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Abstract. The idea of width-based interval fuzzy entropy is to mea-
sure unawareness related to precise membership degrees of elements in
the context of interval-valued fuzzy sets. The current work applies pre-
vious results regarding the use of well-known aggregation functions en-
dowed with admissible orders, to analyze interval entropies to the Intf-
HybridMem architecture, which is a fuzzy rule-based system to exploit
the access patterns to volatile and non-volatile memories as a recommen-
dation aid in the decision-making process.
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1 Introduction

The fuzzy entropy measure is conceived as a measure of uncertainty in a
fuzzy set, analyzing the disorganized information and fuzziness in the fuzzy set
theory [8]. And, the width-based interval fuzzy entropy methodology considers
the interval data diameter as a measure of the lack of knowledge and uncertainty
in precise membership degrees of elements in Interval-valued Fuzzy Sets (IvFS).

Theoretical results underlying the width-based interval-entropy methods qual-
ify the analysis of the imprecise information related to the width of interval-
valued fuzzy values. They also improve the comparison of data extraction from
the fuzzy control system inference concerning total orders while still preserving
the specialist opinions and main data interpretability.

The interval data comparison is based on the Xu-Yager [17] and admissible
interleaving orders [14], the latter considering Decimal Digit Interleaving (DDI)
functions and requiring just an injective and increasing function [14].
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Following recent contributions, we direct our motivation to the information
evaluation in hybrid memory systems. So, the methodology based on the pro-
posal’s theoretical constructions named the ωA-IvE entropy methods aims to
explore the information of Intf-HybridMem approach [11], a system to support
the uncertainty modeling in data management for hybrid memory architectures.
The methods for the entropy analysis consider input/output data, which are
the read/write frequency and access recency, and the output (the migration rec-
ommendation). They are validated by evaluations carried out in two proposed
aggregation functions related to the above-mentioned admissible orders.

This paper is organized as follows. Sections 2 and 3 recall the relevant con-
cepts necessary to better comprehend our work, including notions of IvFS, their
corresponding operators, and aggregation functions within this context. Section
4 provides the study of interval entropies regarding different functions endowed
with an admissible order. In Section 5 we have a case study applying our theoret-
ical results in the interval-valued fuzzy inference system called Intf-HybridMem.
Finally, the last section addresses our concluding remarks and future works.

2 Preliminary on interval-valued fuzzy sets
The main results on interval-valued fuzzy connectives and IvFS are reported

below. Let L([0, 1]) = {[x1, x2]|0≤x1≤x2≤1} be the family of all interval-valued
fuzzy values and L([0, 1]) be the set of closed, non-empty subintervals on [0, 1].

According to [18], a fuzzy set A in a nonempty universe U is characterized by
its membership function µA : U → [0, 1], and µA(u) interprets the membership
degree of an element u ∈ U in the fuzzy set A. In this sense, a fuzzy set A can
be described as a set of ordered pairs: A = {(u, µA(u)) : u ∈ U, µA(u) ∈ [0, 1]}.
The set of all fuzzy sets over U is denoted by F(U).

An IvFS can be expressed by its interval-valued membership function (IvMF)
µA : U → L([0, 1]) as follows: A = {(x, µA(x)) : x ∈ U and µA(x) ∈ L([0, 1])}. Let
FIV (U) be the set of all interval-valued fuzzy sets.

The projection functions l, r : L([0, 1]) → [0, 1] are, respectively, defined by
l([x1, x2]) = x1 and r([x1, x2]) = x2. For X ∈ L([0, 1]), l(X) = X and r(X) = X.
For n-tuples X = (X1, . . . , Xn) ∈ L([0, 1])

n, the following subsets are in [0, 1]n:
(I) l(X) = (X1, . . . , Xn) and r(X) = (X1, . . . , Xn);
(II) ∗(X) = [∗(X1, . . . , Xn), ∗(X1, . . . , Xn)], when ∗ ∈ {∨,∧}.
We know a function N : [0, 1]→ [0, 1] is a fuzzy negation if verifies the border

conditions (N(0) = 1 and N(1) = 0) and the antitonicity property (x ≤ y implies
N(x) ≥ N(y),∀x, y ∈ [0, 1]). N is a strong fuzzy negation (SFN) if N(N(x)) = x,
∀x ∈ [0, 1]. And, e is an equilibrium point (EP) of N , if N(e) = e.

