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Abstract. We present a model allowing to extend an L-topology τ on
a set X (i.e. τ ⊆ LX) to a bipolar L-fuzzy topology T on this set (i.e.
T : LX → L). This model is based on the use of a residuated-type struc-
ture on a lattice L, and the derived lattice L obtained by “bipolarizing”
the original lattice L. The properties of the obtained bipolar L-fuzzy
topology are studied. We specially consider the case when the original
lattice L is enriched with a monoid Girard structure. In this case, the
results obtained become especially transparent.
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1 Introduction

In “classic” (non-fuzzy) mathematics it usually seems pointless to ask to what
extent a given object has a certain property: a topological space is either compact
or not, a metric space is either complete or not, a group is either commutative
or not, et al. On the other hand, within the framework of fuzzy mathematical
structures, the tools of “fuzzy logic” make it possible to give some meaning to
this issue. In particular, a quite much work was done to estimate to what degree
a fuzzy topological space or its fuzzy subset is compact, Hausdorff, connected et
al., to what degree a function of (fuzzy) topological spaces is continuous et al.,
see, for example [23], [25], [28], [33], [34], [35] et al. Such an assessment of the
presence of a property is usually evaluated by a value in a complete lattice L.
However, in certain situations it may be appropriate to combine the assessment
of the presence of a property with the assessment of the presence of the opposite
property in a given object. As a tool for implementing this approach, more
general assessment scales can be used, in particular, those based on the so-called
“intuitionistic” fuzzy sets or on bipolar-valued fuzzy sets. The purpose of this
work is to initiate the use of bipolar fuzzy estimation of specific topological
properties within the framework of fuzzy mathematical structures. Namely, in
this paper we present a bipolar fuzzy estimation of the properties of openness
and closedness for fuzzy sets in a fuzzy topological space and, on this basis,
develop a model that allows us to extend an L-fuzzy topology τ on a set X to
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the fuzzy topology T : LX → L, where L is the bipolar extension of the original
lattice L. Along with the purely theoretical interest in this model, we assume
that it can serve as a tool for a deeper (compared to previously undertaken)
analysis of (fuzzy) topologies and their properties, in particular compactness,
connectivity and separation properties of fuzzy topological spaces.

2 Preliminary information: the framework of our study

2.1 Construction of the bipolar lattice L
Quantales and residuated lattices We use the standard terminology ac-
cepted in theory of lattices, see, e.g. [3], [11], [30]. When speaking about a lattice
(L,≤,∧,∨), we assume that it is complete with 0L and 1L its bottom and top
elements respectively. A frame, or an infinitely distributive lattice is a complete
lattice satisfying the infinite distributivity law

(
∨

i∈I ai) ∧ b =
∨

i∈I(ai ∧ b) ∀b ∈ L ∀{ai | i ∈ I} ⊆ L.

A tuple (L,≤,∧,∨, ∗) is called a quantale [32] if (L,≤,∧,∨) is a complete lattice
and ∗ : L × L → L a binary associative monotone operation which distributes
over arbitrary joins:

a ∗
(∨

i∈Ibi
)

=
∨

i∈I(a ∗ bi) and
(∨

i∈Ibi
)
∗ a =

∨
i∈I(bi ∗ a)

for all {bi | i ∈ I} ⊆ L and for all a ∈ L. A quantale (L,≤,∧,∨, ∗) is called
(1) symmetric if a ∗ b = b ∗ a for every a, b ∈ L, (2) integral if 1L ∈ L is the
unit element of the monoid (L,≤,∧,∨, ∗). When saying a quantale, we always
assume that it is symmetric and integral.

In a quantale a further binary operation 7→: L × L → L, the residuum, can
be introduced as associated with operation ∗ via the Galois connection:

a ∗ b ≤ c⇐⇒ a ≤ b 7→ c for all a, b, c ∈ L.

A quantale (L,≤,∧,∨, ∗) provided with the derived operation 7→, that is the
tuple (L,≤,∧,∨, ∗, 7→), is known also as a (complete) residuated lattice [30]. In
what follows we usually call operation ∗ the conjunction, and the corresponding
residuum 7→ the implication in the residuated lattice L.

Complementation A unary relation c : L→ L is called a complementation if
it is an order reversing involution that is

(¬1) a ≤ b =⇒ bc ≤ ac for all a, b ∈ L; (¬2) (ac)c = a for every a ∈ L.

