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Abstract. Some neurosurgery procedures require precise information
on the region of interest, and a quantitative control of the overall un-
certainty. Such procedures often rely on image registration, which is an
essential step in many of these workflows. However, the problem of reg-
istration error estimation (REE) remains a challenge, due to its lack
of ground-truth. In this work, we establish different criteria to evaluate
REE methods and we propose a regression U-Net, a supervised convo-
lutional neural network approach, that is able to compute the REE for
the case of deformable brain MRI mono-modal registration. The model
is trained and tested separately on four modalities. The best result is
for T1 images, with a root mean square deviation (RMSD) on the test
set of 0.17 mm for images with 1 mm³ isotropic voxels. We also tested
the model generalization and transfer learning capabilities on a separate
MRI data set with two modalities. For the T1 images, the direct infer-
ence has a RMSD of 0.62 mm and the transfer learning method leads
to a RMSD of 0.19 mm, also for volumes of 1 mm³ voxel size. These re-
sults demonstrate the feasibility of our approach and the possible use of
a U-Net based model for REE in brain MRI registration. The proposed
methods enable a better quantitative control of procedure uncertainty in
neurosurgeries and open the way to closed loop robotic control in these
procedures.

Keywords: Image registration · Registration error · Uncertainty esti-
mation · Brain MRI · Convolutional neural networks · U-Net.

1 Introduction

Neurological procedures can be very sensitive to the overall uncertainty of the po-
sitioning of a critical element or the targeting of region of interest. Examples are
the positioning of electrodes for stereoelectroencephalography (SEEG) or deep
brain stimulation (DBS), and for targeting tumors on stereotactic radiosurgery
(SRS). Medical image registration plays an indispensable role in these applica-
tions [1]. Indeed, the medical staff often exploits several images which need to
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be aligned. In this context, the quality of alignment is key to guarantee a correct
interpretation of the images. More importantly, knowing quantitatively the reg-
istration error is important to reduce the uncertainty and improve the quality of
care as well as reduce side effects, specially for medical robotic operations [11].

In the last years, the registration algorithms have largely improved their
performance thanks to machine learning methods. Nevertheless, the registration
evaluation techniques have not benefited from the same improvement and stay
qualitative in most use cases. It has been shown that measuring the quality of the
registration is rather complex [14], especially for deformable image registration
(DIR), i.e., when the transformation estimated during registration is non linear.

There are some proposed methods that address the registration error esti-
mation (REE) problem. Nowadays, the most widely used algorithms are either
based on segmentation, with criteria such as Dice-Sorensen coefficient (DSC)
or Hausdorff distance (HD), or the target registration error (TRE) [4]. The
segmentation based methods provide only a global indicator of a correct regis-
tration, which can also be mixed up with potential segmentation errors [15]. The
TRE, which consists in measuring the Euclidean distance between correspond-
ing points, typically anatomical landmarks, is often performed manually, and it
is therefore prone to operator variability, that is not negligible compared to the
small brain structures.

The main contribution of this work is the development of an automatic
method that is able to measure the TRE for all voxels inside the region of in-
terest (ROI). This method is based on a convolutional network (CNN), namely
U-Net [17], used as a regression model for TRE prediction. The method is il-
lustrated on 3D images of the brain, acquired with magnetic resonance imaging
(MRI). We also show that the U-Net is capable to predict REE well when tested
on another dataset, demonstrating its generalization capabilities. Finally, we
show that transfer learning is efficient for improving REE results across two dif-
ferent data sets and across modalities. This method allows for better control of
the uncertainty of the operation during neurological procedures, which improves
the quality of care.

2 Requirements and Related Work

In this section, we define important criteria necessary for quantitatively assessing
DIR algorithms within clinical procedures. We also present the reasons why the
method has to fulfill these requirements, and to which extent existing methods
satisfy them. Let us consider a 3D image I : Ω → R, x 7→ I(x), where Ω ⊂ R3.
The criteria are the following:

1. Automation (A): the method has to be fully automatic, so we can guarantee
a better reproducibility when compared to manual methods, and less time
consumption.

2. Density (De): the method has to output a “dense” error measure, which is
defined as “for a given ROI, ∀x ∈ ROI if we know the error measure for x,
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then we also know the error for all its 26-neighbor voxels that are inside the
ROI” (clearly, a voxel on the border of the ROI will have less neighbors).
This is necessary because DIR needs a very high number of estimation points
to be correctly evaluated [6]. In our case, we choose the brain as the ROI.

