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Abstract. We consider the prospects of Functional Data Analysis (FDA)
methods for statistical inference based on fuzzy data. To make the FDA-
based reasoning efficient, we introduce another representation of fuzzy
numbers than the traditionally used one, namely ICr functions. To show
that the suggested approach can be effective, we propose a new test de-
signed in the spirit of FDA methods, which has been shown to have good
statistical properties.
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1 Introduction

Fuzzy set theory has proven to be extremely useful and efficient in mathemati-
cal uncertainty modeling and many practical applications. One such application
area is the statistical analysis of imprecise data, usually modeled with random
fuzzy numbers. Unfortunately, constructing statistical tools for reasoning based
on fuzzy data does not directly generalize classical procedures to the fuzzy do-
main. As it turns out, the specificity of fuzzy random variables means that certain
properties or operations we accept as natural for the crisp random variables do
not apply to random fuzzy numbers. In particular, in contrast to the statisti-
cal analysis of crisp data, one should be aware of the following disadvantages
typical for fuzzy numbers: (a) problems with subtraction and division of fuzzy
numbers; (b) the lack of universally accepted total ranking between fuzzy num-
bers; (c) there are not yet realistic suitable models for the distribution of random
fuzzy numbers; (d) there are not yet Central Limit Theorems for random fuzzy
numbers that can be directly applied to making an inference.

The above-mentioned inconveniences force statisticians to give up some of
the structures they are used to, but at the same time, encourage them to come
up with new solutions and thus trigger their creative potential. For example, the
problems with (a) resulted in using distances to avoid subtracting fuzzy numbers
(see, e.g. [2]). Difficulties with ordering fuzzy numbers do not allow using rank
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tests, which we are trying to replace with other structures (e.g. [13]). Finally,
problems with the distribution of fuzzy random variables, mentioned in (c) and
(d), drew researchers’ attention to bootstrap (e.g. [6, 16]) and permutation tests
(e.g. [8–10, 12]).

Since we can identify each fuzzy set with its membership function, hence we
can perceive a fuzzy sample as a set of functions. If so, the question immediately
arises: Why fuzzy data are not treated as special functional data? Consequently,
why aren’t Functional Data Analysis (FDA) methods used to analyze fuzzy data?

These questions are not new, but it seems that we still have not considered
the problem with sufficient intensity. In 2012 González-Rodŕıguez et al. published
an interesting article with a significant title “Fuzzy data treated as functional
data. A one-way ANOVA test approach” [7], but it didn’t get the broader atten-
tion it deserved. A few years later, M.A. Gil in her, SMPS 2018 Tutorial asked
this question again: “Can fuzzy data be treated as special functional data?”. She
responded by pointing out two opposing positions. “Directly NO: In applying
functional arithmetic to handle elements in the space of (functional-valued) fuzzy
numbers, one often moves out of the space and the fuzzy meaning is generally
lost”. On the other hand, she claimed that “Indirectly, YES: By using appro-
priate arithmetic and suitable metrics, fuzzy numbers can be identified with
elements in a convex cone of the Hilbert space of functions and the arithmetic
and metrics with fuzzy numbers with those in the Hilbert space of functions”.

If so, let’s ask again: Why, so far, FDA methods have not met with the wider
interest of researchers dealing with the analysis of fuzzy data? It appears that
this may have happened because in previous studies, their authors, although
they used some FDA-related tools, they stuck to the LU-representation of fuzzy
numbers. Perhaps things will change if we look at fuzzy data a little differently,
through a slightly different representation of fuzzy numbers, one that better suits
the nature of FDA methods.

Therefore, the main goal of this contribution is to indicate a slightly different
representation of fuzzy numbers than those we are used to and to show, using
the example of a certain statistical problem, that this representation enables us
to apply the FDA technique effectively.