A typical example of complementation is the subtraction operation on the unit
interval, that is ac = 1 − a for every a ∈ [0, 1]. Another important example is
complsmentation defined by means of residuum ac = a 7→ 0 in a Girard monoid.
The following property of complementation is well known.

Proposition 1. A complementation in a completele lattice satisfies the gener-
alized de Morgan laws:(∨

i∈Iai
)c

=
∧

i∈Ia
c
i and

(∧
i∈Iai

)c
=

∨
i∈Ia

c
i for all {ai | i ∈ I} ⊆ L.
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Construction of the bipolar lattice L from a complete lattice L We use
two copies of the lattice L denoted respectively by L+ and L−. The elements of
L = L+ are denoted 0, a,1, while the corresponding elements of L− are denoted
0−, a−,1−, respectively. We consider correspondence

∼ : L+ ←→ L− defined by ∼a = a− and ∼a− = a

and introduce the order ≤− on L− by setting b−1 ≤− b−2 ⇐⇒ b1 ≥ b2. So,
actually the lattice L− can be defined as the lattice Lop. The supremum and
the infimum on the lattice L− are defined by the infimum and supremum on the
lattice L, i.e.∨L−

i∈I bi =
∧L

i∈I
∼bi and

∧L−

i∈I bi =
∨L

i∈I
∼bi ∀{bi | i ∈ I} ⊆ L−.

Further, let L = L+ × L−. We introduce a partial order ⪯ on L by setting

(a, b) ⪯ (a′, b′)⇐⇒ a ≤ a′, b ≥ b′.

Given a family F = {(ai, bi) |∈ I} ⊆ L, we define∨
F =

(∨L
i∈I ai

∨L−

i∈I bi

)
and

∧
F =

(∧L
i∈I ai,

∧L−

i∈I bi

)
.

From the above construction one can easily get the following result:

Theorem 1. (L,⪯,
∧
,
∨

) is a complete lattice. Its top element ⊤L is (1,0−) ∈
L; its bottom element ⊥L is (0,1−) ∈ L. Moreover, if L is a frame, the the
lattice L is also a frame.

2.2 Measures of inclusion and non-inclusion on L-powersets

Measure of inclusion The following definition was first introduced in [2] and
[37]. Later such definition and its different modification were used by many
authors, see, e.g. [9], [19], [33] et al.

Definition 1. Let X be a set and (L,≤,∧,∨, ∗, 7→) be a residuated lattice. The
measure of inclusion of an L-fuzzy set A ∈ LX into an L-fuzzy set B ∈ LX is
defined by A ↪→ B =

∧
x∈XA(x) 7→ B(x).

In the following proposition we collect properties of the operation ↪→: LX×LX →
L. The proofs easily follow from the properties of the residuum and can be found
in many articles, see, e.g. [13].

Proposition 2. Let {Ai | i ∈ I} ⊆ LX , {Bi | i ∈ I} ⊆ LX , A,B ∈ LX . Then
(1) (

∨
i Ai) ↪→ B =

∧
i (Ai ↪→ B) ;

(2) A ↪→ (
∧

i Bi) =
∧

i(A ↪→ Bi);
(3) A ↪→ B = 1 whenever A ≤ B;
(4) A1 ≤ A2 =⇒ A1 ↪→ B ≥ A2 ↪→ B ;
(5) B1 ≤ B2 =⇒ A ↪→ B1 ≤ A ↪→ B2 ;
(6) (

∧
iAi) ↪→ (

∧
iBi) ≥

∧
i(Ai ↪→ Bi);

(7) (
∨

iAi) ↪→ (
∨

iBi) ≥
∧

i(Ai ↪→ Bi).
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Measure of non-inclusion We define measure of non-inclusion on the powerset
LX based on the operation ↛ on the lattice L. This operation can be viewed as
a certain co-implication.

Definition 2. Let a, b ∈ L and let c : L→ L be a complementation. We define
co-implication ↛ L× L→ L by setting a ↛ b = a ∗ bc.

Directly from the definition it is easy to establish the basic properties of co-
implication collected in the next proposition.

