
Interval Criterion-Based Evidential Set-Valued
Classification

Abdelhak Imoussaten1[0000−0002−1292−2681] and Jacky
Montmain1[0000−0003−0918−5788]

EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Ales, France
{abdelhak.imoussaten,jacky.montmain}@mines-ales.fr

Abstract. This paper deals with set-valued classification methods. The
aim of these methods is to provide a subset of classes as a prediction that
is cautious but not too large. The well known Strong Dominance based
set-valued classification algorithm (SD) is a good candidate as a robust
method but sometimes the predicted subsets are too large. This paper
proposes a flexible method that is a trade-off between SD based method
and a point classification method. Indeed, the proposed set-valued clas-
sifier within the framework of belief functions, called IC, controls the
granularity of the partial order by predicting a compromise between the
cautiousness offered by the SD and the precision offered by point pre-
diction classifiers. It is based on a interval criterion that is built from
the pignistic criterion to which is associated a threshold. The introduced
threshold aims to incorporate the decision-maker preference regarding
the data imperfections. The paper shows the management of the inter-
val comparisons and the intransitive binary relations resulting from the
introduction of the threshold using graph theory and decision theory.
The outputs of the IC are theoretically studied and compared to the
prediction of SD and the pignistic criterion. Therefore, its performances
regarding five set-valued classification performances measures are com-
pared using fashion mnist image data. Experimental results show that
IC gives good performances following trade-off measures.

Keywords: Set-valued classification · Interval Criterion · Belief Func-
tions Theory.

1 Introduction

Set-valued prediction methods, also called imprecise or non-deterministic pre-
diction methods, refers to the classification methods that return a subset of
classes/interval instead of betting on a single class/value in presence of uncer-
tainty and/or imprecision. These methods are necessary when a classification
task is involved in applications that are sensitive and where each error has se-
rious consequences, as in medical diagnosis applications; or in autonomous car
applications; or in environmental compliance [9], etc. The challenge of these
methods is to return a subset of classes that contains the true class while re-
maining as small as possible. For this aim, uncertainty and imprecision should
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be quantified in the trained model and in the object to classify. Recently sev-
eral propositions were made within different uncertainty framework. Within the
framework of probability theory, one can cite the non-deterministic classifier
(ndc) [4] or by using statistical hypothesis testing to provide confidence regions
as conformal prediction [15], within the framework of imprecise probabilities,
one can find the classifiers Naive Credal Classifier (ncc) [18], the credal deci-
sion trees (CDT) [2] and (ICDT) [1]. Within the framework of belief function
it exists two main categories which are weak order and partial preorder based
approaches where criteria like the generalized maximin criterion and generalized
maximax criterion are used in the first approach and criterion like strong dom-
inance is used in the second approach [5] [14] [11] [7]. In this paper we focus,
within the framework of belief function, on set-valued classifiers that provide a
prediction for a sample x based on the mass function, denoted mx, quantifying
the chances of each subset, from the set of classes, to contain the true class of
x. More precisely, we are interested on the strong dominance based classifier
(SD) which gives very good performances concerning the cautiousness measure.
The idea of using SD binary relation is justified by the fact that we suspect
imprecision and/or uncertainty in the data and we seek for a prediction that
is robust enough. However, this robustness is at the expense of the precision,
i.e., the size of the predicted subsets are, some times, too large and needs to be
improved. The proposition of this paper, based on interval criterion around the
pignistic criterion, aims to consider an extension of the SD binary relation that
is more flexible and allow to control the granularity of the non-dominated classes
returned by the SD based classifier. As the set-valued classification corresponds
to the problem of selecting a subset from a large set of classes, this problem is
widely studied in graph theory and decision theory [6] as the selection problem,
we relied on these areas to make our propositions.

2 Theoretical Background

2.1 Selection Problem

2.1.1 Acts and binary relations In the context of uncertainty, the alterna-
tives from which the decision-maker has to select the one (or ones) that satisfies
his preferences are formalized by acts. An act f is an application that associates
for each relevant event a consequence. Formally, let us consider a reference set
Θ representing all the states of the world and a set of consequences C.

