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Abstract. Three-valued logics became a classical topic for logicians and
not surprisingly, they were extended to partial fuzzy logics that allow
modeling distinct types of undefined truth-values, i.e., values, that are
neither true nor false, even in the graded sense. Such logics and related
algebras may model reasoning with non-denoting terms, missing or un-
known values, and other interesting cases. However, in order to be able
to model real cases, the algebraic models need to be mirrored in applied
tools such as inference systems. Therefore, the investigation of partial
fuzzy relational equations that question the most natural property of
such systems is a straightforward step. This step has been already made,
however, satisfactory results were obtained only for the direct product
inference (compositional rule of inference). Intuitively, this was due to
the application of partial algebras that employ the so-called lower bound-
ary strategy. This article introduces upper boundary algebraic strategy
and shows, that equally satisfactory results may be obtained also for the
Bandler-Kohout subproduct.
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gebra - Partial fuzzy set theory - Inference systems - Systems of fuzzy
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1 Introduction and motivation

Three-valued logic, pioneered in the 1920s by Lukasiewicz [23], appeared as
a conceptual framework for handling statements that disobey the binary cate-
gorization of truth and false. Such statements may appear to be “inconsistent”,
“irrelevant”, ”meaningless,” or "missing”. The truth values associated with these
statements are undefined and mathematically, represented by a dummy value
conventionally symbolized as x. This x is the third value extending the tradi-
tional true (1) and false (0) which gives the name to the three-values logics.
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Over the decades, numerous logicians have delved into this subject, producing
a range of valuable results, including theoretical advancements [1,4, 9, 18,21, 30]
and practical applications [20, 31]. Several partial algebras have been created in
three-valued logics, each designed for specific purposes and perspectives, aligning
with applications or particular interpretations of x. Prominent examples include
Bochvar, Sobocinski, Kleene, Nelson, and Lukasiewicz algebras.

The generalization of three-valued logics to partial fuzzy logics and related
algebraic structures in partial fuzzy set theory has received substantial attention
[5,7,11,12,26]. Numerous partial algebras, including well-known ones, have been
generalized within this framework. The introduction of the Lower estimation
algebra [13] and Dragonfly algebra [32], designed with a lower boundary strategy,
benefit in practical classification problems such as Dragonfly and Amphibian
classification [32]. These algebras are designed to address the missing values,
guided by the lower boundary strategy. It means that the algebraic operations
attempt to yield the result (truth-value) that we may guarantee from below no
matter what would be the real truth value that would replace the missing value
represented by *.

We only briefly recall that the development of partial fuzzy algebras enabled
the exploration of topics such as compositions of partial fuzzy relations, preser-
vation of residuated lattice properties, and the study of solvability in partial
fuzzy relational equations [16,17] or contributed to the qualitative integrals [19]
and free quantification in four-valued logics [6].

From the above-mentioned applications and directions of further develop-
ment, the primary motivation for this contribution relates to the solvability of
partial fuzzy relational equations. Recent research [16] has yielded promising
results. It focused on the solvability conditions of two systems, the one with a
direct product, A;09 R = B;, and the one with a subdirect product, A; <9 R = B;,
where, 6 denotes a particular partial algebra, and antecedents A; as well as con-
sequents B; are partial fuzzy sets. The investigation revealed that the system
with the direct product oy provided desirable results especially when the Lower
estimation and Dragonfly algebras were considered. This prompts consideration
of the compatibility of these two algebras of lower boundary operations with
such a system, see also [15].

Motivated by the above-mentioned compatibility in the case of the direct
product, we develop a new set of operations to produce similarly positive results
for the system with the subdirect product < (also Bandler-Kohout subproduct).
Given the duality of both products [8], and consequently, of both systems, our
approach is based on constructing an algebra that dually employs a sort of upper
boundary strategy.

Let us note that although the whole motivation may seem to be purely math-
ematical, abstract, and theoretical, its practical impact may be huge. Note that
the fuzzy relational compositions serve as a basis for distinct applications, e.g.,
classification based on expert knowledge encoded in a fuzzy relation. This was the
very first case of the use of fuzzy relational compositions, particularly, in medical
diagnosis [2, 3] as well as more recent cases of biological species classifications
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[14, 32]. Even more often, the applications of fuzzy relational compositions ap-
pear in fuzzy inference systems, i.e., in approximate reasoning and automatic
deduction, generally speaking. In all such applications, it is often the case that
some information is missing. One can name, e.g., the case of questionnaires with
non-relevant questions for a certain subset of probands and subsequent use of
distinct “N/A” symbols.

