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Abstract. The interpretation of the classification result obtained with
a fuzzy decision tree is a not-so-easy task as the meaning of the ob-
tained degrees of membership may depend on the type of fuzzy par-
tition involved, ranging from probabilistic to possibilistic readings. Hy-
brid probabilistic-possibilistic mixtures can provide an interesting way to
clarify the underlying components of such a classification result. In this
paper, based on the hybrid-mixture model, a new approach is proposed
to analyse the result of the classification with a fuzzy decision tree that
enhance the explainability of this model.

1 Introduction

The classification of an object with a fuzzy decision tree (FDT) provides a fuzzy
subset of the set of labels. The use of this model has been praised highly for its in-
terpretability both in the expression of the knowledge (rules) and also in the way
the decision is build from the paths. It is nowadays a commonly used machine
learning model in the domain of eXplainable Artificial Intelligence (XAI) [1].

However, even if it is easy to explain the decision provided by an FDT for a
given object, its result cannot be interpreted by itself. Indeed, the classification of
an object with a FDT produces a fuzzy subset of the set of labels (i.e., decision)
that is often interpreted (and thus used) in two opposite ways:

– if the decision must be crisp: the label with the highest membership degree
is selected to be the decision associated with the object. Sometimes, the
difference between the highest degree and the others is used as a measure of
confidence in this decision.

– the decision could be fuzzy: the obtained fuzzy set is kept as it is and its
analysis provides information about the existence of a possible extra un-
precedented decision, not present in the existing set of labels.

Moreover, a strong underlying assumption is made about the result of the
classification: in the first case, it is considered as a probability distribution over
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the set of labels, especially if the notion of fuzzy partition adopted is the one of
Ruspini [11]; in the second case, it is considered as a possibility distribution over
this set. Even if this assumption is fundamental to the use of a FDT, it is not
usually set and it depends on the application domain. Thus, this leads to lessen
the interpretability and the justification of the decision given by the tree.

To alleviate this drawback, an interesting task is to offer an approach to bet-
ter analyse the result of the classification with a FDT and to propose its iden-
tification as a probability distribution, a possibility distribution, or, perhaps, a
combination of the two. Indeed, such an approach to interpret the classification
result of a FDT can bring out an increase of interpretability to this model. To
tackle this, we place ourselves in the decision making under uncertainty domain
where a decision tree is also a model used to classify alternatives or decisions
when the state of affairs is ill-known. Here, the mathematical expectation was
proposed by von Neuman and Morgernstern to calculate the utility for proba-
bilistic trees [14]. Dubois and Prade [6] proposed using optimistic and pessimistic
possibilistic criteria to calculate utilities of possibilistic lotteries. Both methods
satisfy the 3 essential properties required to optimise a decision tree: dynamic
consistency, consequentialism and lottery reduction. The last one is important
to reduce probability trees to simpler ones and calculate the degree of a class.

Beyond possibilistic and probabilistic mixtures, only a form of hybridisation
is possible such that the mixture is possibilistic below a certain threshold and
probabilistic above it. This result is presented in [4]. This model, named hybrid
probabilistic-possibilistic mixtures, depends on a parameter α ∈ [0, 1]. Recently
in [3] a decision model based on probability-possibility mixtures was proposed to
evaluate strategies (conditional plans that assign an action to each state where
a decision has to be made) in sequential decision making. This model comes
down to a convex combination of a possibility distribution and a probability
distribution. Moreover in [3] it is presented how to retrieve, in a generally unique
way, both distributions from a generalized lottery with weights in [0, 1] whose
sum is at least 1.

The aim of this paper is to introduce an approach to analyse the result of
the classification with a FDT by means of the use of the hybrid probabilistic-
possibilistic mixtures. Thus, a clearer explanation of the decision could be pro-
posed to the user. The paper is organised as follows. Section 2 deals with a brief
reminder of fuzzy decision trees. Section 3 is devoted to hybrid probabilistic-
possibilistic mixtures and their elicitation. Section 4 presents the hybrid p-π
interpretation of FDT. The final Section 5 suggests some future work.