The fuzzy entropy notion is conceived as a methodology to interpret the
disorganized information of fuzzy sets (FS). In [8], a function E : F(U)→ [0, 1]
is called a fuzzy entropy w.r.t. a SFN N : [0, 1] → [0, 1], which has e as the
equilibrium point, when E verifies, ∀A,B ∈ F(U) the following properties:
E1: E(A) = 0 if and only if A is crisp (non-fuzzy);
E2: E(A) = 1 if and only if A = {(u, µA(u) = e) : u ∈ U};
E3: E(A) ≤ E(B) if A refines B, meaning that: µA(ui) ≤ µB(ui) when µB(ui) ≤

e and µA(ui) ≥ µB(ui) when µB(ui) ≥ e;
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E4: E(A) = E(AN ), where AN is the complement of A.

2.1 Admissible orders on ⟨L([0, 1]),⪯⟩
The use of admissible orders is inspired on relevant contributions, as given

by [9, 13], extended to the multivalued logic contexts [5, 10, 19].
A linear order over L([0, 1]) is a partial order under which every pair of

intervals is comparable. A partial order ⪯ is an admissible order (Ad-order) if it
is linear and refines the Kulisch-Miranker (KM-order) or Product order ≤. The
degenerate intervals 0 and 1 correspond, respectively, to the greatest and the
smallest elements of (L([0, 1]),⪯) [5].

By [19], let M1,M2 : [0, 1]
2 → [0, 1] be aggregation functions (AF) such

that ∀X,Y ∈ L([0, 1]), the equalities M1(X,X) = M1(Y , Y ) and M2(X,X) =
M2(Y , Y ) hold simultaneously only if X = Y . The relation, ⪯M1,M2

on L([0, 1]),

X ⪯M1M2
Y ⇔

{
M1(X,X) < M1(Y , Y ) or
M1(X,X) = M1(Y , Y ) and M2(X,X) ≤M2(Y , Y ).

(1)

is an Ad-order. In addition, let ⪯ be an admissible order and X,Y ∈ L([0, 1]) be
intervals such that ω(X) = ω(Y ), then X ⪯ Y implies X ≤ Y .

Example 1. The ⪯XY -order on L([0, 1]) [17] given by:

X ⪯XY Y ⇔
{
X +X < Y + Y or(
X +X = Y + Y and X −X ≤ Y − Y

) (2)

is an Ad-order, and M1 and M2 are the sum and difference, respectively.

Let A : L([0, 1])→ [0, 1] be an injective increasing function such that A(0) =
0 and A(1) = 1 called just by admissible interleaving. And , let A(−1) : [0, 1] →
L([0, 1]) be its pseudo-inverse defined by A(−1)(x) = inf{X ∈ L([0, 1]) :A(X)≥
x}, where the infimum [16] is w.r.t. the admissible order ⪯A. Then, the ⪯A-
relation given by X⪯AY ⇔X=Y, or A(X)<A(Y ) is an Ad-order on L([0, 1]).

In particular, let A be an admissible interleaving named as the decimal-digit
interleaving (DDI). For that, the i-th decimal digit of this representation of a real
number x ∈ [0, 1] will be denoted by x[i]. Note that the same representation can
be given to sub-intervals of the unit interval [0, 1]. Moreover, the infinite decimal
expansion of the endpoints of an interval X =

[
X,X

]
⊆ [0, 1] is indicated by[

X,X
]
=

[
0.X [1]X [2] . . . X [n]..., 0.X

[1]
X

[2]
. . . X

[n]
...
]
.

Hence, the interval [0.24, 0.5] is represented by [0.240̃, 0.50̃]. Now, two order-
ings for interleaving the digits comprising the extremes X and X of an interval
X⊆[0, 1] are related to the same position in their decimal expansions.

Definition 1. [14] The DDI functions
−→
A,
←−
A : L([0, 1])→ [0, 1], given by

−→
A(X) =

{
0.X [1]9X [2]9 . . . , if X = 1;

0.X [1]X
[1]
X [2]X

[2]
. . . , otherwise.

(3)

←−
A(X) =

{
0.9X [1]9X [2]9 . . . , if X = 1;

0.X
[1]
X [1]X

[2]
X [2] . . . , otherwise.

(4)
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are admissible orders on L([0, 1]) called admissible interleaving.

2.2 Negations on ⟨L([0, 1]),⪯⟩: representability and duality

Definition 2. [19] An interval-valued function N : L([0, 1]) → L([0, 1]) is an
interval-valued fuzzy negation (IvFN) if, for all X,Y ∈ L([0, 1]), it verifies:

N1: N(0) = 1; and N(1) = 0;
N2: If X ≥ Y then N(X) ≤ N(Y ).

N is strict if it is continuous w.r.t. the Moore metric, meaning that it is continuous
w.r.t. the metric distance dM (X,Y ) = max(|X−Y |, |X−Y |). And, N is strictly
decreasing if it verifies

N3: If X > Y then N(X) < N(Y ), ∀X,Y ∈ L(0, 1).

An IvFN N is called a strong IvFN [12] if N also satisfies the involutive property:

N4: N(N(X)) = X, for all X ∈ L([0, 1]).