3. Unit (U): the method is required to measure the error in millimeters, so
it can be used for stereotactic procedures, where surgeons measure errors
in millimeters, for example, in deep brain stimulation (DBS) post-operative
electrode positioning validation [9]. Adimensional coefficients are not suited
for these clinical applications.

4. Direct Measure (DM): the method should provide a direct error measure to
avoid inaccuracies from additional steps, which is especially important for
stereotactic applications.

With these criteria, we can analyze the most used REE methods. First, the
Dice similarity score does not provide a guaranteed correlation between REE
and segmentation metrics, but it remains the most used method to evaluate new
registration algorithms [4]. The advantage of Dice or other segmentation-based
scores is that it can be calculated automatically with the segmentation models.
It is, however, a surrogate method, since in reality it is a segmentation metric,
hence it fails to satisfy the DM criterion.

Manual TRE is also extensively used in the literature since it provides a
reference through the involvement of physicians’ expertise. The main issue with
TRE is the need of human interaction which fails to satisfy criterion A. Semi-
automatic methods can reduce these errors but are still time consuming for an
expert [12, 14]. As it was reviewed by Bierbrier, Gueziri and Collins [3], there
are only a few works using this approach and they consist of corresponding
landmarks detection [12, 19].

More recently, some machine learning (ML) based solutions have been pro-
posed to address the limitations of the traditional methods. However, they face
the same challenge of lack of ground truth [14]. This makes the training of su-
pervised ML models more difficult. The creation of artificial transformations is
mentioned as one possible solution to create a training reference [3, 14]. The only
other relevant strategy listed in [3] is the use of ML methods to reduce limita-
tions of TRE methods such as an automatic TRE estimator that is trained with
manually annotated anatomical landmarks [18].

Another method is proposed in [7], which is capable to automatically estimate
TRE for all voxels in the image in the case of mono-modal, non-linear lung
CT REE. To achieve that, a supervised convolutional network is trained with
artificial non-linear transformations created by thin plate splines. Analyzing this
model according to our criteria, we see that it is a fully automatic method; it
can generate a dense REE for all voxels in the ROI and also gives a measure in
millimeters in a direct manner. However, the CNN model used is outdated with
respect to the current state-of-the-art, and CT images are very different from
MR images, which makes the method not directly applicable in our context.

In conclusion, the literature shows a lack of work on REE for brain image
data that satisfies our constraints. Therefore, we propose a model that is able
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to predict deformable mono-modal REE for brain MRI. Moreover, we assess the
model performance when inferring on images belonging to a different data set,
and how transfer learning can improve the accuracy and reduce the training
time.

3 Data

3.1 BraTS-Reg

The first data set is from the 2022 BraTS-Registration challenge data set [2],
also called BraTS-Reg. It is a multi-site, multi-modal MRI brain data set that
comprehends a total of 250 patients, from which 140 are made available for the
public. Each patient has four pre-operative MRIs with a brain tumor and four
follow-up ones after the tumor removal. The four sequences are T1 weighted, T2
weighted, T1 contrast enhanced (T1CE) and fluid attenuated inversion recovery
(FLAIR). The data set has many advantages, such as a preprocessing pipeline
with skull stripping, interpolation to isotropic voxels of size 1 mm³, and volume
dimensions set to 240 × 240 × 155. All the volumes are rigidly registered to
the SRI24 atlas anatomical space [16]. Another advantage is the presence of
manual landmarks annotated by six experts. For each pair of MRIs (pre and
post-operative) of a given patient, from 6 to 50 anatomical points are annotated,
which can serve as an additional criterion to evaluate the quality of our REE
model. In our experiments, we first pseudo-randomly shuffle the 140 images, then
we separate 30 for the test, and for the remaining 110, we re-split them into 90
samples for training and 20 for validation.

3.2 CERMEP

The second data set comes from the CERMEP institute [13]. It contains paired
MRI exams from 37 healthy patients. The modalities are FLAIR and T1 weighted.
The images are available in the original voxel size which is 1.2× 1.2× 1.2 mm³
and in a resampled size of 1 mm³. The resampled images are also normalized to
the MNI atlas space and are of size 207×243×226. Comparing to the BraTS-Reg
data set, the images do not come with the skull strip pre-processing and do not
have pre-annotated anatomical landmarks. The CERMEP data set is used for
testing the generalization of the model trained with BraTS-Reg and its capabil-
ity of fine-tuning to another data set. For the fine-tuning experiment, we divide
the 37 patients into 23 for training, 7 for validation and 7 for testing.