2 Fuzzy decision trees

A fuzzy decision tree is a graphical and hierarchical representation of a fuzzy
rule base. Nowadays, it is particularly used in supervised machine learning where
it could be built up from a training set summarized as a set of decision rules.
Afterwards, it is used for either a characterisation of the training set, or a classi-
fication task. Characterisation of the training set is a way to highlight important
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features, their values and their link to the decision. The classification task aims
at assigning a decision (viewed as a class) to any forthcoming example only
known by means of its values for each descriptive feature, and whose class is
undecided yet.

In the following, after the presentation of fuzzy decision tree as a rule base,
we present how the classification is performed with such a tree.

2.1 Fuzzy decision tree as a rule base

A (fuzzy) decision tree is composed of nodes, edges, and leaves: a node is asso-
ciated with a feature4; an edge goes from a node to another node or to a leaf, it
is directed from its departure node to its target (node, or leaf) and it is labelled
with a particular value, or set of values, of the feature of the departure node;
and a leaf is associated with a particular variable, the so-called decision. In a
FDT, features and decision are linguistic variables [16], edges are labelled with
(fuzzy) labels associated with a membership function, and a leaf is associated
with either a crisp or a fuzzy term-set.

A path from the root to a leaf of a FDT is composed of a sequence of nodes
linked by edges and it is equivalent to an if...then rule. The premises for such
a rule r are composed of values of features, and the conclusion is the value that
labels the leaf of the path. For instance, a rule with p premises:

if i1 is vi1 and ...and ip is vip then the decision is yr,
with i1, . . . , ip several linguistic variables, vj a particular value of the linguistic
variable j associated with the membership function µvj , and yr a particular
value of the decision associated with the membership function µyr . Membership
degrees are valued independently at each node, they only depend on the values
of object x for the features present in the nodes.

Sometimes, the decision is associated with several values, in this paper, for
the sake of clarity, we focus on the case where a decision is only associated with
a unique value.

In some contexts, a FDT can be described by a human expert according to
her/his knowledge, but more commonly, the FDT is automatically built up from
a set of objects. Indeed, in supervised machine learning, FDT is built up from a
training set X that is a set of n objects x described by means of d features from
F = {1, 2, . . . , d} and associated with a label (or class) from a set Y [9,13,15]. In
our context, features are linguistic variables, and terminal labels are linguistic
values. Each label corresponds to a decision. The fuzzy partitions of the linguistic
variables can be either provided as domain knowledge to the FDT construction
algorithm, as for instance in [15], or they can be automatically built from training
set during the learning process, as for instance in [9].

In the first case, it is usual to define a Ruspini fuzzy partition [11] associated
with the linguistic variables since such a kind of partitions ensures a good ex-
plainability [1] of the FDT for the user, particularly in monotone fuzzy decision
tree as it is shown in [10]. In the second case, the fuzzy partition could be of any

4 Features are sometimes called variables, or attributes according to the domain.
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kind, satisfying only the constraints that the intersection of the cores of any pair
of fuzzy sets is empty and the union of their supports covers the whole universe
of values of the variable (e.g., as in [7]).

Height

Age

y1

young

y2

mature

small

y3

medium

y1

large

Fig. 1. Fuzzy decision tree (left) and Ruspini fuzzy partition for feature Height (right)

Example 1. Let F be the set {Height, Age} of features, with {small, medium,
large} the values of the feature Height and {young, mature} the values of Age.
An instance of fuzzy decision tree on F with a Ruspini partition on the variable
Height are shown in Fig. 1. This FDT is equivalent to a fuzzy rule base with
4 rules, each one associated with a path in the tree. For instance, the path on
the left of the tree, leading from the root note Height to the leaf that contain
the label y1 gives the following rule:
if Height is small and Age is young then the decision is y1. ◦

2.2 Classification with a fuzzy decision tree

Let x = (x1, x2, . . . , xd) be an object to be classified by means of a fuzzy decision
tree T . This object is described by means of d values each associated with a
particular feature. The matching degree of x with the path r of the tree with pr
premises is valued with a t-norm ⊤:

µr(x) = ⊤j∈{i1,...,ipr}µvj (xj).

The path r is leading to a leaf associated with a label y ∈ Y, as a consequence, x
is associated with the label y with the degree µr(x) according to r.