Substituting the KM-order ≤ by an Ad-order-order ⪯ in Definition 2, N
will be a (strong, strict, frontier) interval-valued fuzzy negation w.r.t. ⪯ or just
IvFN(⪯), as investigated in [1]. Next, we consider the representability of fuzzy
connectives, as given in [7, Definition 4.3].

Proposition 1. [4, Theorem 5.1] Let N1, N2 : [0, 1] → [0, 1] be (strict) fuzzy
negations such that N1 ≤ N2. The function NN1,N2 : L([0, 1]) → L([0, 1]), given
as NN1,N2

(X) = [N1(X), N2(X)] is a (strict) representable IvFN.

Ep ∈ L([0, 1]) is an equilibrium interval for an interval-valued fuzzy negation
N if N(Ep) = Ep. Trivially, [0, 1] is an equilibrium interval of representable
interval-valued negations. Thus, an equilibrium interval Ep such that Ep ̸= [0, 1]
is called a non-trivial equilibrium interval.

The interval extension of the standard negation NS(x) = 1 − x w.r.t. the
Kulisch-Miranker order is given by: NS(X) = N̂S(X) = [1 −X, 1 −X], ∀X =
[X,X] ∈ L([0, 1]). Since NS has a unique equilibrium point, eNS

= 1
2 , then

∀x ∈ [0, eNS
], Ep

NS
= [x, 1− x] is an equilibrium interval.

Proposition 2. [14] Let N : L([0, 1])→ L([0, 1]) be an IvFN w.r.t. an Ad-order-
order ⪯. If N has an equilibrium interval on L([0, 1]), it is unique.

Let N be an IvFN. Extending results from Proposition 2, the N-dual operator
of f : L([0, 1])n → L([0, 1]) is given by fN(X1, . . . Xn) = N(f(N(X1), . . . ,N(Xn))).
And, if N is a strong IvFN, then f is a mutual N-dual function.

Example 2. See [19, Example 3.4], denoting c = X+X
2 , α = min(c, 1 − c) and

r = X−X
2 . The function NXY : L([0, 1]) → L([0, 1]) given by: NXY (X) = [(1 −

c) − (α − r), (1 − c) + (α − r)] is a strong IvFN w.r.t. the Xu-Yager’s order.
Moreover, NXY has

[
1
4 ,

3
4

]
∈ L+([0, 1]) as the equilibrium interval and it may

also be expressed by:

NXY (X) =


[
1− X+3X

2
, 1− X−X

2

]
, if X +X ≤ 1;[

X−X
2

, 2− 3X+X
2

]
, otherwise.

(5)
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2.3 Restricted (dis)similarity functions on ⟨L([0, 1]),⪯⟩

We consider the notion of restricted dissimilarity functions (RDF), and their
representable expressions on ⟨L([0, 1]),⪯⟩, w.r.t. the KM-order, as given in [16,
Definition 15]. Additionally, we consider the notion of IvRDF operator based on
Ad-order-orders w.r.t. the KM-order, as proposed in [6].

Example 3. [14] Let α ∈ (0, 1) and d : [0, 1]2 → [0, 1] be a restricted dissimilarity
function and Kα be a weighted mean, Kα(X) = (1 − α)X + αX. The function
D : L([0, 1])→ L([0, 1]), defined by

D(X,Y ) = [d(Kα(X),Kα(Y )),max(d(Kα(X),Kα(Y )), ω(X), ω(Y ))] (6)

is an interval-valued restricted dissimilarity function (IvRDF) w.r.t. ≤-order.

Example 4. In [6, Corollary 3.7], the mapping S : L([0, 1])2 → L([0, 1]) is an
IvREF w.r.t. the ⪯XY -order, ∀X,Y ∈ L([0, 1]), defined by:

SXY (X,Y ) =

[
1−

∣∣∣∣X +X

2
− Y + Y

2

∣∣∣∣− ω(X) + ω(Y )

2
, 1−

∣∣∣∣X +X

2
− Y + Y

2

∣∣∣∣] .
The methodology to generate IvREF on ⟨L([0, 1]),≤⟩ is monotone w.r.t. the

width of the intervals: ω(X) ≤ ω(Y )→ S(Y, Y ) ⪯ S(X,X),∀X,Y ∈ L([0, 1]).

Example 5. Let A : L([0, 1]) → [0, 1] be an admissible interleaving, and ⪯A be
the order on L([0, 1]). The function SA : L([0, 1])2 → L([0, 1]) defined by

SA(X,Y ) = [min(a, 1− ω(X), 1− ω(Y )),max(a, 1− |A(X)−A(Y )|)],

where a = min
(

A(X)
A(Y ) ,

A(Y )
A(X)

)
and x

0 = 1, is an IvREF w.r.t. ⪯A, as seen in [14].