The paper is organized as follows: in Section 2 we recall basic notation and
information related to fuzzy numbers. Then, in Section 3 we present in a few
words what the FDA is all about. In Section we introduce another representation
of fuzzy numbers that seems to be promising for further use in fuzzy FDA
methods. Next, in Section 5 we propose a goodness-of-fit two-sample test for
fuzzy data that combines the suggested representation with some FDA testing
approach, while in Section 6 we show some results of the simulation study related
to this test.

2 Fuzzy data

In real-life experiments and datasets, we often meet imprecise observations. A
suitable mathematical model of such data is a family of fuzzy numbers.
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Definition 1. (cf. [4]) A fuzzy subset A of the real line R with a membership
function µ : R → [0, 1] is a fuzzy number if it satisfies the following properties:

(1) A is normal (i.e. ∃x0 ∈ R such that µA(x0) = 1),
(2) A is fuzzy convex (i.e. µ(λx1 + (1 − λ)x2) ⩾ min{µ(x1), µ(x2)} for any

x1, x2 ∈ R and any λ ∈ [0, 1],
(3) µ is upper semicontinuous,
(4) the support of A, i.e. supp(A) = cl{x ∈ R : µ(x) > 0}, is bounded (where cl

stands for the closure operator).

When considering any two fuzzy sets, including fuzzy numbers, two crisp sets
are of special interest, the support, defined above (which contains all elements
of the universe of discourse that are compatible at some extent with the concept
modeled by a given fuzzy set) and the core, containing all elements of the
universe of discourse that surely belong to the fuzzy set under study (i.e. {x :
µ(x) = 1}). If A is a fuzzy number then, by Definition 1, supp(A) is a closed
interval, and core(A) is not empty.

Let us denote by F(R) the space of all fuzzy numbers. Moreover, let Fc(R)
denote a family of all so-called continuous fuzzy numbers, i.e. fuzzy numbers
with continuous membership functions.

Each fuzzy number has two equivalent representations: the so-called LR-
representation and LU- representation. Following the first one, the mem-
bership function µ of a fuzzy number A can be represented in the following
form

µ(x) =


L
(

b−x
b−a

)
if a < x ⩽ b,

1 if b ⩽ x ⩽ c,

R
(

x−c
d−c

)
if c ⩽ x < d,

0 otherwise,

(1)

where L,R : R → [0, 1] are decreasing functions such that L(0) = R(0) = 1,
L(1) = R(1) = 0, L(x), R(x) < 1 for all x > 0 and L(x), R(x) > 0 for all
x < 1. Functions L and R are called the left and right shape functions (sides
or arms), respectively. Hence, each fuzzy number in the LR-representation is
specified completely by its support (i.e. supp(A) = [a, d]), core (i.e. core(A) =
[b, c]), and its shape functions L and R. One can easily notice that if L = R and
b− a = d− c then the corresponding fuzzy number is symmetric.

Following the LU-representation, a fuzzy number A with the membership
function µ is completely characterized by a family of its α-cuts {Aα}α∈[0,1] de-
fined as follows

Aα =

{
{x ∈ R : µ(x) ⩾ α} if α ∈ (0, 1],

cl{x ∈ R : µ(x) > 0} if α = 0.

It is easily seen that each α-cut of a fuzzy number A is a nonempty compact
interval Aα = [AL

α, A
U
α ], where AL

α = inf Aα and AU
α = supAα denote its lower
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and upper endpoint (border), respectively. Alternatively, each α-cut can be rep-
resented by its midpoint and radius (spread) given by

midAα =
AL

α +AU
α

2
, sprAα =

AU
α −AL

α

2
,

instead of its endpoints (which are sometimes more convenient in processing
fuzzy numbers, e.g. in defining a distance between fuzzy numbers, see [20]).
Therefore, each fuzzy number in the LU-representation is specified completely
by all lower and upper endpoints of the α-cuts (i.e. AL

α, A
U
α , for α ∈ [0, 1]) or by

the midpoints and spreads of all α-cuts (i.e. midAα and sprAα, for α ∈ [0, 1]).
Although membership functions of a fuzzy number may assume different

shapes, some families of fuzzy numbers play a dominant role in considerations.
In particular, the most often used are trapezoidal fuzzy numbers with the
shape functions L(x) = R(x) = max{0, 1− x}. Triangular fuzzy number are
special cases of trapezoidal fuzzy numbers with b = c. For more details on fuzzy
numbers, their types, characteristics, and approximations we refer, e.g., to [1, 5].