Definition 1. Let V be a finite set of acts. A binary relation R on the set V
is a subset of the Cartesian product V × V, that is, a set of ordered pairs (a, b)
such that a, b ∈ V.

The binary relation R is called: reflexive if ∀a ∈ V, aRa ; complete if ∀a, b ∈ V,
a 6= b, (aRb or bRa); antisymmetric if ∀a, b ∈ V, if aRb and bRa then a = b;
transitive if ∀a, b, c ∈ V, aRb and bRc then aRc; Ferrers if ∀a, b, c ∈ V, (aRb
and cRd) then (aRd or cRb).
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Definition 2. A pair of binary relations (I, P ) over V is said to be a total
preorder (also called weak order) if the binary relation S = I ∪P is reflexive,
complete and transitive.

In some situations, the presence of imprecision and uncertainty could lead the
decision-maker to have imprecise preference or hesitation between two acts and
therefore other concepts as interval criterion, pre-criterion and pseudo-criterion
are more relevant [6]. Consequently, the incomparabilities could exist when com-
paring act [13] as the the binary relation is not complete. The decision-maker
must then content himself with a selection of a subset of acts which contains the
best solutions (partial order).

Definition 3. A pair of binary relations (I, P ) over V is said to be a partial
order if the binary relation S = I∪P is reflexive, transitive, antisymmetric and
not complete.

When modelling preferences, P corresponds to the binary relation representing
”strict preference” and I to the binary relation representing ”indifference” and
they have to be transitive in order to correspond to a weak order or partial
preorder. But to cover a large real-world situations, transitivity is not always
required for the binary relation I [13]. This remark is at the origin of introducing
the following interval order.

Definition 4. A pair of binary relations (I, P ) over V is said to be an interval
order if the binary relation S = I ∪ P is reflexive, complete and Ferrers.

The order defined in Definition 4 admits that the corresponding symmetric
binary relation I is intransitive because of the introduction of thresholds on the
decision criteria. The problem that arises then is how to determine the subset
of the ”best” acts when such binary relations are considered? The answer to
this question is to determine the kernel of the directed graph that represents the
binary relation S [12].

2.1.2 The kernel of a directed graph Let us consider a finite set of acts V
and a binary relation S over V. The graph associated to S is the directed graph,
also called digraph, G = (V, S) where the vertices, also called nodes, are the
acts of V and the edges, also called directed edges, directed links, directed lines,
arrows or arcs, are the elements of S. Note that the trivial elements (a, a) ∈ S,
a ∈ V, are not considered when defining G. Before going any further, we will give
a few reminders of some basic elements of graph theory that concern directed
graphs.

Definition 5. Let us consider a directed graph G = (V, S).

– A path in G is a succession of arcs that allows to move from one vertex to
another. G is strongly connected if there is a path from a toward b and
from b toward a for every (a, b) ∈ S.
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– In G that may not itself be strongly connected, a pair of vertices a and b are
said to be strongly connected to each other if there is a path in each
direction between them. A strongly connected component (scc) of G is
a subgraph that is strongly connected, and is maximal with this property: no
additional edges or vertices from G can be included in the subgraph without
breaking its property of being strongly connected.

– The collection of strongly connected components forms a partition of the set
of vertices of G. A scc C is called trivial when C consists of a single vertex.

– G is acyclic if and only if all its scc are trivial.

– A reduced graph Gr = (Cr, Sr) of G = (V, S) is defined as follows:

• Cr = {C1, . . . , Cp} where Ci, i = 1, . . . , p, are the scc of G,

• Sr = {(Ci, Cj) / i 6= j, ∃a ∈ Ci and b ∈ Cj : (a, b) ∈ S}.
The directed graph Gr = (Vr, Sr) is then acyclic, i.e., is formed by contract-
ing each strongly connected component of G into a single vertex.

Note that it is possible to test the strong connectivity of a graph, or to find its
strongly connected components, in linear time, i.e., O(|V|+ |S|)).