Example 6. In [14], let Ne : [0, 1] → [0, 1] be a fuzzy negation given in Eq.(9)
considering e as the equilibrium point. The function RA : L([0, 1])2 → L([0, 1]),

RA(X,Y )=[max(0, Ne(|A(X)−A(Y )|)−max(ω(X), ω(Y ))), Ne(|A(X)−A(Y )|)]

is an interval-valued restricted equivalence function (IvREF) w.r.t. ⪯A-order.

3 Aggregation functions on ⟨L([0, 1]),⪯⟩

An interval-valued aggregation function (IvAF) M : L([0, 1])n → L([0, 1])
verifies the following conditions, according to [7]:
M1: M(0, . . . ,0) = 0 and M(1, . . . ,1) = 1; and M2: if X = (X1, . . . , Xn) ≤
Y = (Y1, . . . , Yn), i.e. Xi ≤ Yi for each i ∈ Nn, then M(X) ≤M(Y).

Extra properties can be demanded for an IvAF:

M3: M(Xσ) = M(Xσ(1), ..., Xσ(n)) = M(X1, . . . , Xn) = M(X), ∀X = (X1, . . . , Xn)
∈ L([0, 1]))n and for each σ-permutation on {1, . . . , n} (symmetry property);

M4: If M(X) = 0 then X = (0, . . . ,0);
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M5: M(X,X, . . . ,X) = X, ∀X ∈ L([0, 1]) (idempotency property).

Let M : L([0, 1])n → L([0, 1]) be an IvAF. By [3, Def. 3], its left- and right-
projections are functions M,M : [0, 1]n → [0, 1]. And, consider aggregations func-
tions w.r.t admissible orders, i.e. a function M : L([0, 1])n → L([0, 1]) satisfying
M1 and M2 substituting the Kulisch-Miranker order by an admissible order.
Note that for an IvAF w.r.t. an admissible order, satisfying the idempotency
property is equivalent to being an averaging function.

Proposition 3. Let M : L([0, 1])n → L([0, 1]) be an IvAF w.r.t. an admissible
order ⪯. Then, M is idempotent iff M is averaging, i.e. for each X1, . . . , Xn ∈
L([0, 1]), min⪯(X1, . . . , Xn) ⪯M(X1, . . . , Xn) ⪯ max⪯(X1, . . . , Xn).

Proof. (⇒) Let Xi = min⪯(X1, . . . , Xn) and Xj = max⪯(X1, . . . , Xn). Then,
since M is idempotent, min⪯(X1, . . . , Xn) = M(Xi, . . . , Xi) ⪯M(X1, . . . , Xn) ⪯
M(Xj , . . . , Xj) = max⪯(X1, . . . , Xn).
(⇐) For X ∈ L([0, 1]), X = min⪯(X, . . . ,X) ⪯M(X, . . . ,X) ⪯ max⪯(X, . . . ,X)
= X. Therefore, M(X, . . . ,X) = X.

Corollary 1. Let α ∈ [0, 1]. The function Mα : L([0, 1])n → L([0, 1]), given as
Mα(X,Y ) = 0, if X = 0 or Y = 0 and otherwise, Mα(X,Y ) = [αX +(1−α)Y ,
αX + (1− α)Y ], is an averaging IvAF.

Proof. Straightforward from Propositions 3 and 7.

Example 7. Let α ∈ [0, 1]. By [19, Cor. 6.5], Mα : L([0, 1])
n → L([0, 1]) given by:

Mα(X,Y) =

{
0, if X = 0 or Y = 0[∑n

i=1 αXi + (1− α)Yi,
∑n

i=1 αXi + (1− α)Yi

]
, otherwise

(7)

is an averaging IvAF w.r.t. ⪯XY -order, verifying M3, M4 and M5 properties.
Besides, when α = 2, then M 1

2
is the generalized arithmetic mean.

Definition 3. Let α ∈ [0, 1]. Then the function Mα : L([0, 1])
n → L([0, 1]) de-

fined for each X1, . . . , Xn ∈ L([0, 1]) by

Mα(X1, . . . , Xn) =

{
X(n+1

2 ), if n is odd;

Mα

(
X(n

2 ), X(n+2
2 )

)
, if n is even;

where (X(1), . . . , X(n)) is a permutation of (X1, . . . , Xn) such that X(1) ⪯XY

X(2) ⪯XY . . . ⪯XY X(n), is called generalized Xu-Yager median.

Proposition 4. Let α ∈ [0, 1]. Then the function Mα is an idempotent sym-
metric interval-valued aggregation function w.r.t. ⪯XY .