Before approaching particular applications and data sets, firm formal grounds
have to be determined, theoretical questions have to be investigated, and crucial
properties need to be preserved. And this is also the goal of this article that
connects fuzzy relational systems and partial fuzzy set theory which is a purely
theoretical step, however, with a potentially strong practical impact.

Let us close the Introduction by providing the readers with a brief overview
of the structure of the paper. Secion 2 recalls fundamentals of the two lower
boundary strategy algebras; Section 3 introduces the dual upper boundary al-
gebraic approach; Section 4 provides the core investigation on the solvability of
partial fuzzy relational equations and finally, Section 5 closes the paper with the
discussion.

2 Lower estimation algebra and Dragonfly algebra

This section briefly recalls the Lower estimation (Le) algebra [13] and the
Dragonfly (D) algebra [32]. We fix the underlying algebra as a complete resid-
uated lattice ([0,1],A,V,®,—,0,1). Furthermore, let [0,1]* = [0,1] U {x} be
the set of the truth-values extended by dummy value . All the binary opera-
tions ®g, Ag, Vg, —¢ where 6 € {Le, D} operate on [0, 1]* and their definition is
provided in Table 1.

Table 1. Truth table of Lower estimation and Dragonfly operations, 6 € {Le,D}.

(®6,M0)|Vo|—=D|—Le
a€0,1] be[0,1]| (®A) |V|—=| —
a € (0,1) * * al| x| *

* be(0,1) * bl b b
* * * x| 1 *
* 1 * 1] 1 1
1 * * 1] % *
* 0 0 *x | * 0
0 * 0 * | 1 1

The Lower estimation and the Dragonfly algebras were designed in accor-
dance with the lower boundary approach. This can be seen in the combinations
of a value a € (0,1) and the missing value % as follows. We observe that the
disjunction of a and * always results in a value higher than or equal to a, re-
gardless of the truth value replaced for % in the unit interval [0, 1]. Therefore, the



4 N. Cao and M. Stépnicka

result of a Vg «, for 6§ € {Le, D}, is estimated from below by a. Conversely, the
conjunctive operations a ®y b and a Ag b result in *. This is due to the unknown
lower bound of the conjunction of these values, which can be as low as 0 when
* is lowered down to 0.

The implication operations —1,., —p coincide in most positions. For example,
* =g a=a,fora€ (0,1) and § € {Le, D}. This result arises from the residuated
lattice property a — b > b and aligns with the lower boundary approach. Indeed,
we have to assume that the unknown (unobserved) *x may be replaced by 1 (later
on after being observed) and then, we would get 1 — a = a and so, a is the lowest
value we can guarantee independently on the choice of a value that would replace
*. On the other hand, we have a —¢p x =  for § € {Le,D} as the guaranteed
value is unknown which is represented by x. Note, that the implications —,
and —p differ at the positions where x implies x and * implies 0. Specifically,
* —Le* = % mimics the behavior of the operations from the Kleene algebra,
while x -p x = 1 to maintain the well-known residuated lattice property that
a — b =1 if and only if ¢ < b. For the other position, it is sufficient to note
that * =10 = 0 and x—p 0 = x. Although they differ, both approaches are
reasonable in design and effective in practical applications.

We recall two orderings used in the Lower estimation and Dragonfly algebras.
The first one is identical to the Kleene ordering <, i.e., it positions x between 0
and 1 (0 < x < 1) however, x is incomparable to any other truth value a € (0, 1).
The second one is the lattice-like ordering <, derived from the “meet” and
“join” operations (Ag, Vg). In particular, a <, b if and only if a Ap b = a (and
also a Vg b = b). According to <y, % is comparable to any value from the unit
interval [0, 1], in particular, we get the chain ordering 0 <, * <y a for any a > 0.

3 Upper boundary algebra

3.1 Formation

The lower boundary strategies turned out to be useful in the investigations
of the solvability of partial fuzzy relational equations with the direct product.
However, in combination with the Bandler-Kohout subproduct, this approach
did not perform any advantage compared to other partial algebras. This is not
surprising if we take into account the duality of the direct product and the
Bandler-Kohout subproduct. This duality foreshadows the promising approach
that should stem from the formation of another partial algebra that represents
the dual strategy to the lower boundary one. This algebra will be called Upper
boundary algebra and denoted by “Ub”.

