.e. ∀t ∈ R, θ(t) = a. If
the sensor and the calibration of its imprecision are fully reliable, then ∀k ∈ N
we have a ∈ Mk. Therefore the best estimate that can be provided concerning
the unknown value a at time kT is the set Θk =

⋂k
i=0Mi. In that case precision

increases with k. On the other hand, if the sensor or its calibration are unreliable,
then a more conservative estimate of a would be the set Θk =

⋃k
i=0Mi. In this

dual case reliability increases with k. Naturally, in real life both situations hold.
A way to handle this case would be to consider the maximal coherent subsets
proposed by [2], i.e. the best estimate Θk can be obtained by a set combinations
of the intervals {Mi}i=0...k.

Now, let us suppose that θ is not stationary but is slowly time varying (slowly
means that the variation of θ between time kT and (k+1)T is highly lower than
the imprecision of the measure Mk). In that case, the influence of interval Mi to
obtain the set Θk should decrease with (k − i).

What is proposed in [5] is to implement this paradigm, somewhat along the
lines of the Kalman filter, by proposing a dis-symmetrical combination consisting
of updating Θk with Mk+1 according to the coherence between Θk and Mk+1.
If we stay with a pure ensemblist idea, we could propose the following rule:

Θk+1 =

{
Θk ∩Mk+1, if Θk ∩Mk+1 6= ∅,
Θk ∪Mk+1, otherwise,

(1)

∅ being the empty set of R.
There are two major drawbacks to this procedure:

1. it quickly becomes algorithmically intractable, as it creates numerous subsets
that are difficult to maintain in a coherent representation,

2. it is not nuanced,
3. there is no temporal filtering.

The solution adopted in [5] is to replace a crisp representation of Θk by a fuzzy
representation on the one hand, and to replace an exact representation of the sets
by a granulation of this representation on a fuzzy partition à la Ruspini on the
other hand. This approach makes it possible to combine a purely ensemblistic
method with a more statistical method based on votes - as proposed in [6].

On a purely fuzzy level, using the GF consists in calculating the coherence
between Mk+1 and Θk as being π = Supx∈I min

(
µΘk

(x), µMk+1
(x)
)

the possibil-
ity of Mk+1 knowing Θk, computing the conjunction Θk ∩Mk+1, the disjunction
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Θk ∪Mk+1 and use an additive modification of the Dubois-Prade updating rule
to compute the guessed subset Ψk+1 by:

µΨk+1
= π.µΘk∩Mk+1

+ (1− π).µΘk∪Mk+1
.

Finally use a temporal filtering to compute Θk+1 by:

µΘk+1
= λ.µΘk

+ (1− λ).µΨk+1
,

λ ∈ [0, 1] being a predefined updating factor accounting for the dynamic of the
signal to be estimated. For a more thorough explanation of this principle, please
refer to the original article.

2.3 Guess filter operating principle

We present here the GF calculation principle. Let us suppose that, by nature,
the value of θ(t) always belong to an interval I ⊂ R. Guess filtering requires
a fuzzy partition à la Ruspini of I. Let n ∈ N and Ω = {1, . . . , n}. A fuzzy
partition of I is a family of n fuzzy subsets {Ai}i∈Ω such that:

– ∀x ∈ I,
∑
i∈Ω µAi

(x) = 1,
– ∀i, j ∈ Ω, i 6= j =⇒ Supx∈I min

(
µAi

(x), µAj
(x)
)
< 1.

The most common solution is to use the so-called triangular fuzzy partition,
derived from the translation of a single generative triangular set, as shown in
Figure (4). Granulation of a (fuzzy) subset T on the fuzzy partition provides a
distribution of n values values gathered in the vector τ ∈ [0, 1]n with ∀i ∈ Ω,
τi = Supx∈I min (µT (x), µAi

(x)).
Let us suppose that the granulation of Θ at discrete time k is known as the

distribution θ = {θ1, . . . , θn}. At discrete time k + 1, information about s is
provided by the sensor in the form of a (possibly fuzzy) interval M . The aim of
the iterative procedure is to derive the granulation θ′ of Θ at time k + 1 based
on M and θ.
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Fig. 4. Granulation of fuzzy set T on a fuzzy partition of I.

After computing of η, the granulation of M on the fuzzy partition, updating
θ, i.e. computing θ′, involves four steps:
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1. computation of δ, the estimated distribution of the granulation of Θ ∩M ,

2. computation of γ, the estimated distribution of the granulation of Θ ∪M ,

3. computation of π the estimated possibility of M to be coherent with Θ,

4. computation of θ′ as a function of δ, γ, π and λ.