Proposition 3. Let a, b ∈ L and {ai | i ∈ I}, {bi | i ∈ I} ⊆ L. Then:
(1) a1 ≤ a2 =⇒ a1↛b ≤ a2↛b;
(2) b1 ≤ b2 =⇒ a↛b1 ≥ a↛b2;
(3)

(∨
i∈I ai

)
↛

(∨
i∈I bi

)
≤

∨
i∈I(ai↛bi);

(4)
(∧

i∈I ai
)
↛

(∧
i∈I bi

)
≤

∨
i∈I(ai↛bi)

Basing on the operator ↛ : L×L→ L, we introduce the measure of non-inclusion
of one fuzzy set into another:

Definition 3. Let A,B ∈ LX . Then the measure of non-inclusion of an L-fuzzy
set A into an L-fuzzy set B is defined by A ̸↪→B =

∨
x∈X(A(x)↛B(x).

From Proposition 3 we easily prove the following statement collecting the basic
properties of the non-inclusion relation.

Proposition 4. Let A,B ∈ LX , {Ai | i ∈ I}, {Bi | i ∈ I} ⊆ L. Then
(1) A1 ≤ A2 =⇒ A1 ̸↪→B ≤ A1 ̸↪→B;
(2) B1 ≤ B2 =⇒ A ̸↪→B1 ≥ A ̸↪→B2;
(3)

(∨
i∈I Ai

)
̸↪→

(∨
i∈I Bi

)
≤

∨
i∈I(Ai ̸↪→Bi);

(4)
(∧

i∈I Ai

)
̸↪→

(∧
i∈I Bi

)
≤

∨
i∈I(Ai ̸↪→Bi).

2.3 Topological structures in the context of fuzzy sets: introductory
notes

Fuzzy topologies The first definition of a topology in the context of L-fuzzy
sets was introduced by C.L. Chang [7] in case L = [0, 1] and extended for an ar-
bitrary infinitely distributive lattice (frame) by J.A. Goguen [12]. Now following,
e.g.[16], [17] such “topologies” are usually referred to as L-topologies in order to
emphasize that only sets are L-fuzzy, but the topology itself is still crisp.

Definition 4. [7], [12] Let X be a set and L be a frame. A family of L-fuzzy
subsets τ ⊆ LX is called an L-topology on a set X if the following conditions
are satisfied: (1) 0X ,1X ∈ τ ; (2) A,B ∈ τ =⇒ A ∧ B ∈ τ ; (3) {Ai | i ∈
I} ⊆ L =⇒

∨
i∈I Ai ∈ τ. The corresponding pair (X, τ) is called an L-topological

space. Given two L-topological spaces (X, τX) and (Y, τY ), a mapping f : X → Y
is called continuous if V ∈ τY =⇒ f−1(V ) ∈ τX .

The first time when both sets and the topological structure are allowed to be
fuzzy as well was considered in [20],[33] (independently) and further extended
to the most general case, when the codomains of fuzzy sets and the codomains
of fuzzy topologies may also differ, in the following definition:
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Definition 5. [21], [22], [36]. Let L,M be complete infinitely distributive lat-
tices with 0L,0M ,1L,1M their bottom and top elements respectively. A map-
ping T : LX → M is called an (L,M)-fuzzy topology on a set X if the fol-
lowing conditions are satisfied: (1) T (0L

X) = T (1L
X) = 1M ; (2) T (A ∧ B) ≥

T (A) ∧ T (B) ∀A,B ∈ LX ; (3) T (
∨

i∈I Ai) ≥
∧

i∈I T (Ai) ∀{Ai | i ∈ I} ⊆ LX .
The corresponding pair (X, T ) is called an (L,M)-fuzzy topological space. Given
two (L,M)-fuzzy topological spaces (X, TX) and (Y, TY ), a mapping f : X → Y
is called continuous if TY (V ) ≤ TX(f−1(V )) for every V ∈ LY .

Fuzzy co-topologies In “classic topology” closed sets are defined as com-
plements of open sets thus determining a bijection between families of open
and closed sets. A similar, definite, situation appears also in the case of [0, 1]-
topologies (i.e. Chang fuzzy topologies): the complementation [0, 1] defined by
subtraction naturally provides bijection between a family of fuzzy sets and the
family of comlements of these fuzzy sets. On the other hand, in the case of
arbitrary L-topologies, the absence of the naturally defined complementation
operation on the lattice L leads to the need for independent development of
theories of (different versions) of fuzzy topologies and the theories of (the corre-
sponding versions) of fuzzy co-topologies. For the first time, as far as we know,
this approach was announced in [4] and was subsequently developed in the ar-
ticles by M.L. Brown and his co-authors [5], [6], et al. Below we recall basic
concepts related to fuzzy co-topologies.