Definition 6. Let us consider a directed graph G = (V, S). A kernel of G is a
subset N ⊆ V such that:

1. N is absorbing: every vertex b /∈ N has a predecessor in N , i.e., ∀b /∈ N ,
∃a ∈ N such that aSb.

2. N is stable: N contains no pair of adjacent vertices, i.e., ∀a, b ∈ N , a 6= b,
neither aSb, nor bSa.

Note that a directed graph can have one or more kernels depending if it is acyclic
or not but an acyclic directed graph has a unique kernel. So, in this case using
a breadth-first type search, determining the kernel, as defined in Definition 6,
requires a runtime of at worst O(|V| + |S|). While in the case where the graph
is not acyclic, we have to determine the kernel Nr of the reduced graph Gr and
if some elements of Nr belong to a non-trivial scc C, then each combination of
one element from C with the others elements of Nr \ C forms a kernel.

2.2 Belief Functions

Belief functions theory, is an interesting framework to represent and process
uncertain and imprecise information. Three main set functions are involved in
the belief functions framework. The mass function which assigns probabilities
to imprecise information, leading to the distinction between equiprobability and
imprecision or ignorance.

Definition 7. The mass function, also called basic belief assignment (bba)
over a finite frame of discernment Θ = {θ1, . . . , θn}, is a set function m : 2Θ →
[0, 1] such that m(∅) = 0 and

∑
A⊆Θ

m(A) = 1.
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The elements A ⊆ Θ such that m(A) > 0, are called focal elements and they
form a subset of 2Θ denoted F. The pair (m,F) is called the body of evidence.
The two other set functions, i.e., belief function and plausibility function, serve
to make inference from the mass function m.

Definition 8. The belief function quantifies the evidence proving an event,
Bel : 2Θ → [0, 1], satisfying for all A ⊆ Θ, Bel(A) =

∑
B⊆Θ,B⊆A

m(B).

Definition 9. The plausibility function quantifies the evidence that makes an
event possible, Pl : 2Θ → [0, 1], satisfying for all A ⊆ Θ, Pl(A) =

∑
B⊆Θ,B∩A6=∅

m(B).

The above-defined set functions constitute the credal level where beliefs are cap-
tured and quantified. A second level considered in the belief functions framework
is the pignistic level or decision level where beliefs are quantified using proba-
bility distributions. In this second level a probability mass function is defined to
make decision (or to bet).

Definition 10. The pignistic probability, denoted betPm, is a probability mass

function defined as follows: ∀θ ∈ Θ, betPm(θ) =
∑

A⊆Θ,A3θ

m(A)
|A| , where |A| de-

notes the number of elements in the subset A.

The expected utility based on the pignistic probability and a utility function u,
gives the pignistic criterion (PC) EbetPu as follows:

EbetPu(θ) =
∑
θ′∈Θ

betP (θ′) u(θ, θ′), (1)

2.3 Selection Problem Within Belief Functions Framework

Let us consider a finite set of acts V, a finite set of classes Θ = {θ1, . . . , θn} and
a utility matrix u, where for a ∈ V and θ ∈ Θ, u(a, θ) ∈ [0, 1] represents the
utility associated to the consequence of choosing the act a if state θ occurs. Let
us also consider a sample x and a mass function m : 2Θ → [0, 1] quantifying the
chances for each non-empty subset of Θ to contain the true class of x. Several
decision rules were proposed in the literature to decide which act to choose based
on m and u. Two main approaches to select the set-valued prediction for x are
to be distinguished. The first one consists in constructing a partial preorder over
acts corresponding to elements of Θ while for the second approach the aim is to
construct a weak order over acts corresponding to the non-empty subsets of Θ.

2.3.1 Weak-Order Based Approach In this approach, the n × n utility
matrix needs to be extended to a 2n−1×n matrix in order to take into account
the utilities u(A, θ) of predicting a non-empty subset of Θ when the true class
of x is θ ∈ Θ. A first proposition is the one of the ndc classifier [4] within the
Bayesian framework where the utilities u(A, θ) are computed as an extension of
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the Fβ scores. Then two other propositions of extending u are proposed. The
first one in [11] where the authors propose to generalize several classical criteria
by extending u to a 2n − 1 × n matrix ũ using the OWA operator [17]. The
second proposition consists in a generalisation of ndc classifier to the case where
the available information concerning the true class is considered imprecise, the
eclair GFβ set-valued classifier [7] [9] uses the extended 2n − 1× 2n − 1 utility
matrix based on a generalization of Fβ scores.

