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Abstract. Most non-classical logics are subclassical, that is, every infer-
ence/theorem they validate is also valid classically. A notable exception is
the three-valued propositional Logic of Ordinary Discourse (OL) proposed
and extensively motivated by W.S. Cooper as a more adequate candidate
for formalizing everyday reasoning (in English). OL challenges classical logic
not only by rejecting some theses, but also by accepting non-classically valid
principles, such as so-called Aristotle’s and Boethius’ theses. Formally, OL
shows a number of unusual features — it is non-structural, connexive, para-
consistent and contradictory — making it all the more interesting for the
mathematical logician. We present our recent findings on OL and its struc-
tural companion (that we call sOL). We introduce Hilbert-style multiple-
conclusion calculi for OL and sOL that are both modular and analytic, and
easily allow us to obtain single-conclusion axiomatizations. We prove that
sOL is algebraizable and single out its equivalent semantics, which turns out
to be a discriminator variety generated by a three-element algebra. Having
observed that sOL can express the connectives of other three-valued logics,
we prove that it is definitionally equivalent to an expansion of the three-
valued logic J3 of D’Ottaviano and da Costa, itself an axiomatic extension
of paraconsistent Nelson logic.

Keywords: Ordinary discourse - Multiple-conclusion systems - Algebraic
semantics - Connexive logics.

1 Introduction

Most non-classical propositional systems result from weakening Boolean two-
valued logic one way or another: this applies in general to logics in the fuzzy, many-
valued, relevance and substructural families. The majority of three-valued logics are
also subclassical in this sense (see [9] for an overview). A remarkable exception is
represented by the Logic of Ordinary Discourse introduced by W.S. Cooper [5], a
propositional system (henceforth denoted OL) remarkable in other ways as well.

As the name indicates, OL was proposed as a logic for formalizing ordinary dis-
course, that is, it was designed to model the everyday usage of natural language
connectives (in particular the if-then). In this respect, the main point of departure
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of OL from classical logic concerns those conditional sentences having a false an-
tecedent. Following a famous suggestion of Quine, Cooper regards such sentences as
lacking a truth value, but formally represents this condition by employing a third
(or “gap”) value 1/2 besides the classical 1 and 0. OL may thus be defined by means
of valuations over a three-element logical matrix (Figure [1)) over the set of truth
values {0, 1,1/2} where, interestingly, both 1 and the gap value 1/2 are designated.
However, as we shall soon discuss, OL is not determined by this three-valued matrix
in the usual sense, for in its definition not all valuations are allowed.

AlY210 Vv[Y210 —[Y21 0 | -

1/2(1/210 1/2(1/210 1/2(1/2 1 0 1/2|1/2
1/110 11111 1121 0 10
0000 0[010 o0|y21212 o0]1

Fig. 1. Truth tables for OL [5 Sec. 5].

OL validates certain formulas that are not classical tautologies — notably so-
called Boethius’ thesis (¢ — 1) — —(p — 1) and Aristotle’s thesis (= — )
— suggesting that it may be viewed as a connezive logic [I4]. On the other hand,
some classical tautologies (such as the explosion principle ¢ — (m¢ — ©)) are
not unconditionally valid in OL, making it incomparable with (not weaker than)
classical propositional logic.

Cooper [5] dicusses several examples supporting the claim that OL provides a
better formal model of ordinary discourse than classical logic. Here we may men-
tion but one, a puzzle that can be traced back to Aristotle, as reconstructed by
J. Lukasiewicz [Bl pp. 312-3]. In Aristotle’s view, no proposition can imply its
own negation, hence —(—1 — 1) should be a tautology. But, classically, (¢ —
Y)Y A (me = ) F 29 — 1. Hence, by contraposition, (¢ — ) A (me — )
should be contradictory, which seems counter-intuitive. Now, in OL, Aristotle’s
thesis =(—1 — ) is indeed a tautology. We also have, as in classical logic, that
(p = V)N (mp = ) F =Y = ¢ and (p = ) A (0@ — @) is satisfiable. OL,
however, rejects the contraposition rule (o« F S does not entail =8 F —a), so
(= = ) (@ = Y)A(m @ — 1)), avoiding the counter-intuitive consequence.
We shall not further discuss the adequacy of OL with respect to the proposed appli-
cations (refer to [5]), but we wish to draw attention to some of its unusual features.