Proof. We will prove by induction in n that for every X1, . . . , Xn, Y1, . . . , Yn ∈
L([0, 1]) such that Xi ⪯XY Yi for each i ∈ Nn, X(j) ⪯XY Y[j], for each j ∈ Nn,
where (X(1), . . . , X(n)) and (Y[1], . . . , Y[n]) are permutations of (X1, . . . , Xn) and
(Y1, . . . , Yn), respectively, such that X(1) ⪯XY X(2) ⪯XY . . . ⪯XY X(n) and
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Y[1] ⪯XY Y[2] ⪯XY . . . ⪯XY Y[n]. If n = 1 then X(1) = X1 ⪯XY Y1 = Y[1].
Suppose that for each n = k it is true. Let n = k+1, and h = [1]. Then X(1) ⪯XY

Xh ⪯XY Yh ⪯XY Y[1]. In addition, X ′1, . . . , X ′k, Y
′
1 , . . . , Y

′
k ∈ L([0, 1]) such that

X ′j = Xj and Y ′j = Yj for each j < (1) and X ′j = Xj+1 and Y ′j = Yj+1 for
each j ≥ (1). Then X ′j ⪯XY Y ′j for each j ∈ Nk. So, by the inductive hypothesis
X ′(j) ⪯XY Y ′[j] for each j ∈ Nk. Therefore, for each j ∈ Nk+1, X(j) ⪯XY Y[j].
So, if n is odd then Mα(X1, . . . , Xn)=X(n+1

2 ) ⪯XY Y[n+1
2 ] =Mα(X1, . . . , Xn)

and if n is even then, by Prop. 7,MXY (X1, . . . , Xn)=Mα

(
X(n

2 ), X(n+2
2 )

)
⪯XY

Mα

(
Y[n2 ], Y[n+2

2 ]

)
= Mα(Y1, . . . , Yn). Thereby, Mα is increasing w.r.t. ⪯XY .

Let X ∈ L([0, 1]). If n is odd then it is immediate that Mα(X, . . . ,X) = X
and if n is even then, by Corollary 1, Mα(X, . . . ,X) = Mα(X,X) = X. Hence,
Mα(0, . . . ,0) = 0 and Mα(1, . . . ,1) = 1. So, Mα is an idempotent IvAF
w.r.t. ⪯XY . Besides, as Mα(X1, . . . , Xn) = Mα(X(1), . . . , X(n)) then Mα is
also symmetric.

Definition 4. Let α ∈ [0, 1]. Then the function MA
α : L([0, 1])n → L([0, 1])

defined, for each X1, . . . , Xn ∈ L([0, 1]), by:

MA
α (X1, . . . , Xn) =

X(n+1
2 ), if n is odd;

Mα

(
X(n

2 ), X(n+2
2 )

)
, if n is even;

(8)

where (X(1), . . . , X(n)) is a permutation of X such that X(1) ⪯A . . . ⪯A X(n), is
called generalized A-median.

Proposition 5. Let α ∈ [0, 1]. Then the function MA
α is an idempotent sym-

metric interval-valued aggregation function w.r.t. ⪯A.

Proof. Analogous to Proposition 4.

3.1 Negations and Aggregations on ⟨L([0, 1]),⪯A⟩

Main results on fuzzy negations on ⟨L([0, 1]),⪯A⟩ are now reported, since
they are used in the ωA-IvE entropy analysis. More theoretical details, intuitive
notions, and illustrative examples based on such concepts are described in [14].

Theorem 1. [14] Let A : L([0, 1])→[0, 1] be an injective and increasing function
and N : [0, 1]→[0, 1] be a strict negation. The function NA : L([0, 1])→ L([0, 1]),
defined by NA(X) = A(−1)(N(A(X))), is an ⟨L([0, 1]),⪯A⟩-negation, named a
representable ⟨L([0, 1]),⪯A⟩-negation.

Proposition 6. [14] Let A be an admissible interleaving. Whenever N : [0, 1]→
[0, 1] is a strong fuzzy negation, NA verifies NA(NA(X)) ⪰A X.

Example 8. The ⟨L([0, 1]),⪯A⟩-representable negation generated by the stan-
dard negation NS is given by: NA

S (X) = A(−1)(NS(A(X))), ∀X ∈ L([0, 1]).
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Example 9. [14] Let NS : [0, 1] → [0, 1] be the standard negation. The function
N
←−
A
S : L([0, 1]) → L([0, 1]) defined by: N

←−
A
S (X) =

←−
A(−1)(NS(

−→
A(X))) is the NS-

interleaving negation on L([0, 1]) w.r.t. the pairwise (⪯−→
A
,⪯←−

A
)-order.

