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Abstract. We consider a dynamic portfolio selection problem in a fi-
nite horizon binomial market model, composed of a non-dividend-paying
risky stock and a risk-free bond. We assume that the investor’s behav-
ior distinguishes between gains and losses, as in the classical cumulative
prospect theory (CPT). This is achieved by considering preferences that
are represented by a CPT-like functional, depending on an S-shaped util-
ity function. At the same time, we model investor’s beliefs on gains and
losses through two different epsilon-contaminations of the “real-world”
probability measure. We formulate the portfolio selection problem in
terms of the final wealth and reduce it to an iterative search problem
over the set of optimal solutions of a family of non-linear optimization
problems.

Keywords: Behavioral investor · S-shaped utility function · Epsilon-
contamination · Dynamic portfolio selection.

1 Introduction

The expected utility theory (EUT) due to [19] is the standard normative approach
to represent agent’s preferences, used for portfolio selection, both in the static
and the dynamic case (see, e.g., [4, 7]). One of the main reasons behind the
success of EUT in the context of dynamic portfolio selection can be found in its
mathematical simplicity, as it allows to recur to dynamic programming.

Nevertheless, the underlying assumptions behind EUT are that an agent is
uniformly risk averse and has complete and unambiguous beliefs on final wealth,
the latter expressed by a reference probability P (called “real-world” probability
measure in finance [14]). Such assumptions have been challenged in the last
decades by a series of “paradoxes” obtained from real agents, whose preferences
are inconsistent with EUT (see, e.g., [1, 8]).

A more descriptive model has been introduced in [12] and then expanded
in [18] to form the Nobel prize winner cumulative prospect theory (CPT). This
theory allows to overcome the main fallacies of EUT by distinguishing gains and
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losses: this is achieved by recurring to an S-shaped utility function and replacing
probabilities with distorted probabilities for gains and losses, respectively.

The behavioral nature of CPT motivated research in portfolio selection that
was initially confined in the static case, and then extended to the dynamic case
(see [11] and the more recent papers [3, 9]). Despite its greater realism, portfolio
selection in CPT shows many mathematical difficulties, nonetheless the failure
of the dynamic programming approach. At the same time, a limitation of CPT
can be found in the particular ambiguity structure that is assumed, encoded in
two different probability distortions of the reference probability P.

In this paper we consider a behavioral dynamic portfolio selection problem
in a binomial market model [6], composed of a non-dividend-paying risky stock
and a risk-free bond. The completeness of the market allows to formulate the
dynamic portfolio selection in terms of the final wealth, reachable with a fixed
initial endowment, the latter assumed to be the difference between the agent’s
initial wealth and a reference wealth.

We introduce a CPT-like functional still relying on an S-shaped utility func-
tion, but we model agent’s beliefs recurring to two epsilon-contaminations of P
(see, e.g., [10, 20]), related to gains and losses. In the particular case the initial
endowment and the final wealth are restricted to be strictly positive, the loss
term vanishes and we get back to the dynamic portfolio selection problem under
ambiguity studied in [2, 15].

The peculiarity of epsilon-contaminations rests in the fact that they can be
considered as neighborhood models around P, determined by a suitable pseudo-
distance [13]. Moreover, epsilon-contaminations present computational advan-
tages in portfolio selection: (i) their envelopes are completely monotone/comple-
tely alternating capacites; (ii) they are determined by a finite (and manageable)
set of extreme points; (iii) they are parameterized by a single parameter, that
simplifies sensitivity analysis.

Thanks to the use of epsilon-contaminations, we can reduce the optimization
to an iterative search problem over the set of optimal solutions of a family of
non-linear optimization problems, parameterized by the set of gain states in the
final wealth and the gain level of the initial endowment. Next, we show the
application of the suggested procedure to a paradigmatic example.

The paper is structured as follows. Section 2 recalls the classical binomial
market model. Section 3 introduces our behavioral portfolio selection problem,
while Section 4 presents a paradigmatic example. Finally, Section 5 draws our
conclusions and future perspectives. Due to space limitations, proofs have been
omitted and reserved for an extended version of the present paper.