All the K leaves could be reached during the classification of x, each label
present in a leaf is thus associated with a degree related to its path. To obtain
the global membership degree of x to each label y ∈ Y, an aggregation of all
these degrees by means of a t-conorm is used:

∀y ∈ Y, µy(x) = ⊥{r∈{1,...K} | yr=y}µr(x).

Thus, we have: ∀y ∈ Y, µy(x) = ⊥{r∈{1,...K} | yr=y}⊤j∈{i1,...,ipr}µvj (xj).

Usually, following Zadeh, the minimum t-norm and the maximum t-conorm are
chosen to compute these membership degrees:
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∀y ∈ Y, µy(x) = max
{r∈{1,...K} | yr=y}

min
j∈{i1,...,ipr}

µvj (xj). (1)

Other pair of dual t-norm-t-conorm can be used, for instance, Łukasiewicz
or probabilistic ones. If Ruspini partitions are used, choosing the product for ⊤
and the sum for ⊥, then for each input x, the FDT turns into a probability tree,
the distribution of weights (µy1(x), . . . , µyR

(x)) is such that
∑R

r=1 µyr (x) = 1
and can be interpreted as a probability distribution.

Height
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y2
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0

Fig. 2. A fuzzy decision tree on F

Example 2. We consider the FDT presented in Example 1 and shown in Fig. 2.
The classification are based on the minimum t-norm and maximum t-conorm.
The object x, with value xH for feature Height and xA for Age, to classify has
been compared to all nodes. We found, for all edges, the membership degrees of
x recalled in Fig. 2: x has
• a Height xH that is small with a degree µsm(xH) = 0.25, medium with a
degree µme(xH) = 0.75,
• an Age xA that is young with a degree µyo(xA) = 0.8 and mature with a degree
µma(xA) = 0.2.

According to the tree, x is associated to the leaf of the first path with the
degree µr1(x) = min(µsm(xA), µyo(xH)) = 0.25, thus x is associated to label y1
(the label in the leaf) with the membership degree µr1(x). In the same way, we
value the membership degree of x to the other path: µr2(x) = 0.2, µr3(x) = 0.75,
µr4(x) = 0. Paths r1 and r4 lead to label y1, thus the membership degree of x to
y1 is valued as µy1

(x) = max(µr1(x), µr4(x)) = max(0.25, 0) = 0.25. Similarly,
x is associated to y2 with the degree µy2

(x) = 0.2, and to y3 with the degree
µy3

(x) = 0.75.
Summing up, the label associated to x with a classification with the FDT is

the fuzzy set 0.25|y1+0.2|y2+0.75|y3. If a decision has to be taken between one
of the labels, then label y3 could be chosen as it is associated with the highest
membership degree. It could eventually be associated with a confidence degree
valued by means of the obtained membership degree of y3 and the other ones. For
instance, the confidence degree could be valued as 0.75−max(0.25, 0.2) = 0.5.
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If the decision could be handled as it is, an analysis of the fuzzy set could
be performed. Here, it highlights the fact that x is in an area in-between the 3
classes, strongly in y3, and also close to y1 and y2. Possibly, a new kind of
decision, combining y1, y2, and y3 could be drawn. To illustrate this, let the
labels be diseases, with y1 the flu, y2 the bronchitis, and y3 the pneumonia. In
the first case, the decision leads to predict that patient x has a pneumonia with a
good confidence degree. In the second case, the decision may highlight a possible
new kind of disease never identified in the past. ◦

In the following section, the model of hybrid probabilistic-possibilistic mix-
tures is applied to the classification result of the FDT to better interpret it.

3 Hybrid probabilistic-possibilistic mixtures

In this section we present the hybrid probabilistic-possibilistic mixtures (”p-π
mixtures” for short) introduced in [4] and their elicitation procedure introduced
in [3]. The aim of p-π mixtures is to represent a set of uncertainty values as a
convex combination of a probability distribution and a possibility distribution,
a weighted average that weights each of the two distributions so as to lay bare
its importance within the original distribution. As a consequence, it becomes
possible to understand clearly what is the underlying nature of the uncertainty
disptribution, providing a better explainability. Hereafter, we first introduce the
basis of p-π mixtures, and secondly we present their elicitation.