For one thing, OL is not even a logic in the Tarskian sense, for its consequence
relation is non-structural, i.e. not closed under uniform substitution. This is wit-
nessed, for instance, by the explosion principle, which OL endorses for atomic for-
mulas (p,~p F ¢) but not for arbitrary ones (¢, ¢ ¥ ¢). In consequence, OL is
not characterized by truth tables in the usual way; it can, however, be semanti-
cally characterized by the three-valued matrix described in Figure [I] if we require
valuations to assign only classical values (0 or 1) to the propositional variables.

Let us mention a few other unusual features of OL, whose language consists
of a conjunction (A), a disjunction (V), an implication (—) and a negation (—).
The usual De Morgan laws relating conjunction and disjunction via negation hold,
and indeed either A or V could be omitted from the primitive signature. However,
neither the distributive nor the absorption laws between conjunction and disjunction
hold. Indeed, A and V do not give rise to a lattice structure in the expected way
(cf. Proposition [1] below); for this reason they have been called quasi-conjunction
and quasi-disjunction in the literature (see [6, Sec. 6.3] for a discussion of their
motivation). A novel contribution to an informal reading of these connectives may
perhaps be based on our algebraic analysis of OL. As we shall see (Section , OL
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may be viewed as an expansion of Da Costa and D’Ottaviano’s logic J3, which is in
turn an axiomatic extension of paraconsistent Nelson logic. These are substructural
logics based on residuated structures having both a lattice (or additive) conjunction
and a multiplicative conjunction; on the algebraic models, the latter is realized by a
monoid operation having (in our notation) 1/2 as neutral element. This suggests that
Cooper’s connective A is perhaps best thought of as a multiplicative conjunction
having V as its De Morgan dual (defined by =V y := =~(—x A —y)), the truncated
sum of Lukasiewicz logic being another example of this kind of disjunction.

The behaviour of V in OL is indeed peculiar, even in isolation. In fact, the
preceding observations entail that disjunction introduction is not a sound rule (in
general, we have ¢ I/ ¢ V ¢). In many logics, another key feature of the disjunction
is that the truth value of a formula ¢ V v is designated if and only if either ¢ or
1 is assigned a designated value. This does not hold in OL (one has, for instance
1/2 v 0 = 0). In consequence, a classical tautology such as ¢ V (¢ — 1) is contigent
in OL, although every valuation assigns a designated value either to ¢ or to ¢ — .
The behaviour of — within OL appears to be more standard, at least in isolation.
Unlike the disjunction, the implication is not definable from the other connectives
in any of the usual ways. Indeed, it is easy to see that — is not definable at all in
the language {A, V, 1}, for the set {0, 1} is closed under all these operations but not
under the implication. On the other hand, the truth constants (all three of them)
are definable. For instance, one may let /2 :== ¢ — (m¢ — ¢), 1 := pV —p and
0 := —1 (here p needs to be atomic, while ¢ is arbitrary).

Lastly, observe that OL is not only a paraconsistent (for ¢, = ¢ I/ 1) but actually
a contradictory logic in H. Wansing’s sense [I5], that is, there exists a formula
(e.g. /2, defined as above) such that both - 1/2 and + —1/2 hold. This has the
interesting consequence that OL does not admit any non-trivial structural extension:
if we were to close the consequence relation of OL under uniform substitutions,
then any formula ¢ would be valid, being (by the explosion rule, now applicable to
arbitrary formulas) a consequence of the set of valid formulas {1/2, ~1/2}.

We introduce multiple- and single-conclusion Hilbert-style axiomatizations for
OL and for its structural companion sOL (Sections [3)), thus filling the gap in the
literature concerning a standard axiomatization of OL. Our calculi are modular
(i.e., obtained by joining independent calculi over smaller signatures), easily allow-
ing us to characterize a number of fragments of OL/sOL. In the multiple-conclusion
setting, they are also analytic. We obtain these axiomatizations via the methods
developed in [I33]. In Section [4| we give an alternative axiomatization for sOL and
we prove that sOL is algebraizable with respect to the quasi-variety OL (coinciding
with the variety) generated by the algebra Osg, the algebraic reduct of Cooper’s
three-valued matrix. OL turns out to be a discriminator variety (Theorem , mak-
ing sOL a nearly functionally complete logic (adding to its language either the
constant 1 or 0 makes it functionally complete). Indeed, we show that sOL is def-
initionally equivalent to an expansion of Da Costa and D’Ottaviano’s three-valued
logic J 3, which is in turn an axiomatic extension of paraconsistent Nelson logic. The
final Section [f] discusses potential future developments, notably a more extensive
study of the algebraic counterpart of sOL (especially in connection with the other
above-mentioned non-classical logics), and the extension of the present approach to
other logics definable from the truth tables of OL (e.g., the algebraizable fragments
of sOL, logics resulting from alternative choices of designated elements or those
determined by the definable orders of Og).