2 The Classical Multi-Period Binomial Market Model

The multi-period binomial model [6] refers to a perfect (competitive and fric-
tionless) market under no-arbitrage, where two basic securities are traded: a
non-dividend-paying stock and a risk-free bond.
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For a finite horizon T ∈ N, we denote by St and Bt the prices of the
stock and the bond, respectively, at time t ∈ {0, . . . , T}. The stochastic pro-
cess {S0, . . . , ST } and the deterministic process {B0, . . . , BT } are such that
S0 = s > 0, B0 = 1, and for t = 1, . . . , T , the returns are

St
St−1

=

{
u, with probability p
d, with probability 1− p and

Bt
Bt−1

= (1 + r),

where u > d > 0 are the “up” and “down” stock price coefficients, r is the risk-
free interest rate over each period, satisfying u > (1 + r) > d, and p ∈ (0, 1) is
the probability of an “up” movement for the stock price. Thus, for t = 1, . . . , T ,
we have that

St = S0

t∏
n=1

Sn
Sn−1

and Bt = (1 + r)t,

assuring that both price processes are strictly positive, in compliance with the
limited liability assumption for securities (see, e.g., [14]). Notice that the trajec-
tories of {S0, . . . , ST } can be represented graphically on a recombining binomial
tree.

All the processes we consider are defined on the filtered probability space
(Ω,F , {Ft}Tt=0,P), where Ω = {1, . . . , 2T }, F = 2Ω with 2Ω the power set
of Ω, and Ft is the algebra generated by random variables {S0, . . . , St}, for
t = 0, . . . , T , with F0 = {∅, Ω} and FT = F . As usual EP denotes the expected
value with respect to P. Moreover, we identify every a ∈ R with a1Ω , where 1A
denotes the indicator of A ∈ F .

Assuming that the returns S1

S0
, . . . , ST

ST−1
are i.i.d. random variables, the prob-

ability P is completely singled out by the parameter p, and {S0, . . . , ST } is a
multiplicative binomial process since

P(St = ukdt−ks) =
t!

k!(t− k)!
pk(1− p)t−k,

where St ranges in St = {ukdt−ks : k = 0, . . . , t}.
Let V0 ∈ R be an initial endowment. A self-financing strategy {θ0, . . . , θT−1}

is an adapted process such that θt is the (random) number of shares of stock to
buy (if positive) or short-sell (if negative) at time t up to time t + 1 [4], that
determines an adapted wealth process {V0, . . . , VT }, where, for t = 0, . . . , T − 1,

Vt+1 = (1 + r)Vt + θtSt

(
St+1

St
− (1 + r)

)
. (1)

In turn, Vt − θtSt is the amount of money invested in the bond from time t up
to time t+ 1.

This market model is said to be complete, i.e., there is a unique “risk-neutral”
probability measure Q on F , equivalent to P, such that the discounted wealth
process of any self-financing strategy is a martingale under Q:

Vt
(1 + r)t

= EQ
t

[
VT

(1 + r)T

]
, (2)
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for t = 0, . . . , T , where EQ
t [·] = EQ[·|Ft] and EQ

0 ≡ EQ. Completeness implies
that every payoff VT ∈ RΩ depending only on the stock price history can be
replicated by a dynamic self-financing strategy {θ0, . . . , θT−1} and its unique
no-arbitrage price at time t = 0 is determined by equation (2), since

V0 =
EQ[VT ]

(1 + r)T
. (3)

Notice that the process {S0, . . . , ST } is still a multiplicative binomial process
under Q, completely characterized by the parameter

q =
(1 + r)− d
u− d

∈ (0, 1). (4)

Both P and Q can be explicitly defined by identifying every state i ∈ Ω
with the path of the stock price evolution corresponding to the T -digit binary
expansion of number i−1, in which ones are interpreted as “up” movements and
zeros as “down” movements. Denoting by κ(i) the number of “up” movements
and by T −κ(i) the number of “down” movements, it holds that (we avoid braces
to simplify writing)

P(i) = pκ(i)(1− p)T−κ(i) and Q(i) = qκ(i)(1− q)T−κ(i), (5)

showing that both P and Q are strictly positive on F \ {∅}.

3 Behavioral Dynamic Portfolio Selection

Given the real-world probability P defined on F as in Section 2 (which is com-
pletely singled out by p) and ε ∈ (0, 1), the corresponding epsilon-contamination
model (see, e.g., [10]) is the class of probability measures on F defined as

Pp,ε = {P′ = (1− ε)P+ εP′′ : P′′ is a probability measure on F}.