3.1 Definition and properties of the p-π mixtures

Let X = {1, · · · ,m} be a finite set and S be a t-conorm on [0, 1]. S is a binary
operation S : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1]: S is commutative,
associative, increasing according to both arguments, and satisfies the boundary
condition S(x, 0) = x. In the following, we consider non additive measures ρ :
2X → [0, 1] that are S-decomposable [5], i.e., such that ρ(∅) = 0, ρ(X) = 1 and
for all disjoint A,B ⊆ X, ρ(A ∪B) = S(ρ(A), ρ(B)).

To be used as in probability theory, this model needs to offer a counterpart
of the notion of probabilistic independence. So the following property is defined:
two events A,B ⊆ X are called ⋆-separable with respect to a decomposable non-
additive measure ρ if there exists a t-norm ⋆ such that ρ(A ∩B) = ρ(A) ⋆ ρ(B).
In probability theory, if each of two disjoint events A,B ⊆ X are independent
of another event C, then A ∪B is independent from C as well. This property is
essential for the reduction of probability trees into simple probability distribu-
tions. Enforcing this property on S-decomposable non-additive measures leads
to require the following distributivity property [4]: if A ∩B = ∅,

ρ(A ∪B) ⋆ ρ(C) = S(ρ(A), ρ(B)) ⋆ ρ(C) = S(ρ(A) ⋆ ρ(C), ρ(B) ⋆ ρ(C)) (2)

since (A ∪B) ∩C = (A ∩C) ∪ (B ∩C). The only (t-conorm, t-norm) pairs that
satisfy this property are known to be such that [8]: ∃α ∈ [0, 1],∀x, y ∈ [0, 1],
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Sα(x, y) =

{
min(1, x+ y − α) if x > α and y > α,

max(x, y) otherwise.
(3)

x ⋆α y =

{
α+ (x−α)(y−α)

1−α if x > α and y > α,

x⊤y otherwise,
(4)

where ⊤ is a triangular norm. Note that we have Sα(x, y) = max(x, y,min(1, x+
y − α)). In the following we use the minimum operation for ⊤. Note that the
t-conorm Sα and t-norm ⋆α are not dual each other.

Decomposable non-additive measures allowing for the reduction of proba-
bility trees, i.e., satisfying the property (2) are denoted by ρα such that, as
explained in [4],

ρα(A) = Sα
xi∈A ραi (5)

where ραi = ρα({xi}), since Sα is associative.
It turns out that set-functions ρα can be rewritten as Shafer’s plausibility

functions [12] of the form ρα(A) = αΠ(A)+(1−α)P (A), where Π is a possibility
measure, P is a probability measure, and α is a fixed parameter. In particular,
ραi = απi + (1 − α)pi. Moreover, the associated distributions p and π must
satisfy the constraint pi = 0 if πi < 1 (see [2] for more details). Note that
ρα is a possibility distribution if α = 1 and a probability distribution if α = 0.
Intuitively, the interpretation is that we have probabilities only on the completely
possible states. To be more precise we have the following equivalences.

– ραi > α is equivalent to pi > 0 and these conditions imply πi = 1.
– ραi = α is equivalent to πi = 1 and pi = 0.
– ραi < α is equivalent to πi < 1 and pi = 0.

We conclude this part with the normalisation condition that the coefficients
ραi must satisfy. We denote C+

α the set {i : ραi > α} = {i : pi > 0}. If C+
α ̸= ∅, the

normalisation condition ρα(X) = 1 takes the form:
∑

i∈C+
α
ραi −α(|C+

α |−1) = 1.
This condition can also be written:

∑m
i=1 max(0, ραi − α) = 1− α. Note that:

– If α = 0 (ρ0 is a probability measure), the normalisation condition becomes∑m
i=1 ρ

0
i = 1.

– If α = 1, (ρ1 is a possibility measure), the normalisation condition becomes
maxmi=1 ρ

1
i = 1.