2 Logical preliminaries

A propositional signature X is a collection of symbols called connectives; to
each of them is assigned a natural number called arity. Given a countable set P of
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propositional variables, the language over X generated by P is the absolutely free
algebra over X' freely generated by P, denoted Lyx(P). Its carrier is denoted by
Ly (P) and its elements are called formulas. The collection of all subformulas of
a formula ¢ is denoted by subf(p). Similarly, the set of all propositional variables
occurring in ¢ € Ly (P) is denoted by props(y).

A single-conclusion logic (over X') is a (non-necessarily structural) consequence
relation F on Ly (P) and a multiple-conclusion logic (over X') is a generalized conse-
quence relation > on Ly (P) — see [I0} Secs. 1.12, 1.16] for precise definitions. The
single-conclusion companion of a given multiple-conclusion logic > is the single-
conclusion logic bk such that @ o ¢ if, and only if, & > {¢}. We adopt the
convention of omitting curly braces when writing sets of formulas in statements
involving (generalized) consequence relations. The complement of a given >, i.e.,
P(Ls(P)) x P(Ls(P))\ >, will be denoted by ».

Given a signature X, a three-valued matriz over X (or X'-matriz) is a structure
M := (A, D), where A is an algebra over X with carrier O3 := {0,1/2,1}, and D C
Os (the set of designated values). The algebra A assigns to each k-ary connective
in X a k-ary operation ©a : O% — O3, called the interpretation of © in M. For
each formula ¢(p1,...,px) on k propositional variables, we denote by ¢a the k-ary
derived operation on A induced by ¢ in the standard way. Homomorphisms from
Lx(P) to A are called M-valuations. Every M determines multiple-conclusion and
single-conclusion substitution-invariant consequence relations in the following way:

& >y ¥ iff, for no M-valuation v, v[@] C D and v[¥] C O3\D
& by o iff, for no M-valuation v, v[®] C D and v(y)) € O3\D

We may also consider proper subsets of M-valuations, leading to potentially non-
structural consequence relations, as Cooper did for OL. Following [5], we consider
here the particular class that we call bM-valuations, comprising those valuations
that assign to propositional variables either 0 or 1 (complex formulas may still be
assigned the value 1/2 even under this restriction, depending on the interpretations
of the connectives). We thus obtain the following logics:

@ BV W iff, for no bM-valuation v, v[®] C D and v[¥] C O3\D
@ B 4 iff, for no bM-valuation v, v[®] € D and v(y)) € O3\D

We use the above notions to precisely define what logics we are interested in here.
Let Xor, := {—,V,A,—} and X be a signature such that X N Yo, # @. We say
that a three-valued X-matrix M is an OL-matriz when the connectives in X N
Yo are interpreted as in Figure [l and the set of designated values is {1/2,1}. If
Y = Yo, PsoL := >y and Fyor, :=hy are what we call (multiple-conclusion and
single-conclusion, respectively) sOL; similarly, Dg}: = Dlt\’,iﬂ" and Fg‘i::Fg}l" go by
the name of (multiple-conclusion and single-conclusion, respectively) OL. If X' #
Yo instead, >y and Fy are called a (multiple-conclusion and single-conclusion,
respectively) fragment of sOL if X C Xor, and an ezpansion (of a fragment of) sOL
in case X\ Yo, # @. In case X is arbitrary but M interprets its connectives by
functions that are term-definable from the interpretations of Yo, in Figure [I} we
say more generally that >y and by are term-definable fragments of sOL. The same
terminologies for OL are defined analogously. We will be particularly interested in
the following term-definable connectives (see Figure [2] for their truth tables):

Op = — 2o zUy:=-0(zVy A((x = y) = Oy)
r=y:="xVy aj|_|y::—\<—|aj|_|—\y)
rDy=r=y rYy: ==y =((y=2) =21
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MnjYz210 uUlY210 | DJY210 =¥Y210 Y |Y210

1/2|1/21/2 0 1/2|1/211/2 1/2|11/2 1/2|1/210 1/2|1/210 1/2(1/211
11/2 10 1/111 1|1/2 11210 1010 1111
0|0 0O 0121 0 00 0|111 0/111 0/110

Fig. 2. Truth tables of term-definable connectives of OL/sOL.