4 Methods

With the goal of obtaining a mono-modal REE model that is able to predict the
error for every voxel inside the image ROI, we propose a CNN network that is
trained on artificially transformed images. The REE problem is formulated here
as a supervised 3D image regression task.
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In a registration context we denote the fixed image by IF : (Ω ⊂ R3) → R,
the moving image by IM : (Ω ⊂ R3) → R, and the registered image by ÎR :
(Ω ⊂ R3) → R, with ÎR(x) = IM [T̂(x)], where the transformation T̂ : Ω → Ω
is obtained by a registration algorithm, and is supposed to be invertible.

We assume that there is an ideal transformation T(x) (also supposed to be
invertible), that maps all the corresponding voxels from IF to IM so that IF (x) =
IM [T(x)]. Since usually T(x) is different from T̂(x), there is a residual transfor-

mation Tres defined as T(x) = Tres(T̂(x)), i.e., with the invertibility assumption

Tres(x) = T(T̂−1(x)). Tres represents the deformation vector field (DVF) be-
tween the registered image ÎR and the fixed image IF , IF (x) = ÎR[Tres(x)].

In order to train our supervised model, we choose samples from the data set as
the fixed images IF , and we apply artificial transformations (random B-splines in
our experiments) to obtain a simulation of ÎR images. These transformations are
the equivalent of T−1

res , because ÎR(x) = IF [T
−1
res(x)]. From T−1

res , we can calculate
a registration error map E(x) = ||T−1

res(x)|| = ||Tres(x)||. E is our ground truth
that enables the supervised learning process and it is called target error map
(TEM). Figure 1 depicts the training workflow as it has been described.

Fig. 1. Diagram displaying the regression training workflow of our mono-modal regis-
tration error estimation method. The input are two 3D images, the fixed and moving
images. The target error map (TEM) and the prediction error map (PEM) are used
for calculating the loss function and hence for training the method.
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The proposed method uses as input a pair of 3D images: IF and ÎR. The
output of the model is Ê, the predicted error map (PEM). The model is trained
by minimizing a masked L1 norm of the difference between the PEM (Ê) and
the TEM (E):

L1 =

∑
x∈Ω M(x)|E(x)− Ê(x)|∑

x∈Ω M(x)
(1)

where M(x) is an indicator or mask function value that is equal to 1 if x ∈ ROI
and equal to 0 otherwise.

4.1 Residual transformations

To create the artificial images, we use B-spline transformations with a grid size
of 2 × 2 × 2 voxels. To determine the values of our B-spline grid, we sample
random uniform values in [−2, 2] for each axis. Since the isotropic voxel size is
1 mm3, the distortion can be easily converted to distance unit.

For the implementation, we use the gryds library that was developed by
Eppenhof and Pluim [8]. It has the advantage of being able to run the defor-
mations in a CUDA environment, speeding up the transformations computation
and therefore the learning process.

For each image in the training set, at each epoch we apply different transfor-
mations, resampling from the [−2, 2] interval, as a data augmentation strategy.
For the validation and test sets, the same transformation is applied to each
sample so the evaluation remains consistent throughout the epochs.

Once we have the distorted image, we can calculate the TEM (E), based on
T−1

res as explained above. The ROI is chosen as the fixed image brain region, since
it is the reference image. We apply the ROI mask to the TEM because otherwise
the model would be forced to learn REE from zero information.

4.2 Model architecture

For the model architecture, we employ a modified version [10] of the U-Net
model [17], as implemented in the MONAI framework [5]. The modifications
are: (i) the possibility of using residual units in the encoding layers, and (ii) the
strided convolution is the first layer in the residual unit, instead of the last one as
in the original implementation. Although U-Net was created for segmentation
problems, we choose its architecture because it has been shown in a previous
study that the model can be used for regression tasks [8]. In order to adapt
the prediction layer for the regression task, a Rectified Linear Unit (ReLU) is
incorporated to ensure that the predictions are constrained to non-negative real
values, given that the output represents a norm of the DVF (T−1

res).
Other modifications were made with different motivations, namely reducing

the number of convolutional filters in the first stage to 16 instead of 64. The first
reason is the fact that we are working with a 3D U-Net model, which is more
complex than the original 2D U-Net, hence we prefer to balance the number
of parameters with less convolutional layers. Moreover, a larger model has a
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greater impact on the GPU memory used and also needs more data in order to
better train the larger number of parameters. Finally, we intend to test whether
a model with less initial layers is enough to produce our intended results of REE.
We keep 5 levels in the U-Net and double the number of filters on each, so we
have 16, 32, 64, 128 and 256 filters at the successive levels.

