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Abstract. The integration of context information and machine learning techniques can en-
hance the capabilities of 5G/6G networks when dealing with the beam selection problem.
This paper proposes the use of a Weightless Neural Network (WiSARD) with multimodal
data as input to address this problem. The performance of the WiSARD is compared to clas-
sic machine learning algorithms (KNN, Decision Tree, SVC, Random Forest) based on the
top-k accuracy in a vehicular network. The simulation results indicate that the WiSARD is a
competitive method for this scenario and can be a valuable asset for future cellular networks.
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1 Introduction

Over the decades, cellular systems continuously evolved. In 1990, data services were available for
around 12 million mobile subscriptions. However, this number grew significantly, and in 2021, there
were more than 8 billion users [12]. This surge in mobile traffic has highlighted the need to improve
the capacity of cellular networks. The use of higher frequencies such as millimeter waves (mmWaves)
are expected to fulfill this requirement. However, mmWaves pose several challenges, including high
attenuation, loss propagation, path loss, poor foliage penetration, and others [21]. To overcome
these challenges, MIMO techniques with a large number of antenna elements have been adopted,
for instance to increase the directivity of beams generated by these systems [4].

Among the adopted MIMO algorithms, some rely on accurate channel estimation techniques to
establish precoding and/or combining vectors that depend on the user channel and improve the
communication between the users and the base station and vice-versa [4]. This process involves
the periodic transmission by the user equipment of a pilot sequence that allows the base station
to continually estimate the channel. While this method optimizes the achieved SINR, it requires
complex processing on both devices and relatively high overhead due to the periodic exchange of
significant channel state information (CSI).

A strategy to decrease the required CSI is to previously define a codebook of these beamforming
vectors, and embed it in each device. Such codebook can be designed based on the environment
in which the system will be used, or using a heuristic as collecting the basis functions from the
discrete Fourier transform (DFT). For the sake of simplicity, each vector is said to provide a beam
that can be used both in transmission and reception. Thus, in the brute-force approach, each pair
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of transmitting and receiving devices needs to scan all the available beams to determine the best
pair of beams to be used. This procedure is called beam selection. This strategy of beam selection
has the advantage of low channel overhead, but it can be quite expensive depending on the number
of beams in the codebook.

There are various proposals in the literature to simplify the process of beam selection and de-
crease the latency involved. Some research utilizes machine learning techniques that incorporate
context information to enhance the characteristics of the environment for beam selection. The
authors of [14], [9], [15], and [8] have used machine learning techniques such as Linear SVM, Ad-
aBoost, Decision Tree, Random Forest, Deep Neural Network (DNN), Deep Q Learning (DQN),
KNN, Naive Bayes, and Artificial Neural Network (ANN). In [27], a lightweight neural network
(NN) and a convolutional neural network (CNN) were used.

This research proposes the utilization of Weightless Neural Networks (WiSARD) for beam se-
lection. This technique offers a lightweight classification model based on random access memory
(RAM) [1]. It has been applied in several applications with competitive accuracy scores, low pro-
cessing time, and easy implementation in embedding hardware [10].

This paper presents a performance comparison of the beam selection accuracy obtained by
the WiSARD network and machine learning algorithms such as KNN, Decision Tree, SVC, and
Random Forest. The selection process is carried out using multimodal data, including coordinates
of the receiver positions and data from the LiDAR sensor.

The following text is organized as follows. Section 2 explains the WiSARD model and how it
works. Section 3 describes the dataset used and how the data was prepared to be used by the
WiSARD. Section 4 presents the performance of the WiSARD method and compares it to other
classical approaches. Finally, the Section 5 draws the conclusions and future works.

2 Machine Learning Solution

The Weightless Neural Networks (WNNs) represent a class of machine learning models characterized
by RAM-based neural networks, where these RAMs serve as artificial neurons. Various WNN models
exist in the literature, such as WiSARD (Wilkes, Stonham, and Aleksander Recognition Device),
GSN (Goal Seeking Neuron), GRAM (Generalization RAM), and VG-RAM (Virtual Generalization
RAM) [18]. For this study, we employed a WiSARD network.