Now we present definitions related to Hilbert-style calculi. A multiple-conclusion
Hilbert calculus over X is traditionally defined as a collection R of multiple-conclusion
rules of the form %, where &, ¥ C Lyx(P). Here we also consider rules denoted by
2[11] for II C props(® U ¥), to be able to axiomatize non-substitution-invariant
logics, as we shall soon explain. We will often identify % with %[@]. Rules with
IT # & are referred to as identity-instance rules. When writing rules, we usually
omit curly braces from the set notation. A proof of (I',IT) in R is a finite directed
rooted tree where each node is labelled either with a set of formulas or with the
discontinuation symbol *, such that (i) the root is labelled with a superset of I';
(ii) every leaf is labelled either with a set having non-empty intersection with I7 or
with *; (iii) every non-leaf node has children determined by a substitution instance
of a rule of inference of R, in the way we now detail. A rule instance r? applies to
a node n when the antecedent of r? is contained in the label of n; the application
results in n having exactly one child node for each formula % in the succedent of r?,
which is, in turn, labelled with the same formulas as those of (the label of) n plus
1. In case r? has an empty succedent, then n has a single child node labelled with
*. If r has the form %, then any substitution o can be applied to instantiate it; if
it is of the form %[H ], however, only substitutions o with o(p) = p for each p € IT
may be applied. When we display proof trees, it is common to write as labels only
the formulas introduced by the rule application, instead of the whole accumulated
set of formulas. Examples of multiple-conclusion proofs may be found in Figure [4]

We write I' >g IT whenever there is a proof of (I',IT) in R, and write g for
the single-conclusion companion of >g. These relations are respectively multiple-
conclusion and single-conclusion consequence relations that are substitution-invariant
when no identity-instance rule is present in R. Single-conclusion Hilbert calculi are
just the traditional Hilbert calculi, which can be seen as multiple-conclusion cal-

culi in which only rules of the form % and %[H] are allowed, where & C Lyx(P)

and ¢ € Lx(P). Derivations then can be seen as linear trees, usually displayed
simply as sequences of formulas. We say that a Hilbert calculus R (multiple- or
single-conclusion) aziomatizes > if > = >g. It axiomatizes I in case - =Frg.

3 Hilbert-style axiomatizations for sOL and OL

We present now, in a modular way, multiple- and single-conclusion Hilbert-style
axiomatizations for sOL and OL and for fragments/expansions in which — is present.

3.1 Multiple-conclusion

Every logic determined by a finite matrix is finitely axiomatized by a multiple-
conclusion calculus [I3]. Moreover, if the matrix is monadic, the calculus satisfies
a generalized form of analyticity and can be effectively generated from the matrix
description [3]. We now describe in more detail these notions.

A matrix M := (A, D) is monadic if there is a unary formula S(p) € Lx({p}),
sometimes called a separator, for each pair of truth values x,y € A, such that
Sa(z) € D and Sa(y) € A\D or vice-versa. A multiple-conclusion Hilbert calculus
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R is ©-analytic, for O(p) a set of unary formulas, whenever @ >g ¥ is witnessed by
a derivation using only subformulas of ® U¥ or formulas in U»yesubf(@um O(y). For
example, if O(p) = {p, —-p} and R is O-analytic, checking whether r,q Ar >g p —
r,—q amounts to looking only for derivations in which formulas in {r,q,p,qA7,p —
ryq, -, —p, (g Ar),—(p — ), g} occur. Because in an OL-matrix p separates
(1,0) and (1/2,0), while —p separates (1,1/2), the following holds.
Lemma 1. Any OL-matriz over X D {—} is monadic, with set of separators {p, —p}.
Lemma |1} implies that all multiple-conclusion fragments/expansions of sOL con-
taining negation admit {p, -p}-analytic multiple-conclusion Hilbert-style axiomati-
zations generated from the matrix description in a modular way, as the next theorem

states. For a detailed presentation of the calculi generation for three-valued logics
and for the associated adequacy proofs, see [9, Sec. 5].

