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Abstract. In this paper, we unveil the xBTF, an innovative advance-
ment to the Biggest Threat First (BTF) algorithm. In our previous
research, the BTF achieved groundbreaking results for minimizing the
makespan of the Dual Resource Constrained Job Shop Scheduling Prob-
lem (DRC-FJSSP). However, it faced limitations due to its inability to
effectively balance worker and machine workloads. This was primarily
because it constructed schedules sequentially, without considering the
resource requirements of subsequent operations. The xBTF introduces
a penalty when performing resource allocation, based on the expected
worker and machine workload. Preliminary experimentation utilizing the
MK1-10 benchmark dataset showcases xBTF’s supremacy over its pre-
decessor, particularly in scenarios with higher resource workloads. More-
over, the xBTF utterly outperforms a state-of-the-art metaheuristic, the
KGFOA, with extremely small execution times, which makes it excellent
also for rescheduling in dynamic scenarios.

Keywords: Scheduling · Job Shop · Dual Resource · Longest Processing
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1 Introduction

With the rise of Industry 4.0, more and more sensors are getting available at the
shop floor levels and more data is being generated. Data driven approaches are
becoming more popular and being increasingly adopted for optimized process
planning, production planning and scheduling.

Production scheduling is crucial to manufacturing companies planning and
management. A well-planned schedule may significantly boost productivity and
resource use [1]. Manufacturing companies must be able to manage production
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with a variety of product configurations as the paradigm shifts from mass pro-
duction to mass customization [2]. This kind of problem is known as the job shop
scheduling problem (JSSP). The JSSP is a NP-hard combinatorial optimization
problem [3], of utmost relevance and impact in the fields of manufacturing and
production [4], that seeks to discover the ideal order of jobs to be processed at
distinct machines.

In most manufacturing scenarios, the route (resource allocation) that each
job has to follow is not predefined, in which case it is a Flexible Job Shop
Scheduling Problem (FJSSP). Additionally, some problems may be dual resource
constrained (DRC). The DRC system is a production system that is restricted
by both worker and machine capacity [5].

Overall, the DRC-FJSSP has been extensively addressed in the literature, in
a large variety of industrial contexts. All the time, new algorithms and models
arise that pretend to enhance schedule optimization and reduce the total amount
of execution time. A mixed integer linear programming model (MILP) for qual-
ity control laboratory scheduling was presented in [6]. A Multiple-Trial/Best-
Move Simulated Annealing algorithm for problems with scarce setup-operators
was generated in [7]. A Workload control simulation assessment was performed
in [8], considering several labor dispatching rules and environmental factors. A
hybrid artificial bee colony algorithm was applied in [9] and a new effective local
search method to improve the speed and exploitation ability of the algorithm was
developed. A knowledge-guided fruit fly optimisation algorithm (KGFOA) with
a new encoding scheme is proposed in [10], that balances global exploration and
local exploitation with a combination of a knowledge-guided search and a smell-
based search that consists of two types of permutation-based search operators. A
Multi-Start Tabu Agents-based Model (MuSTAM) was introduced in [11], where
TabuAgents cooperate and communicate between them in order to improve the
search quality. Different variants of filter-and-fan (FF) based heuristic solution
approaches that combine a local search procedure, used to obtain local optima,
with a tree search procedure, that generates compound transitions in order to
explore larger neighborhoods, were developed in [12].

Dynamical settings such as machine breakdowns have been studied. A robust
fuzzy-stochastic programming model under machine breakdowns and uncertain
processing times was crated in [13]. Discrete event simulation was used in [14] as
a research method to assess the impact of machine failures on worker assignment.

Rescheduling is also considered as a viable option for problems in dynamic
scenarios. An automobile collision repair shop environment was presented in [15],
where re-scheduling is often needed to react to real-time events like due date
changes, delay in arrival, changes in job processing time and rush jobs. A reschedul-
ing framework was proposed in [16], which integrates a Machine Learning classi-
fication model for identifying rescheduling patterns and a hybrid metaheuristic
approach for schedule optimization. A genetic algorithm and simulated anneal-
ing algorithm (GASA) coupled with a rescheduling decision making process for
optimization of schedules in a dynamic scenario was presented in [17].
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Other papers assess the use of Reinforcement Learning to develop an intelli-
gent scheduling agent capable of solving the DRC-FJSSP. A framework for train-
ing a Reinforcement Learning agent to schedule diverse dual-resource constrained
job shops was established in [18]. The use of an Encoder-Decoder recurrent neu-
ral network architecture with Attention Mechanism using Deep Q-Learning, that
makes the Reinforcement Learning agent capable of solving problems of variable
sizes, was introduced in [19].