2.3.2 Partial Preorder Based Approach In this approach, SD [14] is the
most known set-valued classifier. It is based on the generalized maximin cri-
terion (maximin): Eu∗(θ) =

∑
B⊆Θ

m(B) min
θ∈B

u(θ, θ′), and generalized maximax

criterion (maximax ): Eu∗(θ) =
∑
B⊆Θ

m(B) max
θ∈B

u(θ, θ′), and its corresponding

binary relation is a partial preorder. More precisely, let us consider a n×n utility
matrix u and two classes θ and θ′, the binary relation denoted %SD representing
strong dominance is defined as follow:

θ %SD θ′ ⇔ Eu∗({θ}) > Eu∗({θ′}). (2)

The subset of non-dominated classes in the sense of %SD is denoted NSD.

3 Interval-Criterion Based Set-valued Classification

3.1 Pignistic Interval-Criterion

Let us consider a set of finite classes Θ, it is also considered as the set of acts,
and a mass function m defined over Θ. To compare the classes in Θ, one can use
the pignistic criterion and therefore the comparisons lead to a weak order over
the classes. However, pigm is an approximation of the unknown probability mass
function Pr representing the uncertainty about the classes and for each event
A ⊆ Θ, Pr(A) ∈ [Belm(A), P lm(A)]. In order to take into account this impreci-
sion an interval-criterion is better suited to compare the classes. Indeed, through
the concept of interval-criterion one can introduce an indifference threshold rep-
resenting the biggest gap pigm(θ′) − pigm(θ) compatible with an indifference
situation between θ′ and θ. This threshold is usually used in decision theory and
allows modelling the decision-maker preferences in the situations where data are
subject to imprecision and uncertainties [13]. Thus, we can define the following
interval-order by the pair (Ipig, Ppig) related to the pignistic interval-criterion as
follows.

Definition 11. The indifference Ipig and the strict preference Ppig binary rela-
tions are defined as follows:θIpigθ

′ ⇔

{
pigm(θ)− pigm(θ′) ≤ q(pigm(θ′)) and

pigm(θ′)− pigm(θ) ≤ q(pigm(θ))

θPpigθ
′ ⇔ pigm(θ)− pigm(θ′) > q(pigm(θ′)).

(3)
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where the threshold function q is such that q(pigm(θ)) ≥ 0, ∀θ ∈ Θ. Note that
the threshold function q depends on pigm(θ) in the sense that when comparing
act θ to the act θ′, one has to take into account the imprecision about pigm(θ′)
and vice versa.

3.2 Pignistic-Plausibility Interval-Criterion (2pic)

In order to make the choice of a robust method regarding this criterion, one
can choose the threshold function q that ensure a strict preference for θ against
θ′ when pigm(θ) is greater than the total belief that can make θ′ possible, i.e.,
Plm({θ}). Such a proposition can be reached by considering the threshold func-
tion q(θ) = Plm({θ}) − pigm(θ). This leads to the following specific pignistic
interval-criterion that is called here pignistic plausibility interval criterion (2pic):{

θ I2pic θ
′ ⇔ pigm(θ) ≤ Plm({θ′}) and pigm(θ′) ≤ Plm({θ})

θ P2pic θ
′ ⇔ pigm(θ) > Plm({θ′}).

(4)

Proposition 1. Let us consider the binary relation S2pic = I2pic ∪ P2pic where
I2pic and P2pic are defined as in the Equation (4). Then the following property
related to the directed graph G = (Θ,S2pic) is verified:

G is acyclic iff I2pic = {(θ, θ), θ ∈ Θ}.