Example 10. Let e ∈ (0, 1). Then, Ne : [0, 1]→ [0, 1] given by

Ne(x) =

{
1− (1−e)

e x, if x ≤ e;
e

1−e (1− x), otherwise;
(9)

is a strong (strict) fuzzy negation and, it has e as the equilibrium point [15]. The
mapping NA

e : L([0, 1])→ L([0, 1]), for all X ∈ L([0, 1]), defined by

NA
e (X) =

{←−
A(−1)(Ne(A(X))), if X ≤ e,
−→
A(−1)(Ne(A(X))), otherwise;

(10)

is called the Ne-interleaving negation w.r.t. the pairwise (⪯A,⪯←−
A
)-order.

Proposition 7. [14] Let M : [0, 1]n → [0, 1] be an aggregation, and A : L([0, 1])→
[0, 1] be an admissible interleaving. The function MA : L([0, 1])n → L([0, 1]),

MA(X1, . . . , Xn) = A(−1) (M(A(X1), . . . , A(Xn))) (11)

is an IvA w.r.t. ⪯A-order. If M is idempotent, then MA is idempotent.

Corollary 2. Let M : [0, 1]2 → [0, 1] be an average function and A : L([0, 1])→
[0, 1] be an admissible interleaving. If A(X) ≤ A(Y ), for some X,Y ∈ L([0, 1]),
then X ⪯A MA(X,Y ) ⪯A Y .

Proof. Straightforward from Proposition 3.

Example 11. Let A : L([0, 1])→ [0, 1] be an admissible interleaving. When M is
the minimum, then MA also is the minimum w.r.t. ⪯A. So, by Proposition 7,

MA(X1, . . . , Xn) = A(−1)(M(A(X1), . . . , A(Xn))) = A(−1)Mn
i=1A(Xi).

So, MA is an idempotent IvA related to the admissible ⪯A-order.

Corollary 3. Let M be an idempotent aggregation function and A be an admis-
sible interleaving. The IvAF MA w.r.t. ⪯A is an average function.

Proof. Straightforward from Propositions 7 and 3.

Definition 5. Let the mapping M : [0, 1]2 → [0, 1] be the arithmetic mean and
A : L([0, 1])→ [0, 1] be an admissible interleaving. So,MA : L([0, 1])n → L([0, 1])
defined, for each X1, . . . , Xn ∈ L([0, 1]), by:

MA(X1, . . . , Xn) =

{
X(n+1

2 ), if n is odd;

MA
(
X(n

2 ), X(n+2
2 )

)
, if n is even;

is called generalized interleaving median whenever (X(1), . . . , X(n)) is a permu-
tation of (X1, . . . , Xn) such that X(1) ⪯A X(2) ⪯A . . . ⪯A X(n).
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Proposition 8. Let M : [0, 1]2 → [0, 1] be an average function and A : L([0, 1])→
[0, 1] be an admissible interleaving. Then the functionMA is an idempotent sym-
metric aggregation function w.r.t. ⪯A. So, MA is an average function.

Proof. Analogous to Proposition 4.

4 Width-based interval fuzzy entropy

This section introduces the study of interval entropies generated by IvAF
and IvREF w.r.t. admissible the ⪯-order.

Definition 6. [16, Def. 39] Let ε ∈ L([0, 1]) such that ε > 0 and ε < 1 and take
≤L as a partial order on L([0, 1]) such that 0 and 1 are the least and greatest
elements. A function Ew : FIV (U) → L([0, 1]) is called a width-based interval
fuzzy entropy (ωA-IvE) w.r.t. ⟨≤L, ε⟩ if it satisfies the following conditions:

(Ew1) Eω(A) = 0 iff A is crisp;
(Ew2) Eω(ε̃) = [1− ω(ε), 1];
(Ew3) Eω(A) ≤L Eω(B) if for all u ∈ U , ω(A(u)) = ω(B(u)) and, either

A(u) ≤L B(u) ≤L ε or ε ≤L B(u) ≤L A(u).

The width-based average functions are taken as aggregation functions. This
means that by the action of mean AF, the diameter of the interval input data is
preserved into the interval output data in the expression of width-based interval
fuzzy entropy (ωA-IvE) w.r.t. a partial order ≤.

Next, let Av : [0, 1]2 → [0, 1] be an average fuzzy AF. So, Âv : FIV (U) →
F(U) defined ∀A ∈ FIV (U) and u ∈ U is given by: Âv(A)(u) = Av(A(u),A(u)).

4.1 Width-based interval fuzzy entropy: methodology

Let A(ui) = Xi ∈ L([0, 1]) be the interval-valued fuzzy value of an element
ui ∈ U in A ∈ AIV , and consider EN : [0, 1]→ [0, 1] as the fuzzy normal-entropy
defined by: EN (Xi) = 1 − |2Xi − 1|. We applied the entropy on [16], taking
A as the average fuzzy arithmetic mean and median. We propose six different
methods detailed as follows.