Theorem 1. Let X be a signature such that = € X and M be an OL-matriz over
Y. Then >y is aziomatized by the {p, ~p}-analytic calculi

Ry = U@ez Re,

where each set Ro, © € X, is generated by the procedure described in [J]. For the
connectives of OL, these sets are displayed in Figure 3

R-
ry pr; rs
——p P P, P
R
- PP —q q N
——n ra — I3
P—q p,p—q
p,=(p—q) —q — —
—q —(p—q) p,=(p—q)
Rv
v v -(pVa v -(pVaq) v -(pVq),pVaq.y
r ra r3 rq s
-p,pVq -¢,pVq -p —q D
-(pVq),pVq.y -p,7q v »,pVq v -¢,pVq v pVgq vy P9 v
e r7 rs g 1o r
q -(pVq) q P D, q pVyq
RA
PAG A PAG A D,q4 A
—n — I — I3
PAq
PAG-PAY A PAG(PAG A P, ¢ A P A q A
u— 7] s e — 7 —Ig
-p —q —(pAq) PAg g PAG P

Fig. 3. Multiple-conclusion rules for the connectives of sOL.

For examples of derivations in the multiple-conclusion calculus for sOL obtained
from the above theorem, see Figure [d] The next theorem presents axiomatizations
(recall, not substitution-invariant) for the corresponding multiple-conclusion frag-
ments and expansions of OL.

Theorem 2. Let X be a signature such that = € X and M be an OL-matriz over
Y. Then >8VY is aziomatized by

RO :=Ryp U {p7®_|p[p] ‘p€ P}.
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Proof. The nontrivial inclusion is Dﬁ\’jf’ C >ROL- Following the standard complete-

ness proofs exemplified in [9] Sec. 5.2], from @ >RoL ¥ we construct a valuation v

witnessing @ »EI ¥. In that construction, the rules 222 [p] force that the valuation
only assigns values in {0, 1} to propositional variables and the fact that Ry C RgL

and Ry axiomatizes > guarantees the homomorphism requirement on v.

The reader may appreciate the importance of the extra rules in the above the-
orem by proving pV (¢ — r) For pV r, even though pV (¢ — 7) oL pV r (easy to
see semantically). More examples like this may be found in [5].

3.2 Single-conclusion

When a suitable connective is available, a multiple-conclusion calculus may be
effectively translated into a single-conclusion calculus for its single-conclusion com-
panion [I3]. We now define what is a suitable connective and the calculi translations.

Definition 1. Let - be a single-conclusion logic over Lx(P) and © be a derived
connective in Ly (P). Then © is

1. a disjunction in = whenever I ©y = ~ iff I''p F v and I, F v, for all

r'uf{e,v,v} € Lo(P).
2. an implication in - whenever I' F @@ iff I', o b o, for all T'U{p,} C Lx(P).

Note that, in standard terminology, an implication in F is a binary connective
satisfying the Deduction-Detachment Theorem (DDT). In what follows, given a
set of formulas @ and a binary connective @&, let @@ ¢ = {p &Y | ¢ € &} and

Diets s omt =1 @ (2@ ... (.. Dn)..).

Definition 2. Let R be a multiple-conclusion calculus and & be a binary connective.
We define R® as the single-conclusion calculus

{pGBp’ P ’péBq’péB(q@r)}U{r@“eR}
p p®qg q@p (p®gOT

where r® s &[U] if r = 2], &%[ﬂ} if r = 2[], and %[H] ifr =
D

S U], for po a propositional variable not occurring in r.

Now we move to translations when an implication is present. Let py be a propo-
sitional variable not occurring in @1, ..., ©m,¥1,...,¥, and — be a binary connec-
tive. Define {¢1, ..., 0m} = {¥1,.. ., ¥} =01 = {p2,.-. ., om} = {¥1,...,¥n}),
g — {wlw"awn} = (¢1 - pO) - (Q - {¢27>¢n}) and & — @ = Do- For
example, {p,q} = {pAq} =p— (¢ (((pAq) = po) = po))-

Definition 3. Let R be a multiple-conclusion calculus and — be a binary connec-
tive. We define R™ as the single-conclusion calculus containing all rules and axioms
of intuitionistic implication (where — is taken as this implication) and axioms of
the form

Tor ot = (o oy

for each rule ﬁll“;m [IT] belonging to R.

The following theorem establishes that, when & and — are respectively a dis-
junction and an implication as previously defined, the above translations produce
(finite) single-conclusion axiomatizations from (finite) multiple-conclusion axiom-
atizations. In its original formulation, rules of the general form Z[II] were not
considered, but their addition does not invalidate the result.
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Theorem 3 ([13, Thm. 5.37, Lem. 19.20]). Let R be a multiple-conclusion
calculus. (1) If ® is a disjunction in g, then Fr=Fre. (2) If — is an implication
in R, then FrR=Fgr-.