Proof. Let us consider that G is acyclic. If I2pic 6= {(θ, θ), θ ∈ Θ} then it exists
two different vertices a, b ∈ Θ such that (a, b) ∈ I2pic. It comes that exists a
non-trivial scc containing at least a and b. Contradiction ! Conversely, let us
consider that I2pic = {(θ, θ), θ ∈ Θ}. Suppose that it exists a non-trivial scc
C in G. Then it exists two different vertices a and b of G that are in C. As,
I2pic = {(θ, θ), θ ∈ Θ}, the only two possible situations are 1) it exists c ∈ C,
such that (a, b) ∈ P2pic, (b, c) ∈ P2pic and (c, a) ∈ P2pic or 2) it exists c′ ∈ C,
such that (b, a) ∈ P2pic, (a, c′) ∈ P2pic and (c′, b) ∈ P2pic. But P2pic is transitive,
thus in the two situations we obtain pigm(a) > Plm(b) and pigm(b) > Plm(a).
Contradiction !

Proposition 2. Let us consider the binary relation S2pic = I2pic ∪ P2pic where
I2pic and P2pic are defined as in the Equation (4). Then the following property
related to the directed graph G = (Θ,S2pic) is verified:

if G contains non-trivial scc then the binary relation Sr = Ir ∪ Pr associated to
its reduced graph Gr = (Cr, Sr) (see Definition 5) is such that

Ir = {(Ci, Ci) / Ci is a scc of G}.

Proof. As the reduced graph Gr = (Cr, Sr) of G is acyclic, it is obvious from
the proposition 1 that Ir = {(Ci, Ci) / Ci is a scc of G}.

Proposition 3. Let us consider the binary relation S2pic = I2pic ∪ P2pic where
I2pic and P2pic are defined as in the Equation (4). Then the following property
related to the directed graph G = (Θ,S2pic) is verified:
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The binary relation S2pic in the case of acyclic direct graph and the binary
relation Sr = Ir ∪ Pr associated to its reduced graph Gr = (Cr, Sr) in the case

of a direct graph with non-trivial scc, are total orders.

Proof. Let us consider the case when G is acyclic. Based on the proposition
1, we deduce that S2pic is reflexive. S2pic is as well transitive, since S2pic =
P2pic ∪ {(θ, θ), θ ∈ Θ}. Moreover, S2pic is complete. Indeed, let us consider two
different vertices a and b in Θ. Since (a, b) /∈ I2pic then either pigm(a) > Plm(b),
i.e., a P2pic b, or pigm(b) > Plm(a) , i.e., b P2pic a. Finally, S2pic is a total order.
The prove still the same for the reduced directed graph in case of non-trivial scc
in G.

From the Propositions 1, 2 and 3, it is obvious that if G is acyclic then the kernel
of G contains exactly one vertex and if G contains non-trivial scc then the kernel
of the reduced directed graph Gr contains exactly one scc C. Therefore, Each
vertex of C is a kernel of G. Consequently, if G is acyclic then we can take the
single class of the kernel as the output of the 2pic classifier. While in the case
of the existence of non-trivial scc, if the scc containing the kernels has more
than a single class, we need to decide what is the output of the 2pic classifier.
In Definition 12, we suggest to select the classes of the whole scc except classes
that are strictly preferred by another class in this scc.

Definition 12. Let us consider the binary relation S2pic = I2pic ∪ P2pic where
I2pic and P2pic are defined as in the Equation 4. The resulting directed graph is
denoted G = (Θ,S2pic).

– if G is acyclic then the selected class is the one in the kernel of G.
– if G contains non-trivial scc, let us denote scck ⊆ Θ the scc containing

the kernels of G. Let us also denote by Sscck2pic (resp. Iscck2pic and P scck2pic ) the
restriction of S2pic (resp. I2pic and P2pic) to scck× scck. Then the subset of
selected classes, denoted N2pic, is
• N2pic = scck if P scck2pic = ∅,
• otherwise, N2pic = scck \ {a ∈ scck : ∃b ∈ scck, (b, a) ∈ P scck2pic }.

In the case of machine learning supervised classification, the selected subset N2pic

is called 2pic set-valued classification.