Formally, the values of the distributions are given as follows:

1. ∀k ∈ Ω, δk = min (θk, ηk),

2. ∀k ∈ Ω, γk = max (θk, ηk),

3. π = Supi,j∈Ω (min (θi, ηj , $i,j)),

4. ∀k ∈ Ω, θ′k = λ.θk + (1− λ). (min(π, δk) + min(1− π, γk).)

where $i,j = Supx min
(
µAi

(x), µAj
(x)
)
.

In practice, since each set Ai intersects only its two neighbors, we have:

$i,j =


1, if i = j,
1
2 , if |i− j| = 1,

0, otherwise.

2.4 Logical induction

In Section 2.2 we presented the use of the GF to estimate a variable that is
measured directly, i.e. Θ, the estimate at the current instant, is a linear function
of the measurement M and the estimate of Θ at the previous instant. However,
there are situations where the relationship between the current measurement M ,
the previous estimate Θ and a variable ψ to be estimated is not linear.

The use of the GF in this case simply uses the extension principle to move
from the space of the measurements to the space of the variable to be estimated.
Let Ψ be the subset of possible current values of ψ.

Let {Ai}i=1...n be the partition used for granulating the information about
the set Θ and {Bi}i=1...p be the partition used for granulating the informa-
tion about the set Ψ . Granulation of Ψ on {Bi}i=1...p provides the vector ψ =
{ψi}i=1...p.

Let us suppose that the non-linear relation between ψ, θ and m is on the
form of ψ = f(θ,m). From a crisp point of view, we can write that Ψ =
{ψ = f(θ,m) / θ ∈ Θ,m ∈M}. Now, taking into account the fact that the in-
formation is granularized, estimating Ψ consists in estimating ψ based on θ and
Mk by using the extension principle. We have:

∀k ∈ {1, . . . , p}, ψk = Supx min (µBk
(x), µΨ (x)) ,

= Supx,y min (µBk
(f(x, y)), µΘ(x), µM (y)) ,

≈ Supx min (µBk
(x), µΓ (x)) , (2)

with Γ (z) = Supx,y min (µΘ(x), µM (y) / z = f(x, y)).
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Practical computation In the case we’re interested in here, we have f(θ,m) =
arccos(min( θm , 1)) (see the introductory section). Let suppose M = [m,m], and
a fuzzy partition {Bi}i=1...p on [0, π] . Lets consider the function ζ : R 7→ [0, π]
such that ζ(x) = arccos(min(x, 1)). Then estimating ψ can be achieved in three
steps:

1. for each i = 1, . . . , n, compute the set Γi = ζ©(M � Ai), where � is the
fuzzy extension of division, and ζ© the fuzzy extension of ζ by using the L-R
representation [3]. M being strictly positive, we have [ζ (ai/m) , ζ(ai/m)] is
the core of Γi and [ζ ((ai +∆a)/m) , ζ((ai −∆a)/m)] is the support of Γi,

2. for each k = 1, . . . , p and each i = 1, . . . , n, compute
$k,i = Supx min (µBk

(x), µΓi
(x)) which can be done easily considering that

Bk is a triangular number and Γi a trapezoidal interval,
3. for each k = 1, . . . , p, compute ψk = Supni=1 min(θi, $k,i).

Finally, note that this procedure always provides a positive angle. Deciding
whether the rotation is positive or negative is achieved by considering the sign
of the y translation. If the y translation is positive, then the rotation is positive
and vice versa.

2.5 Defuzzification

Although the information given by the granulation on the partition used is rich in
information, for (classical) robot control, it is important to reverse the fuzzifica-
tion process to obtain the most coherent value of the magnitude to be estimated.
To this end, several defuzzification processes can be used. Let {θi}i=1...n be the
distribution to be deffuzzified. Let {ai}i=1...n be the cores of the fuzzy subsets
{Ai}i=1...n (see Figure 4).

Classical defuzzification The most common way to achieve this defuzzification
is to use a weighted sum:

θ̂ = α−1.

n∑
i=1

θi.ai, (3)

with α =
∑n
i=1 θi. This approach considers the granulated values as express-

ing the probability of θ = ai. The purpose of the α factor is to normalize the
distribution.