Definition 6. [7],[26],[8]. A family of L-fuzzy subsets σ ⊆ LX is called an L-
co-topology on a set X if the following conditions are satisfied: (1) 0X ,1X ∈ σ;
(2) A,B ∈ σ =⇒ A ∨ B ∈ σ; (3) {Ai | i ∈ I} ⊆ σ =⇒

∧
i∈I Ai ∈ σ. The

corresponding pair (X,σ) is called an L-co-topological space.

Definition 7. [21], [22], [36]. A mapping S : LX →M is called an (L,M)-fuzzy
co-topology on a set X if the following conditions are satisfied: (1) S(0L

X) =
S(1L

X) = 1M ; (2) S(0L
X) = S(1L

X) = 1M ; (3) S(
∧

i∈I Ai) ≥
∧

i∈I S(Ai) ∀{Ai |
i ∈ I} ⊆ LX . The corresponding pair (X,S) is called an (L,M)-fuzzy co-
topological space.

3 Bipolar fuzzy extensions of L-topologies and
L-co-topologies

Openness degrees of fuzzy subsets in L-topological spaces Let (X, τ)
be an L-topological space. Given an L-fuzzy set A ∈ LX , we define its interior
Ao by setting Ao =

∨
{U | U ∈ τ, U ≤ A}. It is well known (see, e.g. [31]) and

easy to see that Ao is the largest open fuzzy set contained in A.
We use the interior Ao of A and relation of inclusion ↪→ in order to measure

the degree of openness of an L-fuzzy set A in an L-topological space (X, τ) by
setting T +

τ (A) = A ↪→ Ao. By varying fuzzy sets A over LX , we get a mapping
T +
τ : LX → L.
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Applying the properties of relation ↪→: LX → LX → L, we can prove the
following result.

Theorem 2. The mapping T +
τ : LX → L is an (L,L)-fuzzy topology on the

set X. If a function f : (X, τX)→ (Y, τY ) of L-topological spaces is continuous,
then the mapping f : (X, T +

τX ) → (Y, T +
τY )) of the corresponding (L,L)-fuzzy

topological spaces is continuous, too.

Non-openness degrees of L-fuzzy subsets in L-topological spaces Let
(X, τ) be an L-topological space, let A be its L-fuzzy subset, and let Ao =

∨
{U |

U ∈ τ, U ≤ A} be its interior.

Definition 8. The degree of non-openness of a fuzzy set A in an L-topological
space is defined by T −

τ (A) =∼ (A ̸↪→Ao). By varying A over LX we get an oper-
ator T −

τ : LX → L− of non-openness in the L-topological space (X, τ).

Applying the properties of relation ̸↪→ : LX×LX → L established in Proposition
4, we can prove the following result.

Theorem 3. The mapping T −
τ : LX → L− is an (L,L−)-fuzzy topology on the

set X.

Bipolar L-fuzzy topology on an L-topological space In the previous para-
graphs we have defined two fuzzy topologies on a topological space X: an (L,L)-
fuzzy topology T + : LX → L that determines the openness degree of a fuzzy
set A ∈ LX and an (L,L−)-fuzzy topology T − : LX → L− that determines
its non-openness degree. Basing on these fuzzy topologies we define a mapping
Tτ : LX → L by setting:

Tτ (A) = (T +
τ (A), T −

τ (A)) ∈ L for every A ∈ LX .

On the base of theorems 2 and 3 we easily get the following main result of this
section:

Theorem 4. The mapping T : LX → L is an (L,L)-fuzzy topology on X.

Since the lattice L is a bipolarization of the original lattice L and wishing to
emphasize the role of bipolarity in our constructions, we will refer to the (L,L)-
fuzzy topology T : LX → L also as the bipolar L-fuzzy topology induced by the
L-topology τ ⊆ LX

Remark 1. In [27], see also [28], a stronger version of an (Chang-Goguen) L-
topological space was introduces by replacing axiom (1) with a stronger axiom
requesting that all constant fuzzy sets αX must be included in τ . Following [31]
such L-topological spaces are called stratified. We can easily get the following
stratified version of Theorem 4:
If τ is a stratified L-topology on a set X then T : LX → L is a stratified
bipolar L-fuzzy topology on the set X that is a bipolar L-fuzzy topology such that
(1s) T (aX) = (T +(aX), T −(aX)) = (1,0−) = ⊤L for every a ∈ L.
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3.1 Bipolar fuzzy extension of L-co-topologies

Closedness degrees of fuzzy subsets in L-co-topologcal spaces Let (X,σ)
be an L-co-topological space. Given an L-fuzzy set A ∈ LX , we define the closure
Ā of A in the space (X,σ), by setting Ā =

∧
{F | F ∈ σ, F ≥ A}.