The structure of such a model comprises sets of RAMs which compose discriminators, with each
discriminator being responsible for a specific class in a classification problem. All knowledge is stored
in those RAM memories, so that inputs are converted to a binary format to serve as RAM addresses.
This happens in order to record which addresses were accessed during training or to take the value
stored at some address as the output of a neuron. Unlike traditional neural networks, where learning
primarily occurs in connection weights, WNNs learning depends on changes in memory contents.

In order to start training, all RAM positions of all discriminators of a given WiSARD instance
are initialized to zero, and inputs binarized and then randomly mapped into n-tuples (n is a model
hyperparameter). Once formed, these tuples remain fixed throughout the lifespan of each WiSARD
instance. Subsequently, examples of each class are presented to the discriminator, and RAM mem-
ories are accessed using addresses formed by the corresponding tuples. In the most basic training
regime, a value of ‘1’ is then written in the memory position indicated by the address: alternatively,
the stored value can be an increment counter [5] or even a timestamp [6], for example. Figure 1a
illustrates an example of a toy character recognition problem, in which a hypothetical discriminator
records an example of the class ‘E’ while training.
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In the classification phase, new data undergo the same input mapping as in the training phase.
Inputs address the RAM memories to read their contents, and if the reading points to a ‘1’, the
RAM generates the stored value as output. The discriminator then provides a degree of similarity
by summing all the bits generated by each RAM node. The discriminator with the highest value
indicates the class to which the input likely belongs, as depicted in Figure 1b.

(a) Training phase (b) Classification phase

Fig. 1: An illustration of WiSARD operation

Despite their remarkable simplicity, RAM-based neural networks are highly effective in pattern
recognition tasks, offering rapid training and testing along with adjustable hardware implementa-
tion [2] and low energy consumption [20]. However, this technique is sensitive to input quantiza-
tion, which directly affects the WiSARD model’s performance. WNNs have been applied in various
fields, including natural language interpretation, image recognition [19], target tracking [7], text
mining [22], GPS trajectory classification [3], and traffic sign recognition [11], among others. How-
ever, there are currently no references in the literature regarding their application in beam selection
for cellular networks.

3 Dataset and Preprocessing

This work uses Raymobtime1 dataset collection, which was created using a simulation methodology
that aims to create realistic data. It uses a set of software to construct these datasets, such as:
Cadmapper2 for generating a location map; OpenStreetMaps3 for modeling realistic 3D outdoor
scenarios; SUMO4 for mobility simulation of vehicles, pedestrians, drones, etc; and Wireless InSite5

for ray-tracing simulation. Raymobtime has 13 datasets, S000 through S012 and this work uses

1 https://www.lasse.ufpa.br/raymobtime/
2 https://cadmapper.com
3 https://www.openstreetmap.org/#map=4/-15.13/-53.19
4 https://sumo.dlr.de/userdoc/
5 https://www.remcom.com/wireless-insite-em-propagation-software/
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the S008 dataset. S008 is composed of 2086 episodes and each episode has 10 mobile receivers
and one stationary transmitter with communication in the 60 GHz frequency band. This dataset
includes ray-tracing, LiDAR (Light Detection and Ranging), images, and receiver’s position. This
work makes use of the following context information for improving beam selection:

– receiver’s position. Composed by 9 features: valid channel indicator; episode, scene, and receiver
IDs; Vehicle’s name; X, Y, and Z Coordinates; and LOS (Line of Sight) or NLOS (Non Line of
Sight) indicator;

– LiDAR sensor. Collection of x, y and z coordinates in every episode. This collection represents
a cloud of points obtained by the LiDAR sensor. The information is mapped as a binary grid
in a 3D histogram, where, 1 correspond to obstacle and 0 to non obstacle;

– Signal characteristics (ray-tracing). Composed by 8 parameters: received power, time of arrival,
elevation and azimuth angles of departure, elevation and azimuth angles of arrival, ray phase,
flag “1” for an LOS ray, and “0” for NLOS ray.

Concerning the ray-tracing, the Wireless InSite tool provides for each pair Tx-Rx the L rays
with the larger gain magnitude. From the information about these rays, it is possible to estimate
the channel between each pair of devices by using the mmWave geometric channel model as follows:

H =
√
NtNr
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αℓar(θ
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ℓ )a

∗
t (θ

D
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where, αℓ is the complex gain of all users in the ℓ-th path, θAℓ and θDℓ is the elevation of the AoA
(Angle of Arrival) and the AoD (Angle of Departure), ϕA
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is the conjugate transpose of the beamforming vector of Tx, and, Nt and Nr are the number of
transmitter and receiver antennas, respectively [24].