The set of extreme points of Pp,ε is

ext (Pp,ε) = {Pi : i = 1, . . . , 2T }, (6)

where

Pi(j) =

{
(1− ε)P(j) + ε, if i = j,

(1− ε)P(j), if i 6= j.
(7)

We have that the lower envelope νp,ε = minPp,ε is defined on F as

νp,ε(A) =

{
(1− ε)P(A), if A 6= Ω,

1, if A = Ω,
(8)

and turns out to be a completely monotone capacity (see Section 5.1 in [13]). We
extend the definition allowing for ε = 0, in which case νp,ε = P, which stands
for absence of ambiguity.
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We denote by νp,ε the dual capacity of νp,ε defined, for all A ∈ F , as νp,ε(A) =
1− νp,ε(Ac). It holds that

νp,ε(A) =

{
(1− ε)P(A) + ε, if A 6= ∅,
0, if A = ∅,

(9)

which is a completely alternating capacity and νp,ε = maxPp,ε.
For measuring the tastes on non-negative wealth of an investor, we consider

the power utility function Uα : R+ → R+ with α ∈ (0, 1), defined as

Uα(x) = xα, for x ≥ 0. (10)

In turn, for a non-negative VT ∈ RΩ+ , p ∈ (0, 1), ε ∈ [0, 1) and α ∈ (0, 1), this
allows us to define the pessimistic and optimistic Choquet expected utilities of
VT as

Φp,ε,α[VT ] = C
∫
Uα(VT ) dνp,ε = min

P′∈Pp,ε

∫
Uα(VT ) dP

′, (11)

Φp,ε,α[VT ] = C
∫
Uα(VT ) dνp,ε = max

P′∈Pp,ε

∫
Uα(VT ) dP

′, (12)

that can be interpreted as lower and upper expected utilities, respectively.
In this paper our aim is to treat random wealth at maturity that can take

both positive and negative values: this permits to model different behaviors,
distinguishing between gains and losses.

For a random wealth at maturity VT ∈ RΩ , we consider its positive and
negative parts [VT ]+ := max{VT , 0} and [VT ]

− := max{−VT , 0}. Next, for fixed
p ∈ (0, 1), ε = (ε+, ε−) ∈ [0, 1)2, α = (α+, α−) ∈ (0, 1)2, and λ > 0, we define
the functional

Ψp,ε,α,λ[VT ] = Φp,ε+,α+ [[VT ]
+]− λΦp,ε−,α− [[VT ]−]. (13)

Such a functional is the difference of two parts that correspond to gains and
losses, respectively. The first term is a lower expected utility of gains while the
second term is an upper expected utility of losses which is multiplied by the scale
parameter λ and subtracted. We can say that Ψp,ε,α,λ realizes the (global) most
pessimistic approach since it subtracts the most pessimistic (i.e., the largest)
expected utility of losses to the most pessimistic (i.e., the smallest) expected
utility of gains, the first scaled by parameter λ. We point out that Ψp,ε,α,λ is
neither concave nor convex on RΩ .

Let us notice that the function Uα,λ : R→ R defined as

Uα,λ(x) =

{
Uα+

(x) if x ≥ 0,

−λUα−(−x) if x < 0,
(14)

is an S-shaped utility function according to the Cumulative Prospect Theory
(CPT) [18]. Indeed, the branch for x ≥ 0 is concave, expressing risk aversion,
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while the branch for x < 0 is convex, expressing risk seeking. Further, the pa-
rameter λ allows to scale the impact of losses. In turn, our functional Ψp,ε,α,λ

can be given a CPT-like expression by recurring to Uα,λ.

Proposition 1. For VT ∈ RΩ, let σ be a permutation of Ω such that VT (σ(1)) ≤
. . . ≤ VT (σ(2

T )) and i∗, j∗ be indices such that VT (σ(i)) ≥ 0 for i ≥ i∗ and
VT (σ(i)) ≤ 0 for i ≤ j∗, with i∗ := 2T + 1 if VT < 0 and j∗ := 0 if VT > 0.
Then, it holds that

Ψp,ε,α,λ[VT ] =

2T∑
i=i∗

Uα,λ(VT (σ(i)))[νp,ε+(E
↑
σ(i))− νp,ε+(E↑σ(i+ 1))]

+

j∗∑
i=1

Uα,λ(VT (σ(i)))[νp,ε−(E
↓
σ(i))− νp,ε−(E↓σ(i− 1))],

where E↑σ(i) := {σ(i), . . . , σ(2T )}, E↓σ(i) := {σ(1), . . . , σ(i)}, E↓σ(2T + 1) :=
E↓σ(0) := ∅, and each of the two summations vanishes if i∗ = 2T + 1 or j∗ = 0.