Some authors limit the concept of fuzzy numbers only to those with a single-
element core (i.e. satisfying b = c, by Definition 1), and call the other fuzzy
intervals.

In our contribution, we restrict our attention to continuous fuzzy numbers
having single-element cores, and, to avoid any misunderstanding, we will call
such fuzzy numbers regular fuzzy numbers. A family of all regular fuzzy
numbers will be denoted by Fr(R).

Since further on we consider fuzzy samples that are realizations of fuzzy
random variables, let us also define a random fuzzy number. Indeed, statistical
inference based on imprecise data requires a model that combines two kinds
of uncertainty present in such data: imprecision (modeled by fuzzy sets) and
randomness (expressed by probability theory). This brings us to the concept of
a fuzzy random variable, also known as a random fuzzy number introduced
by Puri and Ralescu [17].

Definition 2. Let (Ω,A, P ) be a probability space. A mapping X : Ω → F(R)
is a random fuzzy number if for all α ∈ [0, 1] the α-level function is a compact
random interval.

3 A few words on FDA

By Functional Data Analysis (FDA) we mean all theoretical methods and
practices relating to situations when the available data are not real numbers or
vectors but functions. Thus, FDA usually refers to statistical problems where
the available data consists of a sample of functions x = (x1, . . . , xn), where
xi = xi(t), for each i = 1, . . . , n, is defined on a compact interval of the real line,
e.g. on the unit interval [0, 1].

In FDA we usually assume that the sample space X is a real separable Banach
space with some norm || · ||. Therefore, our sample data are observations drawn
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from an X -valued random element X (i.e. a measurable function) defined on
some probability space (Ω,A,P). Separability ensures that a linear combination
of X -valued random elements is again a random element. However, quite often
a structure of (separable) Hilbert space, with associated inner product ⟨ , ⟩, is
needed for X .

Therefore, two standard choices for the sample space X are C[0, 1], i.e. the
Banach space of real continuous functions x : [0, 1] → R endowed with the
supremum norm || · || = supt |x(t)|, and the Hilbert space L2[0, 1] of square
integrable real functions on [0, 1] endowed with the usual inner product ⟨x, y⟩ =∫ 1

0
x(t)y(t) dt.
For more details on the FDA, we refer the reader to famous monographs [14,

18]. A brief overview of the FDA can be found in [3].
Now let’s return to fuzzy numbers and ask which of the representations pre-

sented in Section 2 better fits the FDA requirements. Seemingly, both could be
used, but as previous attempts show, it has not been possible to obtain results
that would be interesting enough. Therefore, in the next section, we will propose
yet another representation of fuzzy numbers, one that, in our opinion, fits the
needs of the FDA perfectly.

4 ICr functions

When considering what we can do to make FDA methods more applicable in
statistical inference based on fuzzy data, we found that another representation of
fuzzy numbers than the two discussed in Section 2 would be useful. When think-
ing about finding such a representation that would have properties favorable
from the FDA’s point of view, we brought to mind a certain structure proposed
by Liu [15] several years ago, called the credibility distribution.

Let A ∈ F(R) denote any fuzzy number with a membership function µ(x)
given by (1), with shape functions L and R, supp(A) = [a, d] and core(A) = [b, c].
Before defining the credibility distribution of A we have to extend the sides L
and R of A to the real domain as follows

Lext(x) =


0 if a < x,

L
(

b−x
b−a

)
if a ⩽ x < b,

1 if b ⩽ x

(2)

Rext(x) =


1 if x ⩽ c,

R
(

x−c
d−c

)
if c < x ⩽ d,

0 if d < x.

