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Abstract. Performance evaluation is ubiquitous nowadays. A funda-
mental approach to assessing alternatives (e.g., students, employees, uni-
versities, countries) involves weighting criteria to calculate their final
scores. Determining these weights is crucial, especially when alternatives
are evaluated individually and without comparison with others. In such
cases, achieving consensus on weights among evaluators is vital for fair-
ness. In the context of students’ evaluation from a university course, this
initial study analyzes whether different weight assignments significantly
alter final scores and identifies which of those assignments lead to the
highest scores. The data consists of 53 students across seven assignments,
and a bootstrap analysis is performed for validation. Results indicate sta-
tistically significant score variations compared to predetermined weights,
with the ’Sum of Ranks’ approach resulting in the highest scores over
90% of the time. This highlights the importance of weighting schemes
and recommends the use of bootstrapping to justify their selection.

Keywords: weights determination · flexible criteria preference · ranked
weights · uncertainty

1 Introduction

Performance evaluation is ubiquitous nowadays. From employees to students,
from universities to countries, and so on, many things are measured and assessed
with different objectives in mind. In the most basic setting, the requirement is
to assign a score to an entity or alternative a from a set of numerical criteria
ci. For that purpose, an evaluation or scoring function should be provided. The
most frequently used function is a weighted linear aggregation rule.

Key aspects are how the weights are determined and which is their impact on
the final scores. Despite this, often the determination of weights is generally con-
sidered a minor problem: a “decision maker” defines a specific weighting scheme
using his/her knowledge, considering that if the criteria ci is more important
than the criteria cj , then the weights should satisfy wi > wj .

An overlooked aspect here and a clear source of uncertainty is that there
are potentially infinite sets of weights that can be used. And each specific set of
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weights impacts the final score that an alternative can achieve. This latter aspect
is not quite relevant if the aim is to produce a ranking for a set of entities. In
such a case, just a relation among the scores is needed (without taking care of
their magnitudes). In other words, it is said that an alternative A is better than
B if score(A) > score(B).

Here we are interested in the case where the final score of an alternative is
relevant per se and not in relation with those from other ones (as it happens in
multicriteria decision-making problems).

Focusing on the context of the academic evaluation of students from a Com-
puter Programming Methodology course at the University of Granada, this con-
tribution aims to provide insights into the following research questions:

– Q1: Does the use of different weight schemes produce significantly different
distributions of the final scores?

– Q2: Is there any set of weights (among the tested ones) that consistently
produces the highest final scores?

The rest of the work is organized as follows. Section 2 presents the basic
settings and the weights’ approximation methods. The case study, which provides
the initial insights for the questions posed before, appears in Section 3. Then,
in Section 4 a bootstrap analysis is performed to confirm or not the findings in
the case study. Finally, the conclusions and further discussions are provided in
Section 5.

2 Problem description

As we stated before, the starting point is a set of m alternatives a1, a2, . . . , am
that are evaluated over a set of n criteria c1, c2, . . . , cn. This information is
organized in a matrix, Em×b where each entry eij ∈ R corresponds to the score
obtained by the alternative ai in the cj criterion.

In the most basic setting, the requirement is to assign a score S to an alterna-
tive ai, i ∈ 1, . . . ,m from the set of numerical criteria. One of the most frequently
used functions to calculate such a score is a weighted linear aggregation rule:

S(ai) =

n∑
j=1

wj × eij (1)

wj ∈ [0, 1] (2)

w1 + w2 + . . .+ wn = 1 (3)

If wi > wj then the criterion ci is more important than cj .
It should be noted that in our particular case, as the values eij ∈ [0, 10], then

no normalization is required.
When several evaluators are involved in the scoring process, reaching a con-

sensus about the weights may be far from trivial. In turn, we consider that those
evaluators can agree on the order of importance of the criteria.
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Suppose that three criteria are available. It is simpler to agree in “sorting”
them in terms of importance as c2 ⪰p c1 ⪰p c3 (which should be translated
numerically to order between the weights w2 > w1 > w3, satisfying conditions
2, 3), than to agree in a vector of weights like (0.3, 0, 5, 0.2) or (0.35, 0.4, 0.25).

An overlooked aspect in the determination of such specific weights, and a
clear source of uncertainty, is that there are potentially infinite sets of weights
that can be used. As a consequence, the use of a specific set of weights impacts
the final score that an alternative can achieve [9,10]. This situation is discussed
in the next subsection.