We use the closure Ā of A to measure its degree of closedness S+σ (A) in
the space (X,σ) by setting S+σ (A) = Ā ↪→ A. By varying fuzzy sets A over
LX , we get a mapping S+σ : LX → L. Now, applying the properties of relation
↪→: LX × LX → L, we can prove the following result.

Theorem 5. The mapping S+σ : LX → L is an (L,L)-fuzzy co-topology on the
set X. If f : (X,σX) → (Y, σY ) is a continuous mapping of L-co-topological
spaces, then f : (X,S+σX

)→ (Y,S+σY
) is a continuous mapping of the correspond-

ing (L,L)-fuzzy co-topological spaces.

Non-closedness degrees of fuzzy subsets in L-co-topological spaces
Patterned after the definition of non-openness degree for L-fuzzy subsets of an
L-topological space, we introduce here the degree of non-closedness for L-fuzzy
subsets A ∈ LX in an L-co-topological space (X,σ) by setting S−σ (A) =∼ Ā ̸↪→A.
Varying A over LX , we get an operator S−σ : LX → L− of non-closedness of L-
fuzzy subsets of the space (X,σ).

Referring to Proposition 4, we can establish the following result.

Theorem 6. The mapping S−σ : LX → L− is an (L,L−)-fuzzy co-topology on
the set X.

Bipolar fuzzy co-topology on a co-topological space Basing on the fuzzy
co-topologies S+σ : LX → L and S−σ : LX → L− and applying theorems 5 and 6
we get the following main result of this section.

Theorem 7. Mapping Sσ : LX → L defined by

Sσ(A) = (S+σ (A),S−σ (A)) ∈ L for every A ∈ LX

is an (L,L)-fuzzy co-topology on the set X.

4 Bipolar L-fuzzy extension of an L-topology in case of a
Girard monoid

Girard monoids as the framework for our studies The definitions of L-
topologies and their internal properties depend only on the lattice structure of L.
On the other hand, the model of extending of an L-topology to a bipolar L-fuzzy
topology is based on the conjunction ∗ : L×L→ L, the corresponding residuum
7→: L × L → L and the unary operator c : L → L. Therefore the properties
of the extended L-fuzzy topologies depend on the interrelations between the
conjunction ∗ : L × L → L and on complementation c : L → L. In this section
we consider the special, in our opinion the most transparent case, when (L,≤
,∧,∨, ∗, 7→,c ) is a complete Girard monoid, see [10], [18].
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Definition 9. [10] A residuated lattice (L,≤,∧,∨, ∗, 7→) is called a Girard
monoid if (a 7→ 0) 7→ 0 = a for every a ∈ L.

For every a ∈ L in a Girard monoid we define ac = a 7→ 0. Thus we have
connected in this special way all elements of our starting object, that is of the
complete lattice (L,≤,∧,∨, ∗, 7→,c ): the conjunction ∗ : L × L → L, the impli-
cation 7→: L× L→ L and the complementation c : L→ L.

An important example of a Girard monoid is so called  Lukasiewicz algebra,
that is the tuple ([0, 1],≤,∧,∨, ∗, 7→,c ) where a ∗ b = max{a+ b− 1, 0}, a 7→ b =
min{1− a + b, 1} is the corresponding residuum, and ac = (a 7→ 0) 7→ 0 = 1− a
for any a, b ∈ [0, 1]

Remark 2. Note that a Girard monoid is a generalization of a well known concept
of an MV-algebra that can be defined as a residuated lattice (L,≤,∧,∨, ∗, 7→)
satisfying (a 7→ b) 7→ b = a ∨ b for every a, b ∈ L, see, e.g. [14], [15].

Proposition 5. [18] If (L,≤,∧,∨, ∗, 7→,c ) is a Girard monoid, then

a 7→ b = (a ∗ bc)c = bc 7→ ac for any a, b ∈ L.