Example 1. Let us consider the body of evidence (m3,F3) associated to the
fashion image of a Shirt that is presented in the example of Figure 2 and Table
1. Figure 1 shows the associated directed graph based on the binary relation S2pic

associated to the body of evidence (m3,F3). For this example, G = (Θ,S2pic)
contains non-trivial scc and N2pic = {Dress, Shirt}.

3.3 Theoretical Results

Let us consider a finite set of classes Θ, and a mass function m defined over Θ.
Let us denote by NPC the subset of the best ranked classes with the pignistic
criterion. Note that, NPC has more than one element only in the case where two
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Fig. 1. The directed graph of S2pic associated to m3.

different classes have the same expected values regarding the pignistic criterion.
The classifier based on the interval-criterion (2pic) has advantages and disad-
vantages compared to the strong dominance (SD) based one. Indeed, one has to
manage cycles in the directed graph due to the intransitivity of I2pic. Note that
the combinatorial complexity of the algorithm leading to determine the kernels
for S2pic is linear. But the advantage of 2pic compared to SD classifier is that its
predictions fall within the subset predicted by SD (see Proposition 4). Therefore,
2pic classifier is more precise than SD and in the same time it is more cautious
than the PC classifier.

Proposition 4. Let us consider a set of finite classes Θ and a mass function
m defined over Θ. The following property is verified:

NPC ⊆ NSD and NPC ⊆ N2pic.

Proof. Let us consider that NPC = {a}, with a ∈ Θ. If a /∈ NSD, then it exists
b ∈ Θ, b 6= a such that b �SD a, i.e., pigm(b) ≥ Belm({b}) > Plm({a}) ≥
pigm(a). Contradiction. If a /∈ N2pic, from Definition 12 either a /∈ scck or
a ∈ scck but, in both situations, it exists b ∈ scck such that (b, a) ∈ P2pic.
Which means that Plm({a}) < pigm(b). Contradiction.

Proposition 5. Let us consider a set of finite classes Θ and a mass function
m defined over Θ. The following property is verified :

N2pic ⊆ NSD and it exists some situations where the two subsets are not equal.

Proof. Let us consider that it exists a ∈ N2pic such that a /∈ NSD. Then it
exists b ∈ NSD such that Belm({b}) > Plm({a}) and it follows pigm(b) ≥
Belm({b}) > Plm({a}). Then b P2pic a. This can happen only if a and b belong
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to the scc containing the kernels of G = (Θ,S2pic) and it exists c different from
a and b such that a I2pic c and b I2pic c. But in the Definition 12 of N2pic, such
a class a can not belong to N2pic. Contradiction! Moreover, in the examples of
Tables 1 several image predictions give N2pic ⊂ NSD.

4 Illustration on Fashion Mnist Data

The illustration of this paper concerns the fashion mnist images. The set-valued
measures of performances are calculated on this data for PC, SD and 2pic set-
valued classifiers. Note that the mass functions are predicted using the eviden-
tial classification based on imprecise relabelling (eclair) method [8] [7] associated
with a sequential convolutional neural network (CNN). Fashion-MNIST, a direct
drop-in replacement for the original Y. Lecun’ MNIST dataset for benchmark-
ing machine learning algorithms [10], is a dataset of Zalando’s article images
[16] consisting of a training set of 60,000 examples and a test set of 10,000 ex-
amples. Each example is a 28x28 gray-scale image, associated with a label from
10 classes. Note that fashion mnist dataset seems to be more challenging while
for mnist dataset classes are clearly separated (see [3]). For the first illustration,
we consider only the original training dataset which is split to training (45,000
examples) and validation (15,000 examples) datasets. Here we are interested in
the behaviour of the classification based on the PC, SD and 2pic regarding some
examples presented in Figure 2. These examples are selected from the validation
dataset as they have particular mass functions. Indeed, examples 1 and 2 are
selected such that for the class a with maximum belief function value it exists a
class b such that Bel({a}) < Pl({b}) in a way that a do not dominate b consider-
ing the strong dominance relation (see Table 1). Consequently, the SD classifier
gives a subset of classes as predictions in these situations. While the examples
3 and 4 are selected such that the classes obtaining the maximum value for the
pignistic probability and the plausibility function are not the same (see Table
1). In Table 1 it is given the predictions of PC, SD and 2pic. As one can see in

Fig. 2. The fourteen selected fashion images.