2.1 Weights determination

The question “How to determine the weights?” has different answers, depending
on the information available regarding the “true” weights. Three situations are
identified in [8]: “knowing nothing about the true weights, knowing the rank order
information, and knowing the relative weight information”.

As we are in a situation where only rank order information can be captured,
we focus on the so-called Weights Approximation Methods [4] or ranked weights.
These methods, starting from a decreasing ordering of the weights (in terms of
importance) propose formulas for determining their specific values, given the
constraints defined before.

Specifically, three methods are considered: rank order centroid (ROC) [3],
the sum of ranks (RS) [12] and the reciprocal of the ranks (RR) [12].

Assuming w1 > w2 > . . . > wn, these sets of weights are defined as follows:

Rank Order Centroid (ROC): wj =
1

n

n∑
k=j

1

k

Sum of Ranks (RS): wj =
n+ 1− j∑n

k=1 k
=

2(n+ 1− j)

n(n+ 1)

Rank Reciprocal (RR): wj =
1/j∑n
k=1 1/k

3 Case study: impact of weights in students evaluation

The evaluation of a student’s performance is one of the many tasks that a teacher
must do. How to make such an evaluation has been extensively explored in
various settings, encompassing the examination of the elements that account for
it [1,6,11] and the development of practical measuring tools [2].

The problem can be approached from different perspectives. For example,
two multi-criteria (MD) decision approaches were used in [15] to evaluate stu-
dent performance: simple multi-attribute assessment (SMART [13]) and multi-
objective optimization of proportions analysis (MOORA [5]). The authors em-
ployed methods based on entropy and utility calculations to determine the
weights of the criteria and sub-criteria. Other authors focused on the impact
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of different sets of weights. For example, in a recent work [7], students were
asked to select with which weighting scheme want to be evaluated. The conclu-
sion was that “the majority of students in both courses examined in the current
study did not select weighting schemes that resulted in their highest potential
grade”. In [14], the authors explored the impact of different weights in the TOP-
SIS method and concluded that “the selection of an adequate weighting method
has a significant impact on the overall results of the TOPSIS technique.”

To address the research questions, we resort to information available from
a specific group of 53 students from a Computer Programming Methodology
subject who completed seven lab assignments. This example has several relevant
features: students are assessed individually, the final score is relevant per se, more
than one evaluator is available, and the students are required to know both the
scoring function and the weighting scheme at the beginning of the year.

The assignments, which include programming exercises, software project de-
velopment, presentations, etc., are called E1, E2, . . . , E7 in what follows. Due to
the incremental nature of the topics considered in the subject, instructors agree
that the latter assignments are more important than the initial ones. After a
meeting, the following order of importance was agreed:

E7 ⪰p E6 ⪰p E5 ⪰p E4 ⪰p E3 ⪰p E2 ⪰p E1 (4)

This order implies the following relation for the weights

w7 > w6 > w5 > w4 > w3 > w2 > w1 (5)

where wj is the weight for the Ej assignment.
Figure 1(left) displays a table with the sets of weights calculated with the

weights approximation methods considered. The column G-W contains a set of
weights used by a specific instructor in a previous year. Figure 1(right) shows
a visualization of the different weight assignments produced by each method. A
clear difference is immediately observed for the values of weight w7 assigned to
the most important assignment E7. Regarding its contribution to the final score,
w7 represents from 25% in the RS scheme, up to 38% in RR. In G-W the teacher
assigns it a 30%.

If we consider the contribution of the last two assignments, we observe that
w6 + w7 accounts for the 50% of the final score in G-W, around 60% in ROC
and RR, and 46% in RS.

The final score for every student was calculated using every set of weights,
and it is a real number between [0 . . . 10]. As it is clear, every student has four
candidate final grades (one per each set of weights), so we also calculate the
average among them for the analysis. This value will be considered under the
category AVG. For the first analysis, we translate the final scores into the usual
linguistic values “fail” (score < 5), “pass” (5 ≤ score < 7), “good”(7 ≤ score
< 9) and “excellent” (score ≥ 9).

The question to answer here is: Do the use of the different weights produce a
different distribution in the number of students with “fail”, “pass”, “good” and
“excellent” scores?
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Fig. 1. Weights corresponding to the traditional scheme (G-W) and the ranked weights
methods.