(3)

Obviously, µ(x) = Lext(x)−
[
1−Rext(x)

]
for any x ∈ R.

Definition 3. (Liu [15]) The credibility distribution of A ∈ F(R) is a func-
tion Υ : R → [0, 1] defined by

Υ (x) =
1

2

(
Lext(x) +

[
1−Rext(x)

])
, ∀x ∈ R. (4)
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Looking for a justification for Definition 3 one may notice that Liu [15] de-
fined the credibility distribution as the average of the possibility and necessity
functions (see [22]), i.e.

Υ (x) =
1

2

(
Pos(x) + Nec(x)

)
,

where

Pos(x) = sup
t⩽x

µ(t) = Lext(x),

Nec(x) = 1− sup
t>x

µ(t) = 1−Rext(x).

It is worth noting here that ten years later Stefanini and Guerra [19] con-
sidered a slightly more general construction, called λ-Average Cumulative
Function, of which the credibility distribution is a special case. Indeed, the λ-
Average Cumulative Function Ψ (λ) : R → [0, 1], where λ ∈ [0, 1], is defined as
follows

Ψ (λ)(x) = (1− λ)Lext(x) + λ
[
1−Rext(x)

]
. (5)

Hence Υ (x) = Ψ (λ)(x) if and only if λ = 1/2.
A credibility distribution, although it has some interesting properties (is non-

decreasing, takes values in the unit interval, etc.), it is still not the desired
representation we are looking for. This is mainly because, in a given sample
created by fuzzy numbers, each observation has a potentially different support.

Although we could continue our considerations at the same level of generality
adopted so far, i.e. for any fuzzy numbers, in the following we will limit ourselves
only to regular fuzzy numbers. We do so mainly to avoid some mathematical
difficulties. But it is also easily justified because these types of fuzzy numbers are
the most common in practice. Thus, for the regular fuzzy numbers the following
theorem holds (cf. [23]).

Theorem 1. A ∈ Fr(R) if and only if its credibility distribution Υ (x) is strictly
increasing on {x ∈ R : 0 < Υ (x) < 1}. Moreover, A ∈ Fr(R) if and only if it has
a unique inverse credibility distribution

υ(α) := Υ−1(α) (6)

and υ(α) is continuous and strictly increasing for α ∈ [0, 1].

Further on the inverse credibility distribution, defined by (6), will be
abbreviated as the ICr function. An example of a regular fuzzy number and
the corresponding credibility distribution is given in Figure 1.

Example 1. Consider a triangular fuzzy number A with the following mem-
bership function

µ(x) =


x−a
b−a if a < x ⩽ b,
c−x
c−b if b ⩽ x < c,

0 otherwise,

(7)
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(a) A membership function and the
corresponding credibility distribution

(b) The corresponding ICr
function

Fig. 1: The membership function of a regular fuzzy number, its credibility dis-
tribution Υ (x), and the corresponding ICr function υ(α).

where a < b < c. By (4) its credibility distribution is given by

ΥX(x) =


0 if x <⩽ a,
x−a

2(b−a) if a < x ⩽ b,
x+c−2b
2(c−b) if b < x ⩽ c,

1 if x > c,

(8)

while the ICr function of A is given as follows

υX(α) =

{
2(b− a)α+ a if 0 ⩽ α < 0.5,

2(c− b)α+ 2b− c if 0.5 ⩽ α ⩽ 1.
(9)

It seems that the transformation of fuzzy data consisting of moving from the
membership function to the ICr function brings many profits, in particular, those
that will favor the use of FDA methods for statistical reasoning based on fuzzy
data. Let us briefly list some basic advantages of the indicated representation
using the ICr functions. Firstly, there is a one-to-one relationship between both
representations of fuzzy data. Secondly, ICr functions have some analytical prop-
erties favoring the use of FDA methods, for instance, they are non-decreasing
and their common support is the unit interval [0, 1]. Moreover, the ICr functions
of the regular fuzzy numbers are continuous in [0, 1], and a value of ICr for 1/2
indicates always the mode of the corresponding membership function.