Relations between fuzzy topologies T +
τ and T −

τ in case of a Girard
monoid. Directly from theorems 2 and 3 and the definition of a Girard monoid,
we get the following theorem.

Theorem 8. If (L,≤,∧,∨, ∗, 7→,c ) is a Girard monoid, then T +
τ = (∼T −

τ )c,
that is T +

τ (A) = (∼T −
τ (A))

c
for every A ∈ LX .

Corollary 1. The bipolar L-fuzzy topology Tτ induced by an L-topology τ on a
set X in case of a Girard monoid (L,≤,∧,∨, 7→) is defined by

Tτ (A) = (T +
τ (A),∼ T +

τ (A)) for every A ∈ LX .

In particular, if (L,≤,∧,∨, 7→) is the  Lukasiewicz algebra, then
Tτ (A) = (T +

τ (A), 1− T +
τ (A)).

Specifically, if L = {0, 1
2 , 1} is the  Lukasiewicz algebra, we have the tautology :

a fuzzy set is open if and only if it is not non open and a fuzzy set is half open
if and only if it is half non open

Relations between fuzzy co-topologies S+ and S− in case of a Girard
monoid Results similar to the ones stated in the previous subsection for bipolar
L-fuzzy topology Tτ induced by an L-topology τ are valid also for the L-fuzzy
co-topology Sσ induced by an L-co-topology σ.

Theorem 9. If (L,≤,∧,∨, ∗, 7→,c ) is a Girard monoid and (X,σ) is an L-co-
topological space, then S+σ = (∼S−σ )c, i.e. S+σ (A) = (∼S−σ (A))

c
for every A ∈ LX .

Corollary 2. The bipolar L-fuzzy co-topology induced by an L-co-topology σ on
a set X in case of a Girard monoid (L,≤,∧,∨, ∗, 7→) is defined by Sσ(A) =
(S+σ (A),∼ S+σ (A)) for every A ∈ LX . In particular, in case (L,≤,∧,∨, ∗, 7→) is
a  Lukasiewicz algebra, Sσ(A) = (S+σ (A), 1− S+σ (A)).
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Relations between bipolar L-fuzzy topology and bipolar L-fuzzy co-
topology in case of a Girard monoid Turning to the relationships between
the bipolar extensions of L-topologies and L-co-topologies in case when L is a
Girard monoid, notice first that in this case it is possible, (thanks to double
negation law (ac)c = a ∀a ∈ L) to consider an L-co-topology as dual to the
corresponding L-topology. Namely, given an L-topology τ ⊆ LX on a set X the
corresponding L-co-topology τ c =def σ is defined as σ = {A ∈ LX | Ac ∈ τ}.
Hence in case of a Girard monoid, when speaking about an L-topology, we also
mean the corresponding L-co-topology This correspondence between L-topology
and L-co-topology allows us to establish the following known (see, e.g. [26])
and easy provable connection between closure and interior operators in an L-
topological space.

Proposition 6. Given an L-topological space (X, τ) and an L-fuzzy set A ∈ LX ,
the following relationships hold between the interior and the closure operators:
Ā = ((Ac)o)c, (Ā)c = (Ac)o, Ao = (Ac)c (Ao)c = Ac.

Referring to this statement, we can establish connections between bipolar L-
fuzzy topology and bipolar L-fuzzy co-topology induced by an L-topology τ on
X.

Theorem 10. Let (X, τ) be an L-topological space where (L,≤,∧,∨, ∗, 7→,c ) is
a Girard monoid. Then T +

τ (A) = S+σ (Ac) for every A ∈ LX .

Theorem 11. Let (X, τ) be an L-topological space, where (L,≤,∧,∨, ∗, 7→,c ) is
a Girard monoid. Then T −

τ (A) = S−σ (Ac) for every A ∈ LX .

Corollary 3. Let (X, τ) be an L-topological space, where (L,≤,∧,∨, ∗, 7→,c ) is
a Girard monoid. Then the bipolar L-fuzzy topology Tτ : LX → L and the bipolar
L-fuzzy co-topology Sσ : LX → L generated by τ are respectively:

Tτ (A) =
(
T +
τ (A), T −

τ (A)
)

and Sσ(A) =
(
T +
τ (Ac), T −

τ (Ac)
)

for every A ∈ LX .