Figure 2 provides insights into the answer. The distribution of cases is differ-
ent. In the case of “fail”, the teacher weights (G-W), RS, and AVG make that
21% of the group does not reach the minimum to pass the lab assignments. For
ROC and RR cases, the value goes up to 25%. The number of “pass” varies from
28% in RS, up to 43% in RR. For the G-W scheme, this value is 36%.

It is interesting to note that, in comparison with G-W, the RS scheme ob-
tained the same values for “fail”, a lower one for “pass” but higher ones for
“good” and “excellent”. The RS scheme allows achieving the highest rate of
“excellent” evaluations (9%).

The RR scheme is the most “strict”, leading to the highest percentage of fail
and the lowest one for good+excellent.

Focusing now on the second question posed at the beginning, from the per-
spective of a student, he/she would like to be evaluated with the set of weights
that produce the highest final score. So, we analyzed which set of weights al-
lowed us to achieve the highest score for every student. Out of 53 cases, the
highest values were achieved 44, 5, and 4 times by RS, ROC, and RR weights,
respectively. The G-W scheme (the one used by the instructor) never allowed
obtaining the highest evaluation.

One may ask if the increases in the scores are relevant. If we consider the
differences between the scores produced by G-W and RS, the latter are, on
average, 2.6% higher, with a standard deviation of 1.5. This may look like a
minor improvement, but from the perspective of a student, it could be relevant.

4 Statistical assessment of the results

The evaluators agreed on the fact that the scores’ distribution in the analyzed
dataset, was similar to the ones they observed in their groups of students.
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Fig. 2. Percentages of students in every scoring category according to the weight as-
signment methods.

So, we perform a bootstrap analysis for the estimation of the true statistics
reported in the previous section and to allow more powerful statistical compar-
isons.

Departing from the previous set of 53 students, we performed a bootstrap
sampling of 1000 replicates of size 50 with replacement. For each replicate, we
aggregated 6 different measures for each set of weights. In addition to the pro-
portion of fail, pass, good, and excellent students, we also measured the average
score, and the proportion of times in which the given weight scheme allowed to
attain the highest score for each student.

Figure 3 displays a set of box plots that summarizes the results obtained.
The four plots on top (labeled as a, b, c, d), show the estimated percentage of
students with a fail, pass, good and excellent scores as a function of the set of
weights used. Plot (e) summarizes the results in terms of the final scores, while
plot (f) shows the estimation of the number of times that each weight assignment
will allow attaining the highest score.

To assess if the observed differences among the methods (weights assign-
ments) are statistically significant (or not), we proceed as follows. First, a Fried-
man omnibus test to identify if there are significant differences among the meth-
ods was run. If such a difference exists, then aWilcoxon post-hoc test with p-value
adjustment by the Bonferroni method was performed to identify between which
pair of methods such differences exist. Note that the results of the Friedman test
are included at the top of each graph, while the results of the Wilcoxon test in
method (x -axis) are marked with ****. In the latter case, the methods identified
with that mark correspond to those significantly different from G-W.

Figure 3 shows that in all cases, Friedman’s test returns a very low p-value
(e.g. less than 0.001), indicating that the distribution of the cases produced by
the weights assignment is different. Regarding the distribution of the score cate-