Credibility distributions and their inverses were applied in fuzzy program-
ming [23] and in system reliability analysis [21]. However, to our knowledge, no
one yet has tried to use them as a convenient device allowing us to apply FDA
methods to fuzzy data.
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5 Two-sample goodness-of-fit test based on ICr functions

To show that FDA methods can be effectively used in fuzzy settings, we propose
the construction of a two-sample goodness-of-fit test for fuzzy data, based on
ICr functions.

LetX = (X1, . . . , Xn) andY = (Y1, . . . , Ym) denote two independent random
fuzzy samples drawn from populations with unknown distributions. We want to
verify the null hypothesis that both samples are identically distributed against
the alternative that these two distributions differ significantly. Thus we consider
the following testing problem {

H0 : X
d
= Y,

H1 : ¬H0.

Let x = (x1, . . . , xn) and y = (y1, . . . , ym) denote the experimental realiza-
tions of the considered independent random fuzzy samples, where xi ∈ Fr(R),
for i = 1, . . . , n and yj ∈ Fr(R), for j = 1, . . . ,m.

In the first step, we determine the credibility distributions for each observa-
tion in both samples, and as a result we obtain Υ x =

(
Υx1

(t), . . . , Υxn
(t)

)
and

Υ y =
(
Υy1(t), . . . , Υym(t)

)
, where t ∈ R. Then we determine the ICr functions

for each observation and as a result, we obtain two sets of functions that will
be further used to perform the test, i.e. υx =

(
υx1

(α), . . . , υxn
(α)

)
and υy =(

υy1(α), . . . , υym(α)
)
, α ∈ [0, 1], where υxi(α) := Υ−1

xi
(α) and υyj (α) := Υ−1

yj
(α).

(a) (b) (c)

Fig. 2: Three datasets illustrating different arrangements of ICr functions: υx =(
υx1(α), . . . , υxn(α)

)
(solid lines) and υy =

(
υy1(α), . . . , υym(α)

)
(dashed lines).

In Figure 2 we show three datasets illustrating various experimental situa-
tions. In Fig. 2 (a) we can see two well-mixed curves suggesting that there is no
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reason for rejecting H0. The situation illustrated in Fig. 2 (b) is not conclusive at
first glance – without a test, we cannot say whether samples come from the same
distribution or not. Finally, samples in Fig. 2 (c) are so much separated that we
are inclined to conclude that the samples come from different distributions.

Once we have properly prepared the data, we can start constructing the
desired statistical test.

Given υx =
(
υx1

(α), . . . , υxn
(α)

)
and υy =

(
υy1

(α), . . . , υym
(α)

)
we consider

for each α ∈ [0, 1] the following pointwise test statistic

T (α) = T (υx,υy;α) =
|υx(α)− υy(α)|√
1
ns

2
x(α) +

1
ms2y(α)

, α ∈ [0, 1], (10)

where

υx(α) =
1

n

n∑
i=1

υxi
(α), s2x(α) =

1

n− 1

n∑
i=1

[
υxi

(α)− υx(α)
]2
,

υy(α) =
1

m

m∑
j=1

υyj
(α), s2y(α) =

1

m− 1

m∑
j=1

[
υyj

(α)− υy(α)
]2
,

(11)

while the final value of our test statistic for given samples υx and υy is deter-
mined as follows

t0 = t0(υx,υy) = sup
α∈[0,1]

T (α). (12)

To conclude whether to reject or not the null hypothesis we need either a
critical value to be compared with (12) or the p-value calculated for the obtained
value of our test statistic (12). In the proposed test, we will determine the p-
value. For this purpose, we will use an approach typical of permutation tests.