Recently published works show there has been a lack of scientific interest
in the development of new scheduling heuristics. A situation which reminds the
two AI winters in the 1970s and 1980s. Scheduling heuristics seemed to have
gone as far as they could and research nowadays is much more focused in the
exploration of a solution space, be it through simulation, metaheuristics or even
AI. But these algorithms had their own set of features they excelled at. Like
having extremely small execution times, which is a tremendous advantage for
dynamic scenarios which are becoming more and more important. If only they
could achieve competitive performances with current state-of-the-art scheduling
methods.

In this work, the xBTF is developed to optimize performances in scenarios
when there are highly requested machines and/or workers. The xBTF algorithm
introduces a penalty factor at the resource allocation procedure, which considers
the expected workload of workers and machines. The goal of this penalty is
to release some of the workload for workers and machines whose utilization is
expected to be higher. The idea is to release the pressure on these expected
bottlenecks.

As this algorithm is an heuristic, it does not take time exploring a search
space and looking out for a good solution. It immediately constructs a good so-
lution, taking advantage of the expert knowledge it was built upon. This allows
this algorithm to achieve extremely small execution times, which makes it excel-
lent also for recheduling in dynamic scenarios. Also, the xBTF is a deterministic
method, which means that the quality of the solutions it creates is not subject
to chance. These are substantial advantages comparing with the related work
existent in the literature, if the xBTF can prove to achieve as good solutions as
those state-of-the-art methods.

The remaining of this paper is organized as follows. In section II the numer-
ical model for a DRC-FJSSP is introduced. Additionaly, the xBTF algorithm
is introduced. Results are presented and discussed in section III. Section IV
concludes the paper and presents future research steps.

2 Model and methods

2.1 Mathematical Model of a DRC-FJSSP

In a DRC-FJSSP there are a total of a operations that need to processed. They
are divided in a set of n jobs J = {J1, ..., Ji, ..., Jn} to be processed at a set
of m machines M = {M1, ...,Mk, ...,Mm} operated by a set of w workers W =
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{W1, ...,Wl, ...,Ww}. Each job has a predefined sequence of oi operations Ji =
{Oi1, ..., Oij , ..., Oioi}. Let pij be the processing time of the operation Oij . Each
operation c can only be processed at a subset of eligible worker-machine pairs.
c is calculated as in equation 1.

c = j +

i−1∑
d=1

od (1)

Eligible worker-machine pairs are made by a machine that can process a
given operation and a worker that can operate that machine. Thus, there is an
eligibility matrix Ebc, where the element (b, c) is a 1, if b is an eligible worker-
machine pair for operation c, otherwise it is a 0. Where, b is calculated as in
equation 2 and c is a number between 1 and a.

b = (k − 1)w + l (2)

Each machine can process only one operation at a time and there is no pre-
emption, which means that since an operation has started it cannot be stopped
until it is finished. All jobs, machines and workers are available at time 0. The
goal is to minimise the maximum completion time, the makespan C, by assign-
ing an eligible worker-machine pair to each operation, as well as arranging the
processing order of operations on each machine.

Let sij be the starting time of Oi,j , and rkl be the ready time of machine Mk

operated by worker Wl, and N be a large enough number. Mathematically, the
DRC-FJSSP with makespan minimisation can be formulated as follows:

min C (3)

Subject to:

C = max
i,j

(sij + pij), Ji ∈ J, j = 1, 2, ..., oi − 1 (4)

si(j+1) ≥ sij +
∑
k

∑
l

pijηijkl, Ji ∈ J, j = 1, 2, ..., oi − 1,
a∑

c=1

Ebc > 0 (5)

si’j’ + (1− ζijm−i’j’m)N ≥ sij +
∑
l

pijηijkl,

Ji ∈ J, j = 1, 2, ..., oi,

a∑
c=1

Ebc > 0 (6)

rk’l + (1− ξkl−k’l)N ≥ rkl, Wl ∈ W,

a∑
c=1

Ebc > 0,

a∑
c=1

Eb’c > 0 (7)

rkl + (1− ηijkl)N ≤ sij , Ji ∈ J, j = 1, 2, ..., oi,

a∑
c=1

Ebc > 0 (8)
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∑
k

∑
l

ηijkl = 1, Ji ∈ J, j = 1, 2, ..., oi,

a∑
c=1

Ebc > 0 (9)

where

ηijkl =

{
1, if Oi,j is processed on Mk operated by Wl

0, otherwise
(10)

ζijk−i’j’k =

{
1, if Oi,j is processed before Oi’j’ on Mk

0, otherwise
(11)

ξkl−k’l =

{
1, if Mk is operated before Mk’ by Wl

0, otherwise
(12)

Equation 4 defines the makespan C. Equation 5 ensures that the precedence
constraints are not violated. Equation 6 guarantees that a machine can process
only one operation at a time. Equation 7 ensures that a worker can only operate
one machine at a time. Equation 8 ensures that an operation cannot start unless
the assigned resources are ready. Equation 9 guarantees that each operation is
assigned to only one compatible machine operated by one eligible worker.

2.2 The Improved Biggest Threat First Algorithm

The new Improved Biggest Threat First algorithm, generates the blacklist B
as in its predecessor [20], but it introduces a penalty at the resource allocation
process, i.e., when generating the deployment vectorD. The penalty is calculated
based on the expected workload of each eligible worker and machine.

The new algorithm starts by estimating the expected worker utilization, v.
This utilization is estimated as a linear combination of the operations processing
times p with an allocation multiplication factor, x. xcl is a fraction, whose nu-
merator is the number of eligible resource pairs for operation c with worker l as
the chosen operator, and whose denominator is the number of eligible resource
pairs for operation c. The algorithm then calculates the penalized minimum fea-
sible time hl at which operation c could be allocated to worker l. The chosen
worker z is the one with the lowest h. A similar procedure is taken to choose
machine y for allocation. At each step, operation Bc is put into the schedule at
time step min(f) allocated to resource pair Dc.

3 Results

The xBTF was tested for a widely used benchmark dataset, the MK1-10 [21]. A
hundred test samples were generated for each of the MK1-10 benchmark dataset
problem instances. The types of instances in the dataset are described in table
2, with information regarding the number of jobs, machines and workers, the
number of operations per job, the maximum number of equivalent machines per
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Table 1. Nomenclature

Sets
e Set of eligible worker-machine resource pairs
J Set of jobs, J={J1, ..., Jn}
M Set of machines, M={M1, ..., Mm}
W Set of workers, W={W1, ..., Ww}

Variables
fd Minimum feasible time for resource pair d
g c-th operation in the Blacklist
h Penalized minimum feasible time
qi Remaining sum of processing times of job i
rkl Ready time of machine Mk operated by worker l
sij Starting time of operation Oij

v Expected worker utilization
y Chosen machine
z Chosen worker
B Blacklist
C Makespan
D Deployment
L Lower Bound
Oij j-th operation of job i
meq maximum number of equivalent machines per operation
η Operation allocation flag
σi Number of processed operations from job i
ζ Operation sequence flag
ξ Machine sequence flag

operation and the processing times of each operation. The full test dataset is
available at https://github.com/Ricardo-Mag/hundredMK1-10.

The KGFOA was chosen as a state-of-the-art metaheuristic for comparison,
as it is the method highlighted in the related work section with the most number
of citations and it proved to achieve an outstanding performance for DRC-FJSSP
problems. It was implemented as described in [10] for 1000 generations.

The average performance of all algorithms was assessed for each group of
instances in the dataset, as well as their respective standard deviations. These
results are presented in table 3. The distance to bound represents the percentual
distance of the makespan to the Lower Bound. The lower bound of a job shop
problem is a theoretical threshold which is guarantied to be smaller or equal to
the optimal makespan. It is the sum of all operations processing times divided
by the total number of units of the bottleneck resource, in this case the number
of workers.