On the impact of weighting schemes on alternatives’ evaluation 7

    **** ****0%

10%

20%

30%

40%

G−W ROC RR RS AVG
Method

Friedman test, χ2(4) = 3392, p = <0.0001, n = 1000

a) Fail

pwc: Wilcoxon test ; p.adjust: Bonferroni

    **** **** **** ****0%

20%

40%

60%

G−W ROC RR RS AVG
Method

Friedman test, χ2(4) = 2973.77, p = <0.0001, n = 1000

b) Pass

pwc: Wilcoxon test ; p.adjust: Bonferroni

    **** **** **** ****0%

20%

40%

60%

G−W ROC RR RS AVG
Method

Friedman test, χ2(4) = 3199.61, p = <0.0001, n = 1000

c) Good

pwc: Wilcoxon test ; p.adjust: Bonferroni

    **** ****0%

5%

10%

15%

20%

G−W ROC RR RS AVG
Method

Friedman test, χ2(4) = 3219.52, p = <0.0001, n = 1000

d) Excellent

pwc: Wilcoxon test ; p.adjust: Bonferroni

    **** **** **** ****5

6

7

G−W ROC RR RS AVG
Method

Friedman test, χ2(4) = 3999.2, p = <0.0001, n = 1000

e) Average score

pwc: Wilcoxon test ; p.adjust: Bonferroni

    **** **** ****

0%

25%

50%

75%

100%

G−W ROC RR RS AVG
Method

Friedman test, χ2(4) = 3816.19, p = <0.0001, n = 1000

f) Times reaching the maximum score

pwc: Wilcoxon test ; p.adjust: Bonferroni

Fig. 3. Comparison of scores from different weight assignment schemes after a boot-
strapping sampling of 1000 replicates. Weight assignments marked with **** indicate
a statistical difference with the G-W approach.

gories (plots a-d from Fig.3) we observe that RR scores are significantly different
from G-W in all cases. However, although the proportions of fail and pass are
higher in favor of RR, they are lower for the good and excellent categories. In
contrast, the RS method has the opposite behavior to RR. That is, it exhibits



8 P. Novoa-Hernández et. al.

similar or lower proportions than G-W for fail and pass, but significantly higher
for good and excellent.

If we consider the results in terms of the average score (Fig. 3-e) it becomes
clear that all the weights assignment methods are significantly different from
G-W. We can see that RS shows an overall distribution of scores significantly
higher than G-W (Fig.3-e), while RR is significantly lower. Note that this is
consistent with the previous analysis.

Finally, Fig.3-f shows that the RS scheme is the most beneficial method for
students: in more than 60% of cases, using the weights calculated by RS allows
them to attain the highest final grade. This difference is not only significant with
G-W but also with the rest of the methods. The closest ones, ROC and RR, fail
to exceed 30%.

5 Conclusions and further work

Performance evaluation of entities of different types is ubiquitous nowadays.
Many times, the evaluation is made using a weighted sum approach (which is
simple to understand and calculate).

In the context of the academic evaluation of university students and departing
from the fact that the definition of weights is a key aspect, we wanted to shed
some light on the following questions:

– Q1: Does the use of different weight schemes produce different distributions
of the final scores?

– Q2: Is there any set of weights (among the tested ones) that consistently
produces the highest final scores?

Regarding Q1, the answer is yes. The results confirmed that the use of dif-
ferent weights produced a different distribution of scores in terms of fail, pass,
good, and excellent scores. When the bootstrap analysis was run, the differences
were statistically significant.

Concerning the given set of weights (G-W), it was observed that some of
the weighting schemes, like ROC, produced more fails. Other, like RS, produced
a similar number of fails, but the students who obtained a score >= 5 were
differently distributed among the pass, good, and excellent grades.

Regarding Q2, the answer is also yes. The set of weights derived from the
“Sum of Ranks” approximation method allowed us to achieve (in most cases)
the highest score for the students. In the case study, this fact happened to 44
out of 53 students.

The main difference between RS and the other weighting schemes is that in
RS, the weights grow linearly as a function of the importance of the criteria.
In contrast, in the rest of the schemes, this growth is low for weights of low
importance, while very high for weights of higher importance. Such a behavior
has important implications, at least for the proposed case study. In this context,
the use of bootstrapping is a clear strategy to provide solid foundations for
choosing a particular weighting scheme.
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Now, from a practical point of view, the group of instructors agreed on using
the RS scheme for future evaluations in the computer programming methodol-
ogy subject. The initial impressions are very positive. Of course, there is here
some room for discussion regarding why it is desired to obtain a high score con-
sistently in student evaluations, or if different considerations such as bell-shaped
scores from evaluations should be considered. In our experience, this is a highly
controversial issue, and we prefer not to pose our opinion here.

From a research point of view, it is clear that some of the conclusions posed
(for example, that “Sum of ranks” attained the highest score) cannot be directly
generalized to other contexts. However, the research questions posed, and the
analysis proposed can be readily extended to other problems with similar features
(like the evaluation of the achievement of sustainable development goals or the
evaluation of universities), considering both the bootstrap analysis and testing
other weighting approximation methods.
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editors, Lecture Notes in Computer Science, pages 197–207. Springer Nature
Switzerland, 2023.
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