The received signal when the (t,r) beam pair is used can be written as:

y(t,r) = f tHxw∗
r +wrn , (2)

where, H represents the channel matrix between Tx-Rx, x is the transmitted signal, f is the
precoder vector of Tx, w is the combining vector of Rx, and n ∼ Nc(0, σ

2
nI) is the noise. We assume

beam codebooks fixed. Ct = {f1, ..., f|Ct|} at the Tx and Cr = {w1, ..., w|Cr|} at the Rx. And,
considering the set of all possible beam pairs (t,r) into a unique index i ∈ {1, 2, 3, ...,m}, where
m ≤ |Ct||Cr|, |Ct| is the number of Tx codebook elements and |Cr| is the number of Rx codebook
elements, the objective is to select the optimal beam pair index i that maximizes the received signal:

i = argmax
i∈{1,2,3,...,m}

(yi) . (3)

In classical beam selection, such as the approach defined in the IEEE 802.11ad and 5G-NR stan-
dards, the transmitter and receiver sweep all beam pairs. Although an exhaustive search through
all candidate options ensures the beam alignment, this task quickly increases the complexity be-
cause depends on the geometry and number of antenna elements used. A strategy proposed in the
literature is to define a subset k of candidate pair-beams, which are subsequently swept to select
the one that maximizes the received signal.

In this work, we used DFT codebooks, both in the Tx and Rx, whose main characteristic is to
cover all space around the antenna array. According to the geometry of the array and the number
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of antenna elements used, a different set of beamforming vectors is generated for each codebook. In
our DFT codebooks, the number of codebook elements is given by the number of antenna elements
in the array, i.e. |Ct| = Nt and |Cr| = Nr. We used the 25 strongest rays to calculate the MIMO sub-
channel for each ray considering 32 elements in the Tx antenna and 8 elements in the Rx antenna
with a spacing between elements of half wavelength. We can observe a unbalanced distribution of
the pair of beams over the 256 possible combinations (32 × 8): 50.19% of beams are associated to
the indexes between 154 and 159 in the train set, and 61,32% of beams for the test set.

The WiSARD model, detailed in Section 2, is designed to process inputs that are exclusively
in binary form. This necessitates a crucial preprocessing step to convert the data into a suitable
format to the model. Specifically, when dealing with GPS data, which is represented by floating-
point numbers, a transformation is required to convert these values into binary patterns.

Some of the binary encoding methods found in literature include thresholds, mean threshold,
Marr–Hildreth filter, Laplacian filter, and thermometer [13]. However, since most of these filters are
optimized for detecting edges in images, they are not suitable for this scenario. Therefore, we have
employed the thermometer, which utilizes multi-bit unary encoding, comparing features against
progressively increasing thresholds. It is not unique to our study but is also adopted in tackling
similar challenges [17]. It effectively translates the continuous values of GPS data into a binary
format, enabling the WiSARD model to interpret and process the information accurately.

In this approach, the thermometer encoding represents the relative distance between a given
coordinate and the minimum coordinate value. Specifically, when the receiver position aligns with
the minimum coordinate (and assuming a resolution of 1), only a single bit is activated to signify this
minimum value. Conversely, if the receiver is positioned at the maximum coordinate, all bits within
the encoding are activated, as illustrated in Figure 2. This encoding process is applied independently
to both the x and y coordinates. As a result, the binary representation for each coordinate varies
in size, capturing the unique spatial relationships inherent to the dataset.

Fig. 2: GPS data preprocessing

The choice of resolution for thermometer encoding critically influences the WiSARD model’s
effectiveness. As detailed in Section 4, the quest for optimal parameters is pivotal because the input
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size to the model increases linearly with resolution. This section explores how varying resolutions
impact the model’s accuracy, guiding the selection of an ideal resolution that balances performance
with resource utilization.

The LiDAR data undergoes an initial quantization step to make it compatible with our model’s
requirements. To address this, we have devised a unique 3D-thermometer encoding method that
captures the receiver’s spatial position within the environment. This innovative approach is depicted
in Figure 3. Essentially, the input from the LiDAR data includes not just the receiver’s exact location
but also a comprehensive map of all quantized obstacles within the scene. To prepare this data
for our model, we transform the three-dimensional information into a flattened vector by resizing
the two matrices that represent the receiver’s position and the obstacle map. These vectors are
then concatenated to create a single vector that encapsulates both the receiver’s location and the
surrounding obstacle information.