Let w := υx ⊎ υy, where ⊎ stands for vector concatenation pooling the two
samples into one, i.e.

wi = υxi
if 1 ⩽ i ⩽ n and wi = υyi−n

if n+ 1 ⩽ i ⩽ N,

where N = n+m. Let w∗ denote a permutation of the initial dataset w.
Suppose, we take first n elements of w∗ and assign them to sample υ∗

x, while
the remaining m elements create the second sample υ∗

y. Thus, it works like a
random assignment of N = n +m elements into two samples of the size n and
m, respectively.

Next, using formulas (10)–(12) we calculate the corresponding value of the
test statistic for υ∗

x =
(
υ∗
x1
, . . . , υ∗

xn

)
and υ∗

y =
(
υy1

,∗ . . . , υ∗
ym

)
, i.e.

T (α) = T (υ∗
x,υ

∗
y;α) =

|υ∗
x(α)− υ∗

y(α)|√
1
ns

2
x∗(α) + 1

ms2y∗(α)
, (13)

t∗ = sup
α∈[0,1]

T ∗(α). (14)
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By repeating the whole procedure B times we obtain from (14) test statistic
values t∗b , for b = 1, . . . , B permutations, to determine the approximate p-value

p-value =
1

B

B∑
b=1

1
(
t∗b ⩾ t0

)
, (15)

where t0 is the test statistic value (12) received for the original samples.

6 Simulation study

To examine some properties of the proposed goodness-of-fit test we conducted a
simulation study. Below we show some of its results related to situations when
both samples X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) were triangular random
fuzzy numbers. The cores of X and Y observations were generated from the
normal distribution N(ξx, σx) and N(ξy, σy), respectively, while the distances
between the core and both endpoints of the support were simulated from the
uniform distribution.

Firstly, to examine the stability of the test size (i.e. the supremum of the
probability of making a type I error) many repetitions of the test at 5% sig-
nificance level performed under H0 were considered. In each test, B = 1000
permutations were drawn and the empirical percentages of rejections under H0

were determined. The results obtained both for equal and nonequal sample sizes
showed that the size of our test is stable at the desired level.

(a) Sample sizes n = m = 10 (b) Sample sizes n = m = 20

Fig. 3: Power functions for the proposed test (solid lines) and the distance-based
test [8] (dashed lines).

Next, we conducted a power study to compare the proposed test with the
goodness-of-fit test based on the distance between sample averages obtained for
both samples [8]. Starting from the situation when both samples come from
the same distribution and then by enlarging the difference in location between
samples, we estimated the probability of rejection of the null hypothesis H0. Ex-
periments carried out for samples of different sizes showed that the proposed test
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is generally equivalent to the distance-based test (some power curves obtained
for the considered two tests are shown in Figure 3). This is a good sign for our
new test because its competitor [8] is known for its good power, which many
other studies confirm (e.g. [12, 13]).

7 Conclusions and further research

In this paper, we considered the prospects of using FDA methods for the statis-
tical analysis of fuzzy data. We believe that the proposed new representation of
fuzzy numbers, i.e. ICr functions, can significantly contribute to this goal. The
test proposed in this paper, as an example of the use of FDA methods, obviously
requires further research. But, it seems, that both it and other tools created in
the spirit of FDA will allow us to expand the horizons of reasoning based on
fuzzy data to new areas.

References

1. Ban, A.I., Coroianu, L., Grzegorzewski, P.: Fuzzy Numbers: Approximations, Rank-
ing and Applications. Polish Academy of Sciences, Warsaw (2015)

2. Blanco-Fernández, A., Casals, M., Colubi, A., Corral, N., Garćıa-Bárzana, M., Gil,
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Logic and Technology, and Aggregation Operators (EUSFLAT 2023, AGOP 2023),
Lecture Notes in Computer Science, vol. 14069, Springer, 2023, pp. 737–748.
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