Let us stress that the difference in between our functional Ψp,ε,α,λ and that
appearing in classical CPT rests in how ambiguity is incorporated in the real-
world probability measure P. Indeed, in classical CPT, in place of νp,ε+ and
νp,ε− , the authors refer to two capacities w+ ◦ P and w− ◦ P, where w+, w− :
[0, 1]→ [0, 1] are two order automorphisms. In general, the two capacities w+◦P
and w− ◦P have no particular properties, besides monotonicity with respect to
set inclusion. In the particular sub-case of rank-dependent utility models (see,
e.g., [17, 21]) the two capacities w+ ◦P and w− ◦P are assumed to be dual.

From a behavioral point of view, the functional Ψp,ε,α,λ represents the agents’
preferences over the set of final wealth VT ’s. Thus, maximizing Ψp,ε,α,λ we are
actually choosing in agreement with the agent’s preferences.

Given an initial endowment V0 ∈ R, our aim is to select a self-financing
strategy {θ0, . . . , θT−1} resulting in a final wealth VT ∈ RΩ , solving

max
θ0,...,θT−1

Ψp,ε,α,λ[VT ]. (15)

We notice that V0 can be negative since is identified with the difference between
the agent’s initial wealth and a fixed reference wealth.

Taking into account (3), which is due to the completeness of the market,
the above problem can be rewritten maximizing over the final wealth random
variables VT ’s that can be reached with the fixed initial endowment V0

maximize Ψp,ε,α,λ[VT ] subject to:{
EQ[VT ]− (1 + r)TV0 = 0,

VT ∈ RΩ .
(16)

Notice that problem (15) seeks a stochastic process {θ0, . . . , θT−1}, which is a
self-financing strategy, while problem (16) looks for a random variable VT , which
is a final wealth.
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Similarly to [11], problem (16) can be solved by recurring to two parametric
problems that depend on the two parameters A ∈ FT and η ≥ [V0]

+:

maximize Φp,ε+,α+
[VT ] subject to:

EQ[VT ]− (1 + r)T η = 0,

VT (i) ≥ 0, for all i ∈ A,
VT (i) = 0, for all i ∈ Ac,

(17)

and
minimize Φp,ε−,α− [VT ] subject to:
EQ[VT ]− (1 + r)T (η − V0) = 0,

VT (i) ≥ 0, for all i ∈ Ac,
VT (i) = 0, for all i ∈ A.

(18)

The parameter A turns out to be the set of gain states in the final wealth VT ,
while Ac is the set of loss states. On the other hand, the parameter η can be
interpreted as the gain level of the initial endowment V0, while η−V0 is the loss
level. No dominance relation generally holds between optimal values of (17) and
(18).

We notice that, for fixed A ∈ FT and η ≥ [V0]
+, if V +

T , V
−
T ∈ RΩ+ are optimal

solutions of (17) and (18), respectively, then defining V A,ηT = V +
T − V

−
T we get

that

EQ[V A,ηT ] = EQ[V +
T − V

−
T ] = EQ[V +

T ]−EQ[V −T ]

= (1 + r)T η − (1 + r)T (η − V0) = (1 + r)TV0.

Hence, V A,ηT is a feasible solution of (16) for which Ψp,ε,α,λ[V
A,η
T ] is maximum,

given the pair of parameters A, η that correspond to a fixed decomposition of
gains and losses at final and initial times, respectively. Therefore, an optimal
solution of (16) can be found by solving (17) and (18), and then maximizing by
varying A ∈ FT and η ≥ [V0]

+.
The following theorem shows that problems (17) and (18) are equivalent to

two problems with non-linear constraints and an extra scalar variable.