Fig. 3: LiDAR data preprocessing, rx like 3D-thermometer add LiDAR quantized

4 Simulation Results

In this paper, we approach the task of beam selection as a classification problem and introduce the
use of the WISARD network as a novel machine learning technique for this purpose. Our dataset
comprises 20,860 samples, of which 11,194 are deemed valid for experimentation. We allocated 80%
of this valid dataset for training and the remaining 20% for testing. For our implementation, we
have utilized the wisardpkg7 library.

4.1 Beam selection using LiDAR data

Hyperparameters tuning: Initially, we have assessed the performance of the behavior network
using various address sizes when using LiDAR data only. The input dimension for this dataset is
20× 200× 10× 2, which suggests 80.000 bits for the WiSARD model’s retina input. In this setup,
7 https://github.com/IAZero/wisardpkg
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the WiSARD network identifies the optimal beam pair among 256 possible choices with accuracy
superior to 60%, as shown in the Figure 4a.

(a) Behavior of WNN with address size variations (b) Top-k classification for beam selection

Fig. 4: Performance of WiSARD with LiDAR data only

Comparison: We have conducted a comparative performance analysis of the WiSARD model
(using 58 bits of address size) against well-established machine learning algorithms, such as: Deci-
sion Trees, Random Forests, and k-nearest neighbors. These specific algorithms were selected for
comparison due to their frequent use in the evaluations performed in related works [14,8].

It was necessary to preprocess the data for the WiSARD model since it requires binary input.
In contrast, we used real-valued numeric data as input for the remaining models due to better
performance with this kind of data.

Our analysis delved into the performance implications of varying ‘k’ values (Section 3). The
network will recommend a subset of top-k pair of beams. For this particular task, k can be 1, 5,
10, 20, 30, 40, or 50 out of the total 256 possible pairs. The transmitter can then use an exhaustive
search within this subset to determine the best pair of beams. Furthermore, we have provided a
comprehensive overview of the parameters applied across all techniques for processing LiDAR data.
These details are summarized in Table 1.

Figure 4b shows the top-k accuracy obtained by the different techniques when using LiDAR
data only. Here, the WiSARD model outperforms the other evaluated techniques by an average of
13% for the top k=1 scenario and 3% for the top k=20 scenario.

4.2 Beam selection using GPS coordinates

Hyper-parameters tuning: When using GPS data as input, the coordinates are represented
using the thermometer approach. The thermometer resolution not only defines the precision of the
input data but also determines the size of the input for each coordinate, as detailed in Table 2.

Also, the accuracy of the model is significantly influenced by the thermometer resolution and
address size. This relationship is graphically represented in Figure 5, which displays a heat map of
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Technique Parameters used in models
GPS LiDAR Type

KNN 40 40 Number of neighbors

SVC 0.1 - Learning rate
1 - c

Decision Tree 70 65 Minimum number of samples at a leaf
10 15 Maximum depth of the tree

Random Forest 5 7 Number of trees in the forest.
10 11 Minimum number of samples at a leaf

Table 1: Default parameters of benchmark techniques for LiDAR and GPS data

Resolution 1 2 4 8 16 32 64 128 256 512

Input size
X coord 20 40 80 160 320 640 1.280 2.560 5.120 10.240

Y coord 245 490 980 1.960 3.920 7.840 15.680 31.360 62.720 125.440

Table 2: Impact of the resolution thermometer over the input size

the WiSARD’s performance across different settings. Additionally, Figure 6a illustrates the perfor-
mance along a specific line of the heat map, corresponding to a thermometer resolution of 8. Based
on the outcomes of this analysis, we have selected a thermometer resolution of 8 and an address
memory size of 34 for the next experiments.

Fig. 5: Heat map of WiSARD accuracy performance

Comparison: Once again, to ensure a fair and consistent comparison with the other approaches,
we have selected some values to the parameters and standardized them across all techniques. The
specific parameters employed in our analysis are those already detailed in Table 1.