Definition 1 Let {[0,1],A,V,®,—,0,1) be a residuated lattice. The structure
([0,1]*, Aub, Vub, ®Ub, —Ub, 0, 1) is called Upper boundary algebra if the oper-
ations @ub, Aub, Vub, —ub : [0,1]* x [0,1]* — [0,1]* are given by Table 2:

Analogously to the case of the Lower estimation and Dragonfly algebras, the
structure of the Upper boundary algebra leads to two orderings. The first one
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Table 2. Upper boundary algebra operations.

(®ub, Aub) |Vub|—Ub
a€cl0,1] be[0,1]| (®,A) V| =
a€(0,1) * a x| 1

* be (0,1) b * b
* * * * 1
* 1 * 1 1
1 * * 1 *
* 0 0 * 0
0 * 0 * 1

denoted by < is inherited from the Kleene algebra and it reflects the position
0 < % < 1 however, * is incomparable to any a € (0,1). The second ordering is
the lattice-like ordering <, that is equally constructed as in both lower boundary
algebras and thus, it is reasonable to use the same denotation. For the sake of
completeness, let us recall the formal definition. For any a,b € [0,1]*, we write
that

a<,b if aAypb=a and aVuy,b=0». (1)

It can be easily verified that <, is a partial order relation. Moreover, let us
mention that the equality a = b for a,b € [0,1]* can be deduced either through
a <band b < a or through a <;b and b <;a. Additionally, <, organizes the
elements in [0, 1]* such that a <, * <;1 for any a < 1.

3.2 Properties

This section provides readers with several fundamental yet useful properties
that will be used in the latter. They are well-known in residuated lattices how-
ever, their preservation for the Upper boundary algebra needs to be confirmed.

Proposition 1 For any a,b,c € [0, 1]*:

alNupbb<sa (2)
a<paVypb (3)
b<¢a—up(a®@uyb) (4)
a<pb, a<sc = a<pbAypec. (5)

Proof: Consider (2) and let a =+ Ifb=1, aAvpbb=x=a. Ifb# 1, aAypb=
b<yx. Let b = x and a # . Then, it holds for a = 1 that a Ayp b = * <y a. For
a#1, we get a Aupb = a.

Consider (3) and let @ = . If b = 1 then aVypb = 1 and the inequality
*<y1 holds. If b # 1, a Vyp b = x = a and the inequality is preserved too. Now,
consider b = . If a = 1 then aVyp,b =1 =a. If a # 1 then aVypb = x and
thus, a </ *.
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Consider (4) and let a = . If b € {x,1}, the right-hand side of the property
equals * = yp(* @up b) = *—>up* = 1. If b ¢ {%,1}, the right-hand side of the
property is x =yp(*@up b) = * —>up b = b. Now, let b = x. If a = 1, the right-
hand side of the property is 1 -y (1 Qup*) = 1 =y * = *. If a € [0, 1) then we
obtain a —yp(a ®up *) = a—ypa = 1 and thus, b <, 1 is trivially preserved.

Consider (5) and let ¢ = . Then b,c € {%,1} and thus, bAy,c € {*,1}.
Hence, x <;bAup c holds. The case a € {0,1} is trivial, so we focus on a ¢
{0,%x,1}. If b = %, ¢ = 1 then bAypc = +. Thus, a <,b =% =bAypec. If b =«
and ¢ # 1, bAyp ¢ = ¢. As a <ye¢, the property holds. O

4 Partial fuzzy relational equations — the case of Upper
boundary algebra

This section addresses the sufficient solvability for a system of partial fuzzy
relational equations with operations from the Upper boundary algebra. As we
have mentioned above, the system with direct product oy was sufficiently solved
with help of the lower boundary strategies while the case of the system with
the subdirect product <lg was not. Therefore, the Upper boundary algebra was
designed with the clear goal to be employed in the case of the system with the
Bandler-Kohout subproduct <1y and therefore, it is the only system that makes
sense to be investigated.

Throughout the section, we use F(U) and F*(U) to denote the sets of all
fuzzy sets and the set of all partial fuzzy sets on a given universe U, respectively.