It is not hard to check that — is an implication in sOL (see also Section ; this
gives us the following single-conclusion axiomatizations.

Theorem 4. Let X be a signature such that {—,—} C X, and let M be an OL-
matriz over X. Then by is axiomatized by RS, where Ry is given as in Theorem .

More interestingly, we may replace — by either A or V, providing axiomatizations
for more fragments of SOL. Neither A nor V is a disjunction or an implication in the
above sense, but each of them allows us to define a connective that is a disjunction
and thus suitable for the multiple-conclusion to single-conclusion translation.

Theorem 5. Let X be a signature such that either {—,A} C X or {—,V} C X and
let Ml be an OL-matriz over X. Then -y is axiomatized by R}, where Ry is given
as in Theorem[l], and p Y q = (p = q) = ((¢ = p) = p).

Proof. Let pY q := (p = ¢q) = ((¢ = p) = p) and recall that = was defined as
—p V ¢ (thus using only — and V). Note that it could also have been defined using
- and A, since V is definable from — and A. From the truth table of Y displayed in
Figure[I] it is easy to see that Y is a disjunction in the sense of Definition

We display in Figure ] the axiomatization of sOL following the previous theorem.
Remark 1. We could have used the connective U defined before instead of Y.

Remark 2. Since Y was defined using only =, this result (and the next) also applies
to the term-definable single-conclusion fragments {—-, =} of OL and sOL.

T~ AN

Loe—Y (p—=9) = =(p = ) IR —(=p = ¢)
'V ~ 5 \
@ —( = =) —(mp =)
rn ‘ ry ‘
¥ (p =) = ~(p = )
re ‘
i
rs’ ‘
(o — )

(o =) = =(p = )

Fig. 4. Derivations of Boethius’ thesis and Aristotle’s thesis in sOL (see Figure |3).

With the above results, we axiomatized via single-conclusion calculi all single-
conclusion fragments/expansions of sOL containing —. For some of them, and for
sOL itself, two calculi were presented. The ones obtained from Theorem [4] have one
rule and many axioms, while the ones from Theorem [5| tend to be rich in rules and
have only a few axioms. We now proceed to extend these calculi to axiomatize the
corresponding fragments and expansions of OL.

Theorem 6. Let X be a signature either with {=,—} C X, {-,V} C X or {-,A} C
X, and let M be an OL-matriz over . Then FEY = Frouye, where © =— if > € X
and © = Y otherwise.
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Ry
PYD P pPYq pY(gYr)
p pPYq qYp pYyq)Yr
R,
pYr ——pYr
p YT pYr pY —p
R
pYr,(p—=q)Yr qYyr
qyr p—=aqYr pY (p—q)
pYr,a(p—=q)Yr —qYr
—qYr (p—=q)Yr pY =(p—q)
Rv
“(pveg Yr “(pVg Yr
—pY (pVa) —qY (pVq) pYr —qYr
v Yr,(pvg Yr (pve Yr,(pvVg Yr pYr,oqYrT
pYTr qYyr -(pVvq) Yr
pYr,(pVgYr qYr,(pVgYr (pvag Yr pYT,qYr
qvyr pYT (pYq)Yr (pvag) Yr
RA
(pAg) YT (pAg) YT pYr,gYr
pYT qYr (pANg) YT
pAg)Yr,=(pAg) YT pAg)Yr,=(pAg) YT
-pYr —qYr
pYr,oqgYr pYr qyYr
“(pAg) YT ((pAg) Y—-q)Yr ((pAg) Y —p)Yr

Fig. 5. Single-conclusion calculus for single-conclusion sOL produced via Definition
By Theorem one can modularly add suitable rules to Ry U R- U Ry to axiomatize
fragments/expansions of sOL over signatures X' O {—, V} (V may be replaced by A).

4 Algebraic semantics

We denote by Og the three-element algebra whose operation tables are given
in Figure [1} viewed as an algebra in the language {A,V,—,—}. Denote by OL the
quasi-variety generated by O3 (as we shall prove, OL is in fact a variety), and let
FoL denote the corresponding relative equational consequence relation.

Algebraizability of sOL. The matrix semantics of sOL makes it easy to check that
sOL is algebraizable in the sense of Blok and Pigozzi [I]. In what follows, abbreviate
la] == a = a.