Our evaluation methodology was consistent across all models, focusing on how variations in the
‘k’ value affect each model’s accuracy. This approach allowed for a direct comparison under identical
conditions. The results of this comparison are illustrated in Figure 6b.
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(a) Behavior of WNN with address size variations (b) Top-k classification for beam selection

Fig. 6: Performance of WiSARD with GPS data only

The analysis revealed that, on average, the WiSARD model outperformed the other techniques
by 7% for the top ‘k=1’ scenario and by 2% for the top ‘k=20’ scenario. This indicates that the
WiSARD model is effective at predicting the most relevant outcomes when considering a limited
number of top choices.

4.3 Beam selection using both GPS and LiDAR data

Hyper-parameters tuning: The integration of GPS and LiDAR data required a careful ad-
justment of the model’s address size to accommodate the merged dataset effectively. During the
preprocessing phase, we noted that the LiDAR data consisted of 80,000 bits. To ensure that the
WiSARD model assigns equal weights to both GPS and LiDAR inputs, it was crucial to balance
the size of the inputs. Consequently, we have adjusted the resolution of the GPS data to 512 bits,
resulting in a combined (x,y) input size of 135,680 bits for the GPS data alone. When merged with
the LiDAR data, the total input size for the WiSARD’s retina increased to 215,680 bits.

Figure 7a illustrates how the WiSARD model’s performance varied with different address mem-
ory sizes, using this combined input. The results highlight a notable improvement in the WiSARD
network’s accuracy, achieving scores around 70%. This demonstrates the effectiveness of integrating
GPS and LiDAR data and fine-tuning the address size for the combined scenario. The comparison
with the other techniques are presented in Figure 7b.

Comparison: The integration of both GPS and LiDAR information yielded a significant improve-
ment in beam prediction accuracy for the top choice (k=1) scenario. Specifically, the accuracy
increased by 9% over the use of LiDAR data alone and by 3% over the use of GPS data alone. This
comparison emphasizes the value of combining multiple types of context information to bolster the
model’s performance.

It is important to highlight that the proposed model significantly enhanced the accuracy of beam
selection. The greatest accuracy achieved was an impressive 71% (Table 3). This comparison not
only emphasizes the effectiveness of our algorithm but also situates our findings within the broader
context of current research.
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(a) Behavior of NN with address size variations (b) Top-k classification for beam selection

Fig. 7: Performance of WiSARD with LiDAR and GPS data

Technique Input Antenna config. Accuracy [%]
Ref

[Tx-Rx] Top-1 Top-10 Top-20
Linear SVM

GPS

UPA [4X4]

33.2 - -

[14]

AdaBoost 55.0 - -
Decision Tree 55.5 - -
Random Forest 63.2 - -
DNN 63.8 - -
DQN 67.5 - -
DNN LiDAR 20.5 33.0 49.5 [9]
DL LiDAR GPS 42.0 90.0 98.0 [15]
Conv3D LiDAR 63.3 92.5 - [27]
KNN

GPS
43.0 - -

[8]Naive Bayes 8.70 - -
ANN 40.50 - -
Lightweight NN LiDAR, GPS 59.5 - 87.0 [26]
F-DL LiDAR ULA [32X8] 46.2 89.9 96.1 [23]
DNN LiDAR UPA [8X72] 32.0 80.0 - [25]
Dense Neural Network LiDAR ULA [64X8] 43.0 82.0 85.0 [16]
WiSARD (this work) LiDAR, GPS ULA [32X8] 71.0 95.0 98.0

Table 3: Performance comparison with ML techniques from state-of-the-art

5 Conclusions and future works

This paper proposes the use of the WiSARD network for beam selection in a mmwave MIMO system.
The method was explored with each unimodal feature (GPS and LIDAR data) and both features
simultaneously. The simulation results provide a fair comparison between the proposed method
and other machine learning techniques commonly used in the literature. It is evident that the
WiSARD network outperforms the baseline methods, with a 3% increase in performance compared
to state-of-the-art methods for the worst task, top-1.
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Overall, the WiSARD network scores are competitive, and since it is a lightweight method in
terms of processing, it could be a useful tool for future generations of cellular networks. In addition,
the process of selecting the appropriate beam for data transmission can reduce energy consumption
in smart mobile devices. For future work, it is recommended to conduct a complexity analysis of
the algorithms, an experimental evaluation with real-world data and to assess the feasibility of
embedding WiSARD-based algorithms.
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