4.1 Fuzzy relational equations with the subdirect product

First, let us recall some essential facts about the standard (non-partial) sys-
tems of fuzzy relational equations with the subdirect product that will be helpful
for the subsequent analysis. The considered system of fuzzy relational equations
is given generally in the following form:

A;<R=D8;, i=1,....m (6)

where A; € F(X), B; € F(Y) are known, and fuzzy relation R € F(X x Y)
is unknown. The expanded form of the composition A <1 R using the Bandler-
Kohout subproduct < is expressed as follows:

(A<aR)(y) = /\ (Alz) = R(z.y)) - (7)

zeX

The interpretation of the system described in (6) is notoriously known how-
ever, for the sake of completeness, we feel the duty to recall it. The fuzzy sets
A; and B; are the given antecedent and consequent fuzzy sets related to a given
fuzzy rule base encoding knowledge about certain dependence between inputs
x € X and outputs y € Y of the modeled system. We seek fuzzy relation R that
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solves system (6), i.e., a fuzzy relation that if being substituted into the system,
the equality remains preserved. As composition is a mathematical model of a
fuzzy inference [27,33], and (7) expresses the formula that determines the out-
put of a fuzzy inference system based on the processed input (observation) given
by A, system of equations (6) has a clear interpretation — the preservation of the
modus ponens. Indeed, given the antecedents A; and consequents B;, we ask,
whether if the input fuzzy set A coincides with any of the antecedents A;, the
output inferred by the fuzzy inference coincides with the respective consequent
B;, if the fuzzy rule base is represented by the fuzzy relation R.

Not all systems are solvable. If a system is not solvable, there does not exist
any model of a fuzzy rule base with the given antecedents and consequents that
would preserve the modus ponens property. If the system is solvable, we ask for
the shape of R which is the solution.

The solvability can be easily ensured in advance if we impose the so-called
finitary condition.

Definition 2 [28] Let I = {1,...,m}. We say that fuzzy sets A;, for i € I
fulfill the finitary condition if there exists an x; € X such that A;(xz;) = 1 and
Aj(x;) =0, for any i,j € I such that i # j.

Now, we recall a slightly reformulated theorem published in [28] about en-
suring the solvability and about the shape of the solution.

Proposition 2 Let A; fulfill the finitary condition. Then system (6) is solvable
and the following Mamdani-Assilian model R is its solution:

R(z,y) = \/ (Ai(2) ® Bi(y)). (8)

=1

Let us note that the shape of the solution is not dependent on the imposed
finitary condition but generally, it holds that if system (6) is solvable then R
is its solution, which determines the Mamdani-Assilian model as the primary
choice whenever we deal with the inference given by <.

4.2 Solvability of partial system with the subdirect product

This section considers the system A; <yp R = B; where antecedents, con-
sequents, and consequently even the solution are partial fuzzy sets, i.e., A; €
F*(X), Bie F*(Y),and R € F*(X xY).

We define the partial fuzzy relation Ryp € F*(X x Y) that relates to the
considered system in order to extend the standard Mamdani-Assilian model R
for the considered underlying Upper boundary algebra:

Rup(a,y) = \/Ub (Ai(z) ®ub Bi(y)) - 9)
i=1

Furthermore, we recall the notoriously known notion of the core of a fuzzy
set that, however, can be defined also for partial fuzzy sets.
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Definition 3 [16] Let A € F*(X). Core(A) is given by
Core(A) = {u | A(u) = 1}.
Moreover, we say that A is subnormal if Core(A) = 0.

Proposition 3 For anyi € {1,...,m} and for any y ¢ Core(B;), the following
inequality holds

(Ai <ub Rub)(y) >¢ Bi(y) - (10)

Proof: Let us fix particular ¢ and let us denote A} = {z | A;(z) = 0}, and
Ay = {z | Ai(z) = *}. We put (A; <up Rup)(y) = Pi(y) Aub P2(y) Aub Ps(y)
where

Pi(y) = /\Ub(o —ub Rus(z,9))
z€AY

Py(y) = /\Ub(* —ub Rub(2,9))
TEAY

Ps(y) = /\Ub(Ai(fL’) —up Run(z,y)) -
cg A0 A¥

Consider P;. It holds naturally that 0 —yy, RUb(a:, y) =1>¢ B;i(y).

Consider Py. If Ryp,(z,y) = 0 then necessarily A4;(z) @up, Bi(y) = * @up Bi(y)
has to be 0 as well. Thus, also B;(y) = 0. By this fact, x —up, Run(,y) > Bi(y)
holds. Consider Ruy(w,y) € {*x,1}. Then it is clear that x —up, Rup(z,y) =
1>¢ B;(y). Let finally Rub(l“, y) ¢ {0,%,1}. Then due to the validity of property
(3) we set As(x) @uy, Bi(y) # x and thus, By(y) ¢ {x, 1}. Hence, x —up Ruy (2, ) =
Rup(2,y) > Ai(z) ®@up Bi(y) = Bi(y).