The remaining MONAI U-Net hyper-parameters are set to their default val-
ues. Most importantly, this means that the kernel size for convolution and trans-
pose convolution is equal to 3 × 3 × 3. Also, there is an instance normalization
layer after the convolution and before the activation layer. Lastly, the stride
values for all levels are set to 2, i.e., we have to set all the dimension sizes of
our input to be divisible by 24 = 16, since we have four stride spatial reduction
steps. For that, we pad with zero-valued voxels the axial dimension from 155 to
160 to satisfy this constraint.

4.3 Experiments

To evaluate our approach across various MRI types, we trained separate U-
Net models for each modality in the BraTS-Reg dataset (four modalities) and
the CERMEP dataset (two modalities), all using the same settings. We also
tested how well the models trained on BraTS-Reg performed on CERMEP data,
specifically on T1 and FLAIR images. Additionally, we applied a transfer learn-
ing approach by re-training a BraTS-Reg model with CERMEP data. This let
us compare performances between models trained directly on CERMEP, those
trained on BraTS-Reg and tested on CERMEP, and those trained with transfer
learning.

4.4 Training

The training of the U-Net is supervised, where the input is the concatenation
of two 3D volumes composed by IF and ÎR. The output is the PEM (Ê), the
loss function is L1 as stated in Equation 1. We trained our model during 500
epochs, with the Adam optimizer set with a learning rate of 10−4. The moment
estimates hyperparameters were set to 0.9 and 0.999 respectively, which are
their default values in the PyTorch library. All these parameters were kept for
all experiments because we propose to evaluate the different performances of
the same setup across the different modalities and data sets. The only difference
is for the transfer learning, where we trained the model for 125 epochs, which
proved sufficient to achieve convergence, thanks to the initial weights provided
by the model trained on BraTS-Reg.

5 Results and Discussion

5.1 Quantitative Evaluation

To measure the accuracy of the REE model, we compute the root mean square
deviation (RMSD) between the PEM and TEM, i.e., for any image in the test
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set:

RMSD =

√
1

|ROI|
∑

x∈ROI

[Ê(x)− E(x)]2 (2)

Additionally, we evaluate the RMSD only on the coordinates of the annotated
landmarks available in the BraTS-Reg data set. These anatomical landmarks are
commonly used by physicians to evaluate registration accuracy, so it is interesting
to evaluate our model within these regions. Furthermore, we can compare the two
RMSDs and verify if their values are coherent. This shows how the landmarks
error approximates the global error in the ROI. We also compute the signed
difference Ê(x)−E(x) and the histogram of these values over all x and all test
set images; we call it evaluation histogram. We then compute the mean, standard
deviation (SD) and skewness of the evaluation histogram for each modality. It
is important to mention that the SD of the evaluation histogram can also be
seen as the uncertainty of our error predictions. All the results coming from the
model instances trained only on BraTS-Reg data set are shown in Table 1.

Table 1. Evaluation of the REE model trained on BraTS-Reg data set.

Modality
Global

RMSD (mm)
Landmarks
RMSD (mm)

Mean (mm) SD (mm)
Skewness
(mm)

T1 0.17 0.15 0.01 0.17 -0.12

T1CE 0.22 0.20 0.00 0.22 -0.15

T2 0.23 0.20 0.04 0.20 -0.33

FLAIR 0.23 0.22 0.00 0.22 -0.15

Table 1 shows that the best result is obtained for the T1 modality, with
0.17 mm of RMSD. Similar results are obtained for the other modalities, with
all the remaining three having essentially the same performance. The reason
for that difference is likely that T1 is usually the modality used for anatomical
structural details hence it has smaller voxel size. Since the preprocessing from
the BraTS-Reg data set re-scaled all images to 1 mm³ voxel size, the original
images that had voxel sizes larger than that will have less information for the
REE model, since the interpolation induces spatial imprecision. Nevertheless, in
spite of the existence of this extra step of re-scaling inherent to the dataset, we
still obtain a sub-voxel-size accuracy for all modalities, which was the objective
for surgical applications.

Moreover, from the results in Table 1, we can observe that all mean values
are close to zero and the standard deviations follow values close to the RMSD.
The skewness shows that the model has a slight tendency to underestimate the
registration error, since they are negative low values.