3.2 Elicitation of p-π mixtures

This section is a brief reminder of the result presented in [3] where the hybrid
model p-π is used to interpret a distribution of weights ρ = (ρ1, . . . ρm) ∈ [0, 1]m

with m ≥
∑

i∈[m] ρi ≥ 1. We assume that ρ satisfies neither the normalisation
condition of probability distributions nor the one for possibility distributions.
Usually, two normalisation options could be investigated:
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1. dividing the weights by their sum to build a probability distribution;
2. dividing the weights by their maximum to make a possibility distribution.

Here, we are going to interpret a distribution of weights as an hybrid p-π distri-
bution without altering this distribution. As shown in [3], for any distribution
of weights ρ = (ρ1, · · · , ρm) ∈ [0, 1[m, there exists a unique parameter value
α ∈ [0, 1], a unique possibility distribution π and a unique probability distri-
bution p such that ρi = απi + (1 − α)pi for all i ∈ X. This distribution is
denoted by ραi and it is calculated as follows. We consider n ≤ m such that
ρ(n) < · · · < ρ(1) with R(i) = {j|ρj = ρ(i)}. Note that if α ∈ [ρ(i+1), ρ(i)) then
{i : ρi > α} = ∪i

j=1R(j). We have the following result.

Theorem 1 ([3]). We consider m weights ρj ∈ [0, 1], j = 1, . . . ,m such that∑m
j=1 ρj ≥ 1 and maxmj=1 ρj < 1. There exists a unique value α, an integer i0

such that ρ(i0+1) ≤ α < ρ(i0), a unique possibility distribution π and a unique
probability distribution p such that ρi = απi + (1− α)pi ∀i with

– α solution of
∑m

i=0 max(0, ραi − α) = 1− α.
– ∀i ≥ i0 + 1 ∀j ∈ R(i), πj =

ρj

α and pj = 0

– ∀i ≤ i0 ∀j ∈ R(i), pj =
ρj−α
1−α and πj = 1.

Note that if maxmj=1 ρj = ρ(1) = 1, and R(1) = {i∗} then any α ∈ [ρ(2), 1] may be
chosen and we have ρi = απi +(1−α)pi with pi∗ = 1 and πj = ρj/α, for j ̸= i∗.

4 Hybrid p-π mixtures for fuzzy decision trees

This section presents how to use the hybrid p-π mixtures in order to obtain a p-π
decision tree. The aim is to decompose a FDT as a combination of a probabilistic
tree and a possibilistic tree when it is used to classify an object. To this end, we
are going to use the above elicitation of a p-π mixture.

4.1 The model

We consider an example x = (x1, · · · , xn) to be classified using a FDT. The
object x is compared to all nodes and we find, for all edges, the membership
degrees of x according to the possible fuzzy classes.

For instance let us consider a feature Fk ∈ F with its linguistic referential
L = {lk1, lk2, ...}. Object x has an evaluation xk according to Fk. We get some
membership degree on each edge denoted by ρlki

(xk) ∈ [0, 1], for all lki ∈ L. We
consider all the degrees involved in the FDT, and we denote η the number of its
edges and [η] the set {1, · · · , η}. Edges are numbered such that the degrees ρk,
k ∈ [η] are in decreasing order. We apply Theorem 1 to elicit the parameter α,
the probability p and the possibility measure π over all edges.

The matching degree of x with the path r of the tree with pr premises is
valued with ⋆α. In order to have friendly notation, we denote the vertices of the
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path r by I = {i1, · · · , ikr
}, and ρi1 , · · · , ρikr

are the degrees present in the path.
Hence the matching degree of x with the path r is:

ρr(x) = ⋆αi∈Iρli(xi).

The path r is leading to a leaf y. The global membership degree of x to each
label y is an aggregation of all these degrees ρr(x) for all path r arriving to the
leaf y. We denote this set of path by Ry.The aggregation is made with Sα. One
obtains the global membership degree of x to y as follows:

ρy(x) = Sα
r∈Ry

ρr(x).

From equations (3) and (4), it is worth noticing that if for each path at least
one membership degree is less than parameter α the presented method is the
classical one involving the minimum t-norm and the maximum t-conorm.