Imprecise defuzzification This method considers the granulated values as ex-
pressing the possibility of θ = ai. In that case, no precise value of θ̂ can be
provided, but instead the interval [θ, θ] of possible values of θ [7]:

θ =

n∑
i=1

a(i) (Ππ({(i) . . . (n)} −Ππ({(i+ 1) . . . (n)}) , (4)

θ =

n∑
i=1

a(i) (Nπ({(i) . . . (n)} −Nπ({(i+ 1) . . . (n)}) , (5)
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with ∀i = 1 . . . n, πi = α−1.θi, α = maxni=1 θi, (.) being the permutation that
sorts the θi in ascending order (θ1 ≤ · · · ≤ θn) and for all substet T ⊆ {1, . . . , n},
Ππ(T ) = maxi∈T πi, Nπ(T ) = 1−maxi/∈T πi. By convention {n+ 1, n} = ∅. In
that case, we use as the defuzzified value, the center of the interval [θ, θ].

Possibility to probability transform based precise defuzzification This method
also considers the granulated values as expressing the possibility of θ = ai, but
proposes to use the possibility to probability transform to achieve this defuzzi-
fication. In that case, the method is very close to that of Equation (3):

θ̂ =

n∑
i=1

ρi.ai, (6)

with ∀i ∈ {1, . . . , n}, ρ(i) = α−1
∑n
j=i

1
(j) (θ(j−1) − θ(j)), (.) being the permuta-

tion sorting the vector θ in ascending order and α = maxni=1 θi, and θ(0) = 0.
Note, however, that since the ai’s are uniformly distributed, the value given by
this defuzzification is generally very close to the center of the interval given by
the imprecise defuzzification. In contrast to imprecise defuzzification, we’ll be
referring to it as “precise defuzzification” in the remainder of this article.

3 Experiment on visual servoing

In this section, we explain the setup of our experiment and provide some re-
sults and comparison with the classical Kalman Filter (KF) based approach. All
the experiments are carried out using simulations, in order to control all the
parameters managing the robot’s movement and to have a ground truth.

Fig. 5. Simulating the robot and the glue bead.
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3.1 Setup

The aim of this work is to inspect the positioning of the glue bead bonding
the windscreen to the vehicle’s metal frame. To carry out this control, the far-
infrared wave sensor is mounted on the end of a 6-axis robot – see Figure (5). The
measurement is collected in a vector of 120 values, each value corresponding to
a reflection measurement along a 60 mm line. As explained in the introduction,
the aim is to keep the orientation of the sensor perpendicular to the axis of the
bead, while keeping the center of the bead at the center of the measurement line.

To ensure consistent measurement, the sensor must be held perpendicular
to the surface to be measured, at a distance that ensures the electromagnetic
beam is focused at the bead. To this end, the roll and pitch angles of the robot’s
end effector are controlled via the measurements of a stereoscopic sensor (Intel
RealSense D405). Similarly, the sensor’s distance from the windshield surface is
controlled by a laser rangefinder.

3.2 Visual servoing

Referring to Figure (1), the purpose of the visual servo system is to control
the y-axis displacement of the robot’s end device as well as its yaw orientation.
Displacement along the x-axis is regular and independent of this servo-control.

To achieve this, at each sampling period the reflectance measurement de-
livered by the sensor is analyzed to estimate the position of the bead relative
to the sensor, as well as the width of the bead. These two estimates are both
uncertain and imprecise, as explained in the introduction. Imprecise because the
measurement is sampled (position and width are estimated to within one or two
pixels). Uncertain because, as can be seen in Figure (2), deducing width and
position from the measurement line is subject to random fluctuations.

The y-shift required to keep the bead at the center of the linear image is
deduced from the position of the bead center in the measurement line. From the
comparison between the estimated width of the bead and its measurement at
the sampling time, we deduce the yaw change in orientation required to keep the
sensor perpendicular to the main direction of the bead.

3.3 Kaman filtering approach

To filter the measurements with a Kalman filter, taking into account the slow
evolution of the underlying variables, we use a first-order model of the form:

[
xk+1

ẋk+1

]
=

[
1 ∆t

0 1

]
.

[
xk

ẋk

]
+

[
∆t2/2

∆t

]
.ε,

mk =
[
1 0
]
.

[
xk

ẋk

]
+ η,
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where xk is the current state of the value to be estimated, mk the current
measure of this variable, η the measurement noise and ε the second derivative
of the variable considered as a centered Gaussian random value (noise).