We present the same results for the experiments with the CERMEP data
set, with the exception of the landmarks RMSD, since it is not an annotated
dataset. Table 2 shows that the inference from the model trained on BraTS-Reg
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images also has a sub-voxel size RMSD on its error prediction (0.62 mm for the
T1 for instance). The positive mean on both modalities shows that the inference
on CERMEP from the models trained on BraTS-Reg tends to overestimate the
error. The experiment with training from scratch evidences that, for the same
U-Net architecture and hyper-parameters setup, the REE results are also on
sub-voxel size accuracy, although a bit less accurate than the one trained on
BraTS-Reg (0.17 mm against 0.29 mm). Finally, the transfer learning technique
proved to be the best result for CERMEP, not only needing less epochs for its
training (125 compared to 500 from scratch), but also improving the RMSD for
both T1 and FLAIR modalities (from 0.24 mm to 0.19 mm and from 0.29 mm
to 0.24 mm, respectively).

Table 2. Evaluation of performances for different experiments on the CERMEP data
set.

Type of
experiment

Modality RMSD (mm) Mean (mm) SD (mm)
Skewness
(mm)

Inference from
BraTS-Reg

T1 0.62 0.28 0.56 -0.69

Inference from
BraTS-Reg

FLAIR 0.69 0.33 0.61 -0.50

Transfer
Learning

T1 0.19 0.00 0.19 -0.44

Transfer
Learning

FLAIR 0.29 -0.14 0.25 -0.28

From
Scratch

T1 0.24 0.03 0.24 -0.59

From
Scratch

FLAIR 0.33 0.00 0.33 -0.44

5.2 Qualitative results

For a qualitative analysis, we evaluate if the general aspect of the PEM repro-
duces the aspect given by the TEM. Figure 2 depicts one case of the test set.
In each line, we show the results for T1CE, T1, T2 and FLAIR modalities of
the BraTS-Reg set in order to evidence the ability of the REE model to learn
the task for different types of acquisition. In the first line, we have a fixed image
slice, used as reference; in the second line, we show the equivalent slice of the
TEM; and in the third line, the slice of the PEM.

Figure 2 shows that the U-Net model is capable to predict the REE map
only from the difference between the fixed image IF and the registered image ÎR.
However, we can also notice the presence of the brain anatomical structure that
comes from the input images. This is mostly evident on the FLAIR and T2
images, that also had the worst results quantitatively. The main reason for that
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T1CE T1 T2 FLAIR

Original

TEM

PEM

1Fig. 2. Qualitative results for one patient of the test set. One slice was taken for each
modality for illustration purpose. The first row shows the original image, the second,
the target error map (TEM), and the third, the predicted error map (PEM).

could be the skip-connection layers, that transmit the higher level information on
the upper levels of the U-Net. This makes the input information be propagated
to the final layers of the network and eventually to the output image.

In spite of this element, we can state that our REE model is able to fulfill all of
the requirements established in Section 2. We have an automatic method that is
able to predict a 3D error map within a few seconds, thanks to the performance of
the U-Net during inference. Moreover, we have a direct REE given in millimeters
in the brain ROI. Ultimately, our quantitative and qualitative results evidence
that, for all modalities, we have sub-voxel accurate REE values and PEMs that
reproduce the same shape as the one given by the TEMs.

6 Conclusion

Deformable image registration error estimation is a challenging task. This work
presents the capability of a 3D U-Net model to learn non-linear registration
error maps for the case of brain MRI mono-modal non-linear registrations, with
a sub-voxel-size accuracy. The learning procedure is completely automated as a
result of our artificial B-spline transformations which enable the control of the
amount of distortion to apply in order to simulate registration errors. Although
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we evidence the presence of the brain anatomy on the PEM, the general aspect of
the TEM is learned. In addition, the model keeps sub-voxel-size accuracy across
a different dataset without re-training, and with transfer learning it improves
its performance with less training epochs. In conclusion, in comparison with
the traditional methods in the literature for REE (Dice score, TRE, Hausdorff
distance, etc.), our model is the only one, to date, that is able to satisfy, for brain
MRIs, all the criteria established in Section 2. The next steps will be to develop
a similar method for multi-modal deformable registration error estimation, e.g.
CT and MRI. Through the REE for each voxel, we aim for supporting highly
precise diagnosis, surgery planning and anatomy visualization to improve the
uncertainty management in neurosugery, hence leading to a better quality of
care. Finally, this work also opens the door to close loop robotic control in
neurosurgery by providing medical imaging errors linked to MRI.
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