4.2 Examples

This section presents examples that illustrate the various cases we can encounter.
The first one is equivalent to the classical aggregation with the minimum and
the maximum as t-norm and t-conorm respectively. The second one has degrees
greater than the parameter α. The last one considers a weight 0.5 at each node
of the FDT.
Example 3. We use again the FDT presented in Fig. 1, where F is the set of
features {Height, Age}, with {small, medium, large} the linguistic referential of
the feature Height and {young, mature} the one of Age. Let x = (xH , xA) be the
example to classify, with its membership degrees to each feature terms valued
according to a generalised (i.e. non-Ruspini) partition (the sum of all degrees
is not equal to 1): the Height xH of x is small with a degree ρsm(xH) = 0.25,
medium with a degree ρme(xH) = 0.4, and large with a degree ρla(xH) = 0.75.
The Age xA of x is young with a degree ρyoung(xA) = 0.8, and mature with
a degree ρma(xA) = 0.2. All these degrees are involved in the FDT. Edges
are numbered such that the degrees are in decreasing order. So one obtains
ρ1 = 0.8, ρ2 = 0.75, ρ3 = 0.4, ρ4 = 0.25 and ρ5 = 0.2.
Let us calculate α such that ρ = (ρ1, ρ2, ρ3, ρ4, ρ5) is an α p-π mixture.

– Let us suppose that i = 1, α ∈ [0.75, 0.8). Then C+
α = {1}.

The normalisation condition is
∑

i∈C+
α
ραi − α(|C+

α | − 1) = 0.8 ̸= 1 so i ̸= 1.
– Let us suppose that i = 2, α ∈ [0.4, 0.75). Then C+

α = {1, 2}.
The normalisation condition is 0.8 + 0.75− α = 1 i.e. α = 0.55 ∈ [0.4, 0.75)

So α = 0.55 is the solution and i0 = 2.

– ∀j ≥ 3 πj =
ρj

α and pj = 0

– ∀j ≤ 2 pj =
ρj−α
1−α and πj = 1.
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i 1 2 3 4 5

πi 1 1 0.4
0.55

0.25
0.55

0.2
0.55

pi
0.25
0.45

0.2
0.45

0 0 0

i 1 2 3 4 5

πi 1 1 1 1 0.5
0.76

pi 0.5 1
6

1
6

1
6

0

Table 1. Elicitation of p and π in Example 3 (left) and Example 4 (right)

We have ρi = 0.55πi + 0.45pi and the degrees of the different classes y are
calculated using S0.55 and ⋆0.55 defined as follows

S0.55(x, y) =

{
min(1, x+ y − 0.55) if x > 0.55, y > 0.55

max(x, y) otherwise,

x ⋆0.55 y =

{
0.55 + (x−0.55)(y−0.55)

0.45 if x > 0.55 and y > 0.55
min(x, y) otherwise

We obtain the following degrees for classes y1, y2 and y3: the degree for
y3 is 0.4, the degree for y2 is 0.25 ⋆0.55 0.2 = 0.2, and the degree for y1 is
S0.55(0.75, 0.25 ⋆0.55 0.8) = S0.55(0.75, 0.25) = 0.75. The complete elicitation of
p and π is shown in Table 1. Note that, in each calculation, one of the degrees is
less than 0.55, so the results are similar with Zadeh’s max−min connectives. ◦

Example 4. As in the previous case, we use the FDT presented in Fig. 1 with dif-
ferent membership degrees. The Height xH of x is small with a degree ρsm(xH) =
0.8, medium with a degree ρme(xH) = 0.8, and large with a degree ρla(xH) = 0.9.
The Age xA of x is young with a degree ρyoung(xA) = 0.8, and mature with a
degree ρma(xA) = 0.2. We consider all degrees involved in the FDT. Edges are
numbered such that the degrees ρk, k ∈ [η], are in decreasing order. So one
obtains ρ1 = 0.9, ρ2 = 0.8, ρ3 = 0.8, ρ4 = 0.8 and ρ5 = 0.2.
Let us calculate α such that ρ is a p-π mixture.
Let us suppose that i = 1, α ∈ [0.8, 0.9). The normalisation condition is∑

i∈C+
α
ραi − α(|C+

α | − 1) = 0.9 + 0 ̸= 1, as a consequence i ̸= 1.
Let us suppose