Method 1 Taking (L([0, 1]),⪯XY ), the interval-valued entropy Eω : FIV (U)→
L([0, 1]) can be expressed by: Eω(A) = 1

n

∑n
i=1 EN

ω (A(ui)) =
1
n

∑n
i=1 EN

ω (Xi).
Method 2 For all ui∈U , let (A(ui) = Xi∈L([0, 1]), the interval-valued entropy

EA : FIV (U) → L([0, 1]) related to (L([0, 1]),⪯XY ) is given by: EA(A) =
1
n

∑n
i=1 EN

A(A(ui)) =
1
n

∑n
i=1 EN

A(Xi).
Method 3 The interval-valued entropy ES,ω:FIV (U)→L([0, 1]) is defined by:

ES,ω(A) = 1
n

∑n
i=1 EN

S,ω(A(ui)) =
1
n

∑n
i=1 EN

S,ω(Xi) =
1
n

∑n
i=1 Sω(Xi,N(Xi)),

whenever we take Sω :L([0, 1])2→L([0, 1]) as the width-based IvREF w.r.t.
⪯XY -order, N as the strong IvFN w.r.t. the ⪯XY -order given in Eq. (5).

Method 4 The interval-valued entropy ESA,ω : FIV → L([0, 1]) is expressed
by: ESA,ω(A) = 1

n

∑n
i=1 EN

SA,ω(A(ui)) = 1
n

∑n
i=1 EN

SA,ω(Xi), whenever we
take SA : L([0, 1])2 → L([0, 1]) as the width-based IvREF w.r.t. ⪯A-order,
as seen in Example 4.
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Method 5 The interval-valued entropy ERA,ω : FIV (U)→ L([0, 1]), defined by:
ERA,ω(A) = 1

n

∑n
i=1 EN

RA,ω(A(ui)) = 1
n

∑n
i=1 EN

RA,ω(Xi), whenever we take
RA : L([0, 1])2 → L([0, 1]) as the IvREF w.r.t. ⪯A-order, as in Ex. 6.

Method 6 We also consider the width-based interval fuzzy entropy related to
(L([0, 1]),⪯XY ) introduced in [16, Example 30], and reported as follows:
Ep
IV (A) =

1
n

∑n
i=1 EN (A(ui)) =

1
n

∑n
i=1 ENXY (Xi).

In the next Section, we apply the six methods consolidated from the theoretical
results achieved in the previous sections in the Intf-HybridMem [11] architecture.

5 Case study: Intf-HybridMem Entropy Analysis via
Median and Arithmetic Mean Fuzzy Aggregations

The interval-valued fuzzy inference system supports the uncertainty model-
ing in data management for hybrid memory architectures, called Intf-HybridMem
approach [11], exploring decision-making based on the access patterns of tem-
porary storage in volatile memories and, of data persistence in non-volatile
memories. It models inaccuracy inherent in input variables, such as read/write
frequency and access recency, and also the migration recommendation output.
Aiming to improve data management, in a page-level organization, the migration
policy verifies each page priority to be switched between memory modules, con-
sidering a Rule Base acting on the Fuzzification, Inference, and Defuzzification
steps of the IvFL inference system to recommend a correct selection between
memory modules. In the Intf-HybridMem architecture, four linguistic variables
(LV) were defined: RF (reading frequency), WF (writing frequency), and AR
(access recency) are the input values, and the output is R (recommendation).

For the current case study, we use ωA-IvE methods to obtain entropy analysis
applied on IvFS considering RF, WF, AR, and R as LV and their linguistic terms
(LT) “high” (H), “medium” (M) and “low” (L). The entropy measures consider
the six methods from Subsection 4.1.

Table 1: ωA-IvE Analysis based on Arithmetic Mean Aggregation Function.
M AR RF/WF R

EL EM EH EL EM EH EL EM EH
1 [0.16 , 0.17] [0.19 , 0.23] [0.21 , 0.28] [0.20 , 0.25] [0.24 , 0.31] [0.20 , 0.26] [0.23 , 0.29] [0.35 , 0.56] [0.23 , 0.29]
2 [0.20 , 0.20] [0.20 , 0.20] [0.19 , 0.35] [0.25 , 0.27] [0.13 , 0.32] [0.22 , 0.27] [0.22 , 0.24] [0.29 , 0.49] [0.19 , 0.25]
3 [0.09 , 0.17] [0.12 , 0.23] [0.14 , 0.28] [0.13 , 0.25] [0.16 , 0.31] [0.13 , 0.26] [0.14 , 0.29] [0.28 , 0.56] [0.15 , 0.29]
4 [0.13 , 0.20] [0.11 , 0.21] [0.19 , 0.34] [0.15 , 0.27] [0.18 , 0.33] [0.15 , 0.28] [0.14 , 0.26] [0.27 , 0.52] [0.14 , 0.26]
5 [0.11 , 0.30] [0.10 , 0.30] [0.15 , 0.51] [0.13 , 0.40] [0.15 , 0.48] [0.13 , 0.41] [0.13 , 0.37] [0.27 , 0.73] [0.13 , 0.38]
6 [0.06, 0.17] [0.07, 0.23] [0.04, 0.28] [0.05, 0.25] [0.07, 0.31] [0.05, 0.26] [0.09, 0.29] [0.18, 0.56] [0.09, 0.29]