Consider Ps. If Rup(z,y) = 0 then A;(x)®up Bi(y) = 0. Since A;(x) ¢
{0,x} we get B;(y) # . Thus, A;(x),B;(y) € [0,1] which leads to A4;(x) —
(4i(x) ® B,(y) > Bi(y). Hence, Ay(z) —up Runl(.y) = Aila) sup(Ai(z) @
Bi(y)) 2¢ Bi(y)- .

Consider Ryp(x,y) = 1. Then trivially A;(z) —ub Rub(z,y) = 1>, B;(y).

Consider Ryyp(z,y) = % and let A;(xz) = 1. Due to the fact y ¢ Core(B;),
1—=uyp* = x>0 B;(y). Let A;(x) # 1. Then we have A;(z) —ub* = 1 >4 Bi(y).

Finally, consider Ry (z,y) ¢ {0,%,1}. Then A;(z)®up Bi(y) # % This
implies A;(z) —up Rup (2, y) >¢ Ai(x) = up(Ai(x) @up Bi(y)) and with help of
property (4), we obtain A;(z) —un(Ai(2) ®@ub Bi(y)) 2¢ Bi(y)-

Finally, we can conclude the proof using (5). O

Let us try to focus on the opposite inequality. Here, the imposed finitary
condition will be helpful.

Proposition 4 Let A; fulfill the finitary condition. Then for any i € {1,...,m}
and for any y € Y, the following inequality holds

(A; <Qub Ruv) (y) <e Bily) -
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Proof: Let z; € X be the point such that A;(z;) = 1 and A;(z;) = 0 for any
i # j. Using (2),

(A; <tup Rup) (y) = /\Ub
zeX

(Ai(z) =ub Rub(2,y)) <e Ai(z:) —ub Run (24, )

= Ai(wi) =ub | (Ai(zi) ®ub Bi(y) Vuw \/ |, (Aj() ©ub B; (1))

=1-=ub((1®up Bi(y)) Vub 0) = B;(y).

Propositions 3-4 imply the following Corollaries.

Corollary 1 Let A; fulfill the finitary condition. Then for any y ¢ Core(B;),
the following holds

(AiquRUb)(y):Bi(y) , 1=1,...,m.

Corollary 2 Let A; fulfill the finitary condition. Furthermore, let Core(B;) = 0.
Then §
AiQUbRUb:Bi; i=1,....m.

5 Discussion

Corollary 1 establishes the sought equality up to the single exception that is
the set of points that belong to the set of core points of the particular conse-
quents. Though this is not the “perfect result”, it is not surprising. Indeed, the
solution obtained for the lower boundary algebras and the oy inference was also
obtained with such an exception. It only restricted the validity of the equality
to the values y that did not belong to the set out of the support of the conse-
quents. And as this case mimicks the duality in both, in the system of partial
fuzzy relational equations as well as in the partial algebraic strategies, we could
expect such a restriction.

Analogously, as the lower boundary algebra strategies with oy led to the
solvability for the case of the consequents B; with unlimited supports, Corollary
2 establishes the solvability for the case of subnormal consequents B;. In both
cases, the finitary condition plays an essential role.

One may view the result rather skeptically as subnormal fuzzy sets are not
that often used. We may easily oppose such a skepticism. Indeed, there are sys-
tems with subnormal fuzzy systems [35]. Such fuzzy sets are frequently studied
and play a significant role in the development of distinct theories, such as the
inverse problem of data-driven fuzzy modeling [29], the generalization of the cal-
culation formula of possibilistic mean [24], and the five-way approximate decision
theory of fuzzy sets [35]. Moreover, the restriction is purely technical. The fuzzy
sets employed in the fuzzy systems applied in practice are never continuous, they
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are discretized. So, it is as easy as to lower the core values from 1, e.g., to 0.999
in order to overcome the technical obstacle and the usual “convex” shape will
not be destroyed.

So, the solution is at our disposal. How should we read the results in the
context of the previous results published in [16]? Up to our best knowledge and
experience, the choice of the bricks used to build the fuzzy inference systems
never starts from the inference mechanism. Vice-versa, it is the fuzzy rule base
and its model. Indeed, we should be sure whether we use the implicative (also
gradual) model [10,22] or the Mamdani-Assilian [25] first. And then, in the
second step, we should pick the inference that is predetermined [34] for the given
fuzzy rule base model. And so, this approach should not be judged to be better or
worse than the one presented in [16] for the oy and the lower boundary algebras.
It should be viewed as a complementary result that gives us the possibility to
deal with the Mamdani-Assilian model (jointly with <yp) while so far, we had
the possibility to deal only with the implicative model (jointly with op or ore).
And conclusion carries the main message of the investigation.
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