Theorem 1. Let A ∈ FT and η ≥ [V0]
+. The following statements hold:

(i) V +
T ∈ RΩ+ solves problem (17) if and only if it solves the problem

maximize c subject to:
EPi [Uα+(VT )] ≥ c, for all Pi ∈ ext (Pp,ε+),
EQ[VT ]− (1 + r)T η = 0,

VT (i) ≥ 0, for all i ∈ A,
VT (i) = 0, for all i ∈ Ac;

(19)
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(ii) V −T ∈ RΩ+ solves problem (18) if and only if it solves the problem

minimize c subject to:
EPi [Uα−(VT )] ≤ c, for all Pi ∈ ext (Pp,ε−),
EQ[VT ]− (1 + r)T (η − V0) = 0,

VT (i) ≥ 0, for all i ∈ Ac,
VT (i) = 0, for all i ∈ A.

(20)

For fixed A ∈ FT and η ≥ [V0]
+, we let ψp,ε+,α+

(A, η) and ψ
p,ε−,α−

(A, η)

be the optimal values of problems (17) and (18) (or, equivalently, problems (19)
and (20)), respectively.

We notice that, if A = ∅ and η = 0, then (17) has only one feasible solution
VT = 0 and we set ψp,ε+,α+

(A, η) := 0. If A = ∅ and and η > 0, then (17) has
no feasible solution, therefore we set ψp,ε+,α+

(A, η) := −∞.
Similarly, if A = Ω and η = V0, then (18) has only one feasible solution

VT = 0 and we set ψ
p,ε−,α−

(A, η) := 0. If A = Ω and η 6= V0, then (18) has no
feasible solution, therefore we set ψ

p,ε−,α−
(A, η) := +∞.

The following theorem states that the resolution of (16) can be actually faced
as a search procedure through the values ψp,ε+,α+

(A, η) and ψ
p,ε−,α−

(A, η).

Theorem 2. For a final wealth V ∗T ∈ RΩ, the following statements are equiva-
lent:

(i) V ∗T solves problem (16);
(ii) A∗ and η∗ ≥ [V0]

+ solve the problem

maximize ψp,ε+,α+
(A, η)− λψ

p,ε−,α−
(A, η) subject to:

A ∈ FT ,
η ≥ [V0]

+,

η = 0, if A = ∅,
η = V0, if A = Ω,

(21)

and it holds

ψp,ε+,α+
(A∗, η∗) = Φp,ε+,α+ [V

∗
T 1A∗ ], (22)

ψ
p,ε−,α−

(A∗, η∗) = Φp,ε−,α− [−V ∗T 1(A∗)c ]. (23)

Computationally, Theorem 2 allows to introduce the following resolution pro-
cedure. For every A ∈ FT , we look for ηA ≥ [V0]

+ that maximizes the difference
ψp,ε+,α+

(A, η)− λψ
p,ε−,α−

(A, η), through an iterative search algorithm. Finally,
A∗ and η∗ are found maximizing the previous difference over all the possible
pairs A, ηA.
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4 A Paradigmatic Example

We consider a behavioral portfolio selection problem in a binomial market model
with S0 = $100, u = 2, d = 1

u , r = 0, q = 1
3 , T = 2, for which Ω =

{1, 2, 3, 4}. Figure 1 shows the recombining binomial tree of the stock price pro-
cess {S0, S1, S2}.

Fig. 1. Recombining binomial tree of the stock price process {S0, S1, S2}.

We assume that the market agent’s preferences on final wealth at time T = 2
are represented by the functional Ψp,ε,α,λ defined in (13) with parameters p = 1

4 ,
ε = (0.05, 0.1), α = (0.5, 0.7), and λ = 0.4. This market agent is quite convinced
of the “real-world” probability measure P when concerning gains, while he/she
is less convinced of it when concerning losses. Moreover, Figure 2 shows the
corresponding S-shaped utility Uα,λ defined in (14), according to which the agent
is more sensitive to gains than losses in the interval [−2.55, 2.55], while the
behavior changes outside of this interval.

Fig. 2. S-shaped utility Uα,λ with parameters α = (0.5, 0.7) and λ = 0.4.