First and foremost, the xBTF utterly outperforms the KGFOA for all in-
stances and metrics. These outstanding results show that this algorithm can
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Algorithm 1 Penalized generation of the Deployment and scheduling

Initialize empty schedule
for c = 1, ..., a do

g = Bc

for l = 1, ..., w do
vl =

∑a
c=1 xclpc ▷ vl = NaN , if worker l is not eligible

end for
for l = 1, ..., w do

fl = MFT(g, l) ▷ Check worker l availability and job precedences
hl = fl + (max(v)− vl)

end for
z = argmin(h)
for k = 1, ...,m do

vk =
∑a

c=1 xckpc ▷ vk = NaN , if machine k is not eligible with worker z
end for
for k = 1, ...,m do

fk = MFT(g, k, z) ▷ Check resource (k,z) availability and job precedences
hk = fk + (max(v)− vk)

end for
y = argmin(h)
Dc = (y - 1)w + z
Put Bc in schedule at min(f) in Dc

end for

Table 2. MK1 to MK10 instances.

n m w oi meq pij
MK1 10 6 4 5-7 3 1-7

MK2 10 6 4 5-7 6 1-7

MK3 15 8 6 10 5 1-20

MK4 15 8 6 3-10 3 1-10

MK5 15 4 3 5-10 2 5-10

MK6 10 15 8 15 5 1-10

MK7 20 5 4 5 5 1-20

MK8 20 10 6 10-15 2 5-20

MK9 20 10 6 10-15 5 5-20

MK10 20 15 8 10-15 5 5-20
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Table 3. Average KGFOA, BTF and xBTF test results and standard deviation.

Makespan Distance Bound (%) Exec Time (s)

KGFOA 72.9 ± 7.3 21.1 ± 8.3 264.47 ± 19.05
MK1 BTF 67.9 ± 6.1 12.6 ± 4.7 0.20 ± 0.01

xBTF 68.0 ± 5.8 12.9 ± 4.2 0.21 ± 0.01

KGFOA 75.1 ± 7.4 23.4 ± 9.5 273.16 ± 16.72
MK2 BTF 64.0 ± 4.6 5.0 ± 2.8 0.21 ± 0.01

xBTF 63.9 ± 4.3 4.9 ± 2.4 0.22 ± 0.01

KGFOA 367.6 ± 23.9 40.0 ± 7.6 998.66 ± 20.65
MK3 BTF 289.1 ± 12.1 10.1 ± 2.7 0.33 ± 0.02

xBTF 286.5 ± 11.4 9.1 ± 2.3 0.38 ± 0.02

KGFOA 124.1 ± 15.4 38.0 ± 8.3 522.20 ± 67.22
MK4 BTF 109.9 ± 12.9 22.3 ± 6.9 0.25 ± 0.02

xBTF 107.7 ± 12.0 19.8 ± 5.5 0.27 ± 0.02

KGFOA 322.9 ± 22.3 14.0 ± 3.8 661.80 ± 57.21
MK5 BTF 308.2 ± 19.9 8.9 ± 3.7 0.27 ± 0.02

xBTF 311.4 ± 20.3 10.0 ± 3.4 0.29 ± 0.02

KGFOA 172.4 ± 13.6 66.9 ± 10.8 1125.95 ± 16.35
MK6 BTF 126.9 ± 6.4 22.9 ± 4.4 0.35 ± 0.02

xBTF 127.3 ± 6.4 23.2 ± 4.1 0.40 ± 0.02

KGFOA 313.5 ± 21.5 19.0 ± 5.7 536.50 ± 13.59
MK7 BTF 274.0 ± 15.8 4.0 ± 2.1 0.26 ± 0.01

xBTF 273.0 ± 14.8 3.6 ± 1.5 0.27 ± 0.02

KGFOA 662.3 ± 32.1 28.3 ± 4.2 2089.35 ± 114.43
MK8 BTF 586.5 ± 23.0 13.6 ± 3.3 0.47 ± 0.03

xBTF 587.8 ± 25.1 13.9 ± 3.5 0.52 ± 0.03

KGFOA 673.5 ± 34.5 29.0 ± 3.8 2146.64 ± 109.55
MK9 BTF 542.3 ± 22.0 3.9 ± 1.0 0.51 ± 0.03

xBTF 544.4 ± 22.3 4.3 ± 1.1 0.57 ± 0.03

KGFOA 545.2 ± 29.9 39.7 ± 5.0 2192.05 ± 121.28
MK10 BTF 416.7 ± 17.8 6.8 ± 1.6 0.51 ± 0.03

xBTF 416.7 ± 17.4 6.8 ± 1.6 0.60 ± 0.04

Table 4. BTF vs xBTF p-value test results.