4.1 Extension of L-topologies to bipolar L-fuzzy topologies viewed
in the framework of category theory

In order to obtain an accurate mathematical justification and a clear perspective
for the further development of the bipolar fuzzy extension model presented here,
it is necessary to consider this model also from the point of view of category
theory. We are currently working on this issue. Some partial results obtained in
this direction in the case when L is a Girard monoid are presented in the following
theorem, the proof of which, together with other results in this direction, will be
presented in the extended version of the article.

Theorem 12. Assigning to an L-topological space (X, τ) the (L,L)-fuzzy topo-
logical space Φ(X, τ) = (X, (T +

τ , T −
τ ) and viewing a continuous mapping f :

(X, τX) → (Y, τY ) as a mapping Φ(f) : (X,
(
T +
τX , T −

τX )
)
→ (Y,

(
T +
τY , T

−
τY )

)
,
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we obtain an embedding functor Φ : L-TOP → L-FTOP of the category L-
TOP of L-topological spaces into the category (L,L)-FTOP of (L,L)-fuzzy
topological spaces. On the other hand, by assigning to an (L,L)-fuzzy topo-
logical space (X, (T +

X , T −
X )) the L-topological space Ψ(X, (T +

X , T −
X )) = (X, τT +

X
)

where τT + = {A ∈ LX : T +(A) = 1} and interpreting a continuous mapping
f : (X,

(
T +
X , T −

X )
)
→

(
Y, (T +

Y , T −
Y )

)
as the mapping Ψ(f) : (X, τT +

X
)→ (Y, τT +

Y
),

we obtain a functor Ψ : (L,L)-FTOP→ L-TOP. This functor is right inverse
of the embedding functor Φ : L-TOP→ (L,L)-FTOP i.e. Ψ ◦Φ : L-TOP→ L-
TOP is the identity functor.

5 Conclusion

We consider this work as the first example of the use of bipolar lattices in study-
ing properties of fuzzy topological spaces. Implementing this idea, we presented
a model for fuzzification of L-topological spaces. The essence of this model is
the transition from the case of a structure, when only sets are fuzzy (in our
case this is an L-topology), to the case when the structure itself becomes fuzzy
with a bipolar scale of values (in our case this is the (L,L)-fuzzy topology). As
a by-product of this model, we consider the possibility of a deeper qualitative
analysis of topologies in the context of fuzzy sets and their specific properties.

In our work we distinguish two parts. The first, presented in Section 3, de-
velops this model in the most general context, that is, in a situation where no
relationships are assumed between the operators ∗ and c on the residuated lattice
L. No specific relationship between the degrees of openness and the degrees of
non-openness of fuzzy sets can be expected in this case. Therefore, in this case,
we use general bipolar scales to estimate these degrees. On the other hand, in
Section 4 we limit the scope of our study to the case when the resulting lattice L
is a Girard monoid. In this case the role of the bipolarity of the lattice in evalua-
tion becomes especially transparent and the relationships between the degrees of
the presence of the property (in our case openness or closedness) and the pres-
ence of the opposite property (in our case, non-openness and non-closedness)
become coordinated. Moreover, in this case our bipolar (L,L)-fuzzy topology
can be interpreted as intuitionistic L-fuzzy topology (c.f., e.g [29]), that is as a
pair of mappings T + : LX → L, T− : LX → L describing the degrees of openess
and non-openness of L-fuzzy sets. (See, for example [24] or [39] for a general dis-
cussion about the relationships and conceptional differences between approaches
based on bipolar lattices and “intuitionistic”-based approaches to the assessment
of the degrees of presence vs non-presence of properties vs opposite properties.)

Limitation of the volume of the article did not allow us to provide proofs for
the presented results. We plan to include them, along with other results related
to this topic, in a further revised version of this paper. In paticular, categorical
aspects of this model will be worked out and presented there in detail.

As for the prospects for continuing the work begun in this article, as the first
task we consider the use of a bipolarization model to study specific topological
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properties. As stated in the introduction, we assume that the use of bipolar lat-
tices to analyze such basic topological properties as compactness, connectedness
and separation can provide qualitatively new information about the structure
(of different variants) of fuzzy topological spaces. Further, if the use of bipolar
lattices proves useful within the framework of fuzzy topology, we can try to apply
them to the bipolar extension of other fuzzy mathematical systems, in particular
fuzzy algebraic structures.
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