Theorem 7. sOL is algebraizable with translations 7: x — x =~ |z| and p: p =
Y = {o = ¥, = ¢}. (Alternatively, one may take 7: x — = = x — x and

pro=tp={o—= =@ np—= Y, Y — opl.)

Proof. Observe (using Figure [2)) that a valuation v over the matrix of sOL satis-
fies an equation ¢ = ¢ = ¢ iff v(¢) € {1/2,1}. Thus, for all formulas I, ¢, we
have I' Fsor ¢ iff 7(I') EgL 7(¢). This is condition (ALG1) of algebraizability [8]
Def. 3.11]. To establish algebraizability, it remains to prove (ALG4), i.e., that ev-
ery equation ¢ = ¢ is inter-derivable in EFgp, with 7(p(¢ & 1)), which is the set
{e=vY=|p=1|,v= ¢ |1p = ¢|}. This is easily verified in Os.
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Algebraic counterpart of sOL. By inspection, Os (Figure suggests that:

1. The tables of M,U are precisely those of the conjunction and disjunction of
strong Kleene logic and of G. Priest’s Logic of Paradox, both defined over the
language {1, U, =} (see [9] for further background on these logics).

2. Thus, the Logic of Paradox (which also has {1/2,1} as designated set, whereas
strong Kleene has {1} alone) may be viewed as a definable subsystem of sOL.

3. If we consider the language {M,, D, 7} then we have the connectives of Da
Costa and D’Ottaviano’s three-valued logic J3 (whose designated set is also
{1/2,1}) minus the truth constants. These, which are otherwise not definable
in sOL, need to be explicitly included in the language; we may then define the
modal operator of & of J3 by Cz:=x A 1.

4. We note that, if we add either 1 or 0 to the language of sOL, then every
possible three-valued connective becomes definable. This is a consequence of
the observation that Og then becomes a primal algebra (Theorem .

The following proposition is also a matter of straightforward computations.

Proposition 1. Let O3 = (O3; A, V, —, ) be endowed with the above-defined op-
erations (Figure[).

1. (O3; A, 1/2,0) is a meet semilattice with 1/2 as mazimum and 0 as minimum.
2. (O3;V,1,1/2) is a join semilattice with 1 as maximum and /2 as minimum.
3. (O3;M,,1,0) is a lattice with 1 as mazimum and 0 as minimum.

For all unexplained universal algebraic terminology, we refer the reader to [2].
Theorem 8. Denote by V(O3) the variety generated by Os.

1. V(Og) is both congruence-distributive and congruence-permutable (i.e., it is an
arithmetical variety).

2. V(03) = OL.

3. Og3 is quasi-primal, hence OL is a discriminator variety.

4. If we add either O or 1 as a constant to Ogs, then the latter becomes a primal
algebra (where every n-ary function for n > 1 is representable by a term).

Proof. 1. Congruence-distributivity follows from the observation that Os has a
term-definable lattice structure (item (iii) of Proposition. Congruence-permutability
is witnessed by the Maltsev term p(z,y, z) defined as follows (cf. [IT, Thm. 4.10]):
p(e,9,2) = ((z = 1) 1 (2 = 2)) = 2) 1 (2 = )1 (& = 2)) = ).

2. Since V(Og3) is congruence-distributive, by item (iii) of [4, Thm. 3.6]) it suffices
to verify that HS(O3) C I15(03), which is very easy (Ojs has only one proper
subalgebra with {1/2} as universe, and no non-trivial homomorphic images).

3. Taking into account item (i) and the fact that Og is hereditarily simple, apply
Pixley’s characterization [2 Thm. IV.10.7] to conclude that O3 is quasiprimal.

4. If we further add one of the non-definable constants (0 or 1) to Ogs, then
by [2, Cor. 10.8] we obtain a primal algebra.

Aziomatizing OL. The algebraizability result (Theorem [7)) can be used to obtain a
presentation of the quasi-variety OL in the standard way (see [8, Prop. 3.44]), as
well as of the subreducts of OL corresponding to algebraizable fragments of sOL
(e.g. those capable of expressing either = or — and —, relying on the axiomatizations
obtained in Theorems . Moreover, one may obtain a more standard Hilbert
presentation for sOL by directly proving that the logic determined by the following
calculus is algebraizable (with the same translations 7, p of Theorem @, and that
its equivalent semantics is OL. This is straightforward, but requires a number of
derivations that we omit due to space limitations. The calculus is given by the
following axiom schemata, with modus ponens (from ¢ and ¢ — v infer ¢) as the
only inference rule (we abbreviate o <+ 1= (o = ) A (8 — «)):
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(HOL1) o= (b — )