In the Kalman filter equations, two matrices are required which are Q the
variance/covariance matrix of the evolution model andR the variance/covariance
matrix of the measurement. Q is easily obtained in the form:

Q =

[
∆t2 ∆t3

∆t3 ∆t4

]
.σ2
ε ,

where σ2
ε is the supposed variance of ε. This parameter has to be experimentally

adjusted. R is the variance of a uniform variable on [−α, α], i.e. R = α2

3 .
We use two Kalman filters, one to estimate the position of the center of the

bead in the image, the other to estimate the width of the bead. To estimate
the angle required to correct the sensor’s orientation with respect to the bead,
we divide the width estimate by the width measurement, as explained in the
introduction – see Figure (3). For the prediction variance, the σ2

ε value was set
at 0.03 for the bead width estimate and 0.1 for the y-deviation estimate y, as
these parameters provide the best performance for this approach.

3.4 Guess filtering approach

When using the GF, the procedure is the identical, except that estimates of y-
axis position variation and bead width are made using the procedure described
in Section 2.3. The parameters used for this experiment are as follows. Width
estimation is performed on a partition of 240 triangular subsets distributed over
an interval of [0, 60]mm. An identical partition is used for the position of the
bead center but over an interval of [−30, 30]mm. This granulation is in line with
the expected measurement imprecision. We use a smoothing factor λ = 0.7.

For estimating angular variation, we use the procedure described in Section
2.4, using an arbitrary partition of 360 subsets over an interval of [−π, π].

For defuzzification, we experimented the 3 methods proposed in Section 2.5.

3.5 Comparison

We simulated the movement of a 6-axis robot in which three of the degrees of
freedom are controlled by the distance and stereovision sensors (as mentioned
previously), while the advance along the x-axis was regular and quasi-static to
ensure motion-free measurement of the infrared sensor. y-movement and yaw-
angle control make direct use of the information produced by the filters (GF and
KF).

We simulated the measurement of a glue bead in accordance with the design
of a bead linking the windshield to the frame. Measurements are subjected to
Gaussian noise before being sampled. Sampled measurements were then analyzed
to extract, for each period, an estimate of the bead width and the position of
its center in the sensor reference frame. Imprecise and noisy measurements of
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bead width and position were filtered out by each filter. This simulation does
not fault the Kalman filter. This experiment simply aims at showing that, under
nominal conditions, the two approaches give comparable results.

In the case of KF the angle was obtained by calculating the cos−1 of the ratio
of the estimated width to the measured width, and decide whether the angle is
positive or negative based on the estimated value of the y-deviation.

In the case of GF, the orientation of the bead was calculated according to the
procedure described in Section 2.4. Due to the imprecision of the measurement,
and its representation by granulation, the fact that the deviation along y is
positive or negative is also imprecise information. We therefore used an imprecise
defuzzification of the bead position delivering an interval [y, y] – see Section 2.5.
If 0 ≤ y then the distribution is made on the partition considering the angle to
be negative. If 0 ≥ y then the distribution is made on the partition considering
the angle to be positive. This can naturally lead to a symmetrical distribution
of angles if 0 ∈ [y, y].

As a first result, we found that estimation using possibility to probability
transform based defuzzification always gives better results than that using clas-
sical defuzzification. In addition, we found that this precise estimate yields values
almost identical to those given by the center of the interval given by the imprecise
defuzzification. For this reason, we report only the results obtained by precise
defuzzification.

Results of estimation errors of y-deviation, bead orientation and width are
reported in Table 1 in terms of bias, absolute error and maximum error.

It can be seen that the two filtering approaches give equivalent results for
y-deviation, yaw angle and bead width. The only notable difference is that the
Kalman approach to yaw angle estimation is slightly biased, as can be seen in
Figure (6) .
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Fig. 6. KF (red) and GF (blue) yaw-angle estimation error .
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y-deviation (mm) yaw-deviation (rd) bead width (mm)

KF GF KF GF KF GF

Mean error (bias) −0.04 0.005 0.09 −0.002 −0.56 −0.31

Absolute error 0.08 0.10 0.11 0.10 0.58 0.59

Maximal error 0.50 0.58 0.36 0.49 1.40 5.36

Table 1. Error in estimating y-position, yaw angle and bead width.

4 Conclusion

In this article, we have demonstrated that it is possible to use a Guess filter ap-
proach instead of a Kalman filter to control a robot using data from a far-infrared
sensor. To enable this servo-control based on the analysis of one-dimensional in-
formation, we have extended the technique described in [5] to take into account
the fact that the data to be estimated is not directly measured. We have car-
ried out a simulated experiment showing that, under normal conditions, GF
gives results that are perfectly comparable with those of KF. In future work,
we intend to implement a real experiment that we hope will demonstrate the
qualities of the GF, which distinguishes the temporal filtering aspect from that
of maintaining consistency between estimation and measurement.
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