See Table 1 summarizing the main results using the methods aggregated
by the arithmetic mean (AM) function, discussing its influence on the entropy
measure applied to the input/output of the IvFS:

A Firstly, we see that Method 6 provides better results when comparing re-
sults applying both order relations, ⪯A- and ⪯XY admissible orders, and a
diameter increment of the resulting intervals of most 0.14.

B For the input variables RF/WR, the entropy is greater for Method 1 (M1)
in the LT EM , with the interval [0.24, 0.31]. For the output variable R,
the entropy is greater for M1 in the LT EM , with the interval [0.35, 0.56].
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Conversely, for the input variable AR, the entropy is smaller for M6 in the
LT EL, with the interval [0.06, 0.17]. And, for the output variable R, the
entropy is also smaller for M6 in the LT EL, having the interval [0.09, 0.29].

These observations show consistent information between the ωA-IvE analysis
and the Footprint Of Uncertainty (FOU) using Arithmetic Means IvA.

Table 2: ωA-IvE Analysis based on Median Aggregation Function.
M AR RF/WF R

EL EM EH EL EM EH EL EM EH
1 [0.00 , 0.00] [0.00 , 0.00] [0.30, 0.40] [0.15 , 0.18] [0.30 , 0.40] [0.17 , 0.22] [0.15 , 0.19] [0.31, 0.50] [0.17 , 0.21]
2 [0.00 , 0.00] [0.00 , 0.00] [0.34 , 0.62] [0.03, 0.03] [0.06, 0.09] [0.03, 0.04] [0.03, 0.03] [0.37 , 0.62] [0.03, 0.04]
3 [0.00 , 0.00] [0.00 , 0.00] [0.20 , 0.40] [0.09 , 0.18] [0.20 , 0.40] [0.11 , 0.22] [0.09 , 0.19] [0.25 , 0.50] [0.11 , 0.21]
4 [0.00, 0.00] [0.00, 0.00] [0.34 , 0.59] [0.02, 0.02] [0.05 , 0.15] [0.02, 0.03] [0.02, 0.02] [0.34 , 0.59] [0.02, 0.03]
5 [0.00 , 0.00] [0.00 , 0.00] [0.24 , 0.90] [0.00 , 0.08] [0.00 , 0.93] [0.00 , 0.10] [0.00 , 0.08] [0.24 , 0.90] [0.00 , 0.10]
6 [0.00 , 0.00] [0.00 , 0.00] [0.00 , 0.40] [0.00 , 0.18] [0.00 , 0.40] [0.00 , 0.22] [0.00 , 0.19] [0.10 , 0.50] [0.00 , 0.21]

Observe Table 2 and entropy results applying the median (M) IvA:
A Applying M as the generalized median (M) aggregation function, the meth-

ods presented more sensible results for the entropy analysis. This is seen by
observing the 0 in the first two columns, for the input variable AR, namely
the linguistic terms EL and EM .

B In general, methods M2 and M4 obtained the lowest entropy in relation to the
interval width. For input variables RF, the interval-valued entropy is greater
with M1, returning [0.30, 0.40] in the LT EM .

C For the output variable, the interval-valued entropy is greater in Method 5,
for the LT EM , and smaller in Methods 2 and 4, for the LT EL and EH .

So, this demands revision on the IvA selection, since the Median leads to in-
consistency analysis by presenting data with zeros for the input variable AR.

6 Conclusion

This article considers two admissible linear orders, the Xu-Yager order and,
the order based on the admissible interleaving notion related to DDI functions,
considering just one injective and increasing function. Both Ad-orders demand
the application of sum and difference operators to compare among elements of
an IvFS. And, the algebraic properties defining fuzzy connectives structuring the
proposed ωA-IvE entropy methods are compatible with such admissible orders,
⟨L([0, 1]),⪯XY ⟩ and ⟨L([0, 1]),⪯A⟩, respectively.

The study of width-based interval entropy applying the ωA-IvE methodology
enables to correlate data information in the modeling of input/output IvFS of
the intf-HybridMem approach.

Future studies concern the extension of the methods for Atanassov’s interval-
valued intuitionistic fuzzy sets [2], and the corresponding admissible interleaving
generalization.
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