(HOL2) (=W —=7)—= (e —=19) = (p—7)

(HOL3) ((p=v) =)= o

(HOL4) (pAY) =@

(HOL5) (e A1) =

(HOL6) (=)= ((p—=7) = (= (WA7Y)))

(HOL7) TR

(HOLS) (o= =)=y

(HOL9) (o= YA =) & (pAY).
(HOL10) (e = Y) & (p— )

(The ‘H’ in (HOL)) etc. refers to ‘Hilbert’.) We note that the only non-classically
valid scheme is (H7 while (HOL[I)-(HOL[6) constitute, with modus ponens,
an axiomatization of the conjunction-implication fragment of classical logic. This
entails that every classical tautology in this language is derivable in HOL. Also
observe that, since modus ponens is the only rule of inference, axioms (HO and
(HOL]) give us that — satisfies the DDT (see Definition [i] (2)).

For a quasi-equational presentation of OL, thus, we may employ the following
quasi-equations (cf. [8, Prop. 3.44]):

1. o = |al for each axiom « in (HOL [I)-(HOL[9),
2. if o ~|a|and a = B = |a — j]|, then 8 =~ |3|,
3. ifa=pf~la=F|land f = a=x |8 = «a|, then a = §.

5 Future work

Having axiomatized the logic of ordinary discourse OL and investigated the
logico-algebraic features of its structural counterpart (sOL), we believe to have
contributed to the advancement of the study of connexive (multiple- and single-
conclusion) logics. We view the present study as yet another vindication of the
usefulness of multiple-conclusion calculi in the study of finite-valued logics. Beyond
the results presented here, we speculate that the following directions may prove
fruitful in future research.

1. Due to space limitations, the algebraic aspects of sOL have been touched only
sketchily in the present paper. We reserve a more comprehensive study — including
a proof of algebraizability of the Hilbert calculus introduced in Section [4] a more
perspicuous presentation of the variety OL, etc. — to a future publication [12].

2. The papers [6I7] by P. Egré et al. contain an extensive discussion of three-
valued logics that model conditionals in natural language. Among other systems,
the authors consider a variant of sOL (denoted CC/TT) that employs the im-
plication — together with the connectives M, instead of the primitive conjunc-
tion and disjunction of sOL. Present space limitations do not allow us to com-
pare in detail our approach with that of Egré et al., so this issue too will have to
be left for future research. However, we may anticipate that our algebraic anal-
ysis of sOL throws some light on the observations of [7, Sec. 4], in particular
the fact that a translation p: ¢ ~ ¢ — {p — ¥, — ¢} does not guaran-
tee algebraizability, either for sOL or for CC/TT (cf. [7, Lemma 4.18]). On the
other hand, it is easy to see that the translation considered in Section [4] namely
pro= = {o =P — o, p— 1, m1h — D}, guarantees algebraization for
both logics, thereby settling the problem left open in [7].

3. As mentioned earlier, sOL is definitionally equivalent to an expansion of Da
Costa and D’Ottaviano’s logic J3, which is in turn an axiomatic extension of para-
consistent Nelson logic. This suggests that OL may be viewed as a subvariety of
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N4-lattices and, as such, its members may be given a twist-structure representa-
tion. Developing such a study may not only provide further insight into OL, but
also clarify the relationship between sOL and other related non-classical systems,
such as the connexive logic C [14].

4. It might be interesting to develop a study similar to the present one for other
logics defined from the algebra O3 with different sets of designated values, e.g. {1}
or {1/2}, or the order-preserving logics associated to the orderings naturally arising
on O3 (cf. Proposition . An obviously different but related question is whether
any of these systems admit an interpretation in line with Cooper’s original proposal
of formalizing reasoning in ordinary discourse.

5. An algebraic study of the (term-definable) fragments of sOL axiomatized
in Section [2| also appears to be promising. Some of these — such as the {—,}-
fragment and the {A, ~}-fragment — are algebraizable, suggesting that they may be
easily treatable with algebraic methods. The {=}-fragment, not considered here,
is also easily seen to be algebraizable, and may be axiomatized by the methods
employed in the present study. By [13], every multiple-conclusion finite-valued logic
is axiomatized by a finite multiple-conclusion calculus; given that Y was defined
using only =, a single-conclusion calculus for this fragment exists by Theorem
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