p-values Makespan Distance to Bound (%) Execution Time (s)

MK1 0.85 0.66 <0.05

MK2 0.88 0.74 <0.05

MK3 0.11 <0.05 <0.05

MK4 0.20 <0.05 <0.05

MK5 0.27 <0.05 <0.05

MK6 0.72 0.61 <0.05

MK7 0.65 0.16 <0.05

MK8 0.71 0.62 <0.05

MK9 0.50 <0.05 <0.05

MK10 1.00 0.99 <0.05
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perform at a top notch level. Also, its extremely low execution time proves that
it can also be applied for rescheduling in dynamic scenarios.

Secondly, xBTF outperforms the BTF for problems with a high resource
workload. The p-values of the results between the BTF and xBTF were calcu-
lated and are presented in table 4, where all the significant p-values (≤ 0.05)
are highlighted. For the Distance to Bound metric, there are four problems for
which the p-values are significant. The xBTF proves to be superior at solving
two of them (MK3 and MK4). The MK3 and MK4 are two of the most complex
problems of the MK1-10 dataset, as they have highly variant processing times
and a small number of operations. This can lead to heavy workloads for certain
resources because the heuristic might not prioritize their availability, resulting
in long processing time tasks being scheduled last, leaving insufficient room for
smaller tasks to balance the workload on those resources.

This complexity can be verified considering the very high Distance to Bound
results that the BTF had for these problems (≥ 10%). For every problem where
the BTF scores greater than 10% at the Distance to Bound metric, the xBTF
is either statistically superior or equivalent, which makes it a better alternative
for this kind of complex problems with high resource workloads.

Only at the execution times there is a clear superiority of the BTF algorithm.
Which comes as no surprise, since, unlike the xBTF, it does not calculate resource
allocation penalties. Even so, the execution times of the xBTF are still so small
(≤ 0.60 s) that this superiority has no practical meaning. In fact, the execution
times are so small that it is reasonable to consider running both algorithms for
a new unknown problem and choose the best of these two solutions.

4 Conclusions

The xBTF algorithms was presented in this paper and its performance evaluated.
With xBTF a resource allocation penalty was introduced trying to achieve better
results at the most complex problems with higher resource demands.

The preliminary results have shown that the xBTF utterly outperforms a
high performance metaheuristic, the KGFOA, and it proved to be superior at
problems with higher resource demands, for which the BTF scored extremely
high at the Distance to Bound metric.

Regarding the execution times, the BTF and xBTF are so fast that there
is no practical difference between applying one or the other. In fact, it can be
extremely easy and handy to run both algorithms for a new unknown problem
and elect the best solution as the final schedule. These very low execution times
also make the xBTF algorithm an excellent solution for rescheduling in dynamic
job shop problems.

The tremendous performance revealed by the xBTF at solving DRC-FJSSP’s
may help reignite some of the scientific interest in heuristic algorithms. Keeping
their well known advantages of execution speed, in a world where dynamic indus-
trial scenarios are becoming more and more important, this heuristic surprising
performance results may open new research opportunities.
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Future work may assess the xBTF performance in problems with different
performance metrics, such as the weighted tardiness. It should be easy to adapt
it for these problems, considering a new threat prioritization rule: the due date
minus the total remaining processing times of jobs.

Moreover, research may be carried to apply the xBTF to problems where
the processing time of operations varies with the allocated worker-machine pair.
Additionally, DRC-FJSSP’s where workers do not operate machines throughout
the whole processing times of the operations (partial allocation) are also quite
interesting for future evaluation of the performance of the algorithm. Considering
its nature and design it should be capable of addressing these problems without
significant changes.
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