Table 1, the results concerning the predictions of 2pic for the first two images
are the same as those of PC while SD gives imprecise predictions. For the second
two images 2pic gives the same results as the SD classifier while the PC classifier
gives wrong predictions. These four selected examples show us some aspects of
the behaviour of the 2pic classifier regarding the quality of the data to predict.
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Table 1. Bel, Pl, pig and predictions associated to the four examples.

1 2 3 4 5 6 7 8 9 10 truth pignistic strong interval
T-shirt/top Trouser Pullover Dress Coat Sandal Shirt Sneaker Bag Ankle boot criterion dominance criterion

Bel1 0.0 0.0003 0.0096 0.1857 0.4533 0.0 0.0319 0.0 0.001 0.0
(m1,F1) Pl1 0.0095 0.0099 0.0401 0.4568 0.7667 0.0095 0.0797 0.0095 0.0153 0.0095 Coat Coat {Dress, Coat} Coat

pig1 0.001 0.0013 0.0192 0.3165 0.6042 0.001 0.0508 0.001 0.0042 0.001

Bel2 0.0005 0.0 0.2038 0.0031 0.0703 0.0 0.419 0.0 0.0003 0.0
(m2,F2) Pl2 0.0087 0.0082 0.5053 0.0113 0.1068 0.0082 0.7161 0.0082 0.0085 0.0082 Pullover Shirt {Pullover, Shirt} Shirt

pig2 0.0013 0.0008 0.3478 0.0039 0.0818 0.0008 0.5608 0.0008 0.0011 0.0008

Bel3 0.214 0. 0. 0.381 0. 0. 0.358 0. 0.001 0.
(m3,F3) Pl3 0.251 0.002 0.002 0.397 0.002 0.002 0.403 0.002 0.003 0.002 Shirt Dress {Dress, Shirt} {Dress, Shirt}

pig3 0.231 0. 0. 0.387 0. 0. 0.379 0. 0.002 0.

Bel4 0.002 0. 0.302 0.002 0.263 0. 0.239 0. 0. 0.
(m4,F4) Pl4 0.016 0.013 0.416 0.018 0.425 0.013 0.37 0.014 0.013 0.013 Coat Pullover {Pullover, Coat, Shirt} {Pullover, Coat, Shirt}

pig4 0.004 0.001 0.351 0.005 0.336 0.001 0.297 0.002 0.001 0.001

It is more cautious than the PC classifier but it bets in more situations than the
SD at the risk of being wrong. The second illustration concerns the test data.
Table 2 gives the performances of the four classifiers on the test images of the
fashion mnist regarding five metrics. The two extremes ones: classical accuracy,
imprecision that check if the predicted subset contains the truth and three trade-
off well known measures for set-valued classification u50, u65 and u80 [19]. As
one can see, PC classifier has obviously the best accuracy performance as the
imprecise predictions are considered wrong for this metric but 2pic has better
performances than SD regarding accuracy u50, u65 and u80 measures. While SD
and 2pic have the best performance regarding imprecision metric. The classifier
2pic gives intermediate results between SD and PC for all the metrics. These
performances confirm the trade-off behaviour of the classifier 2pic.

Table 2. PC, SD and 2pic performances on the test data of fashion mnist images.

accuracy u65 u65 u80 imprecision

PC 0.916 0.916 0.916 0.916 0.916

SD 0.878 0.898 0.905 0.911 0.936

2pic 0.883 0.901 0.907 0.913 0.936

5 Conclusion

This paper introduce an example of interval criterion-based evidential set-valued
Classification to deal with imperfect data in a supervised classification task. The
article provides the intuition and the theoretical and experimental justifications
of the proposals and their usefulness in terms of controlling the size of the output
set, whether the decision maker favors prudence or precision. The proposal of
this article is then in line with the idea of promoting techniques of machine
learning and AI in general that are reliable and cautious as the decision-maker
/ user can introduce his preferences to control the output of the algorithms.
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