We take an initial endowment V0 = $5 and find the optimal A∗ and η∗

in (21) through an iterative procedure based on the resolution of (19) and (20),
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relying on the couenne solver [5], which is accessed in Python through the Pyomo
library [16]. For every A ∈ F2, we take ηA which maximizes hAV0,r,p,ε,α,λ

(η) :=

ψp,ε+,α+
(A, η)−λψ

p,ε−,α−
(A, η) (we denote events omitting braces and commas):

A ∅ 1 2 3 4 12 13 14

ηA infeasible 5 5 5 5 49.9554 49.9554 5
hAV0,r,p,ε,α,λ

−∞ 1.7923 0.8449 0.8449 0.3983 2.2373 2.2373 1.8361

A 23 24 34 123 124 134 234 Ω

ηA 5 5 5 65.6861 5 5 5 5
hAV0,r,p,ε,α,λ

1.1949 0.9341 0.9341 2.6553 2.0211 2.0211 1.2595 2.2724

We get that A∗ = {1, 2, 3}, η∗ = 65.6861, and the optimal final wealth is

Ω 1 2 3 4
V ∗2 102.3187 45.4750 45.4750 −546.1749

for which it holds Ψp,ε,α,λ[V
∗
2 ] = 2.6553.

In turn, the random variable V ∗2 gives rise to the process {V ∗0 , V ∗1 , V ∗2 } through
(2) with V ∗0 = V0 = $5. It is easily verified that V ∗2 is a function of S2, there-
fore, due to the Markov property of the process {S1, S2, S3} with respect to Q
(see, e.g., [4]), also {V ∗0 , V ∗1 , V ∗2 } can be represented on a recombining binomial
tree. Moreover, by (1) we derive the self-financing strategy {θ∗0 , θ∗1} that can be
still represented on a recombining binomial tree. Figure 3 shows both processes
{V ∗0 , V ∗1 , V ∗2 } and {θ∗0 , θ∗1}.

Fig. 3. Recombining binomial trees of the wealth process {V ∗
0 , V

∗
1 , V

∗
2 } and the self-

financing strategy {θ∗0 , θ∗1}.

Next, we consider a negative endowment, by fixing V0 = −$5, for which:

A ∅ 1 2 3 4 12 13 14

ηA 0 41.9524 3.2948 3.2948 0.4730 65.3586 65.3586 31.2460
hAV0,r,p,ε,α,λ

−0.8654 1.0414 −0.5475 −0.5475 −0.8901 1.6554 1.6554 0.7868

A 23 24 34 123 124 134 234 Ω

ηA 8.0296 3.3521 3.3521 80.9289 47.0364 47.0364 3.1041 infeasible
hAV0,r,p,ε,α,λ

−0.2409 −0.5964 −0.5964 2.0937 1.3005 1.3005 −0.8583 −∞
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We find the optimal A∗∗ = {1, 2, 3}, η∗∗ = 80.9289 and the optimal final
wealth

Ω 1 2 3 4
V ∗∗T 126.0623 56.0277 56.0277 −773.3601

for which it holds Ψp,ε,α,λ[V
∗∗
2 ] = 2.0937. Also in this case, V ∗∗2 is a function

of S2, therefore, following the same steps of the previous case, we derive the
processes {V ∗∗0 , V ∗∗1 , V ∗∗2 } and {θ∗∗0 , θ∗∗1 } depicted in Figure 4.

Fig. 4. Recombining binomial trees of the wealth process {V ∗∗
0 , V ∗∗

1 , V ∗∗
2 } and the

self-financing strategy {θ∗∗0 , θ∗∗1 }.

5 Conclusions

In this work we have presented a dynamic portfolio selection problem, with the
aim of modeling a market agent that has different behaviors when facing gains
or losses. We encoded agent’s preferences in a CPT-like functional, based on
an S-shaped utility function and two epsilon-contaminations of the “real-world”
probability measure, related to gains and losses. Due to the completeness of the
binomial market, we formulated the dynamic portfolio selection in terms of the
final wealth. Next, we reduced the optimization to an iterative search problem
over the set of optimal solutions of a family of non-linear optimization problems,
parameterized by the set of gain states in the final wealth and the gain level of
the initial endowment.

As an aim of future research, a thorough sensitivity analysis on the several
parameters appearing in the model can be envisaged. Indeed, natural questions
arise on the interactions of the risk parameter α, the ambiguity parameter ε,
and the loss importance parameter λ. Another important line of future research
concerns the study of the present model when passing to continuous time, since
the underlying binomial market model is known to converge to the Black-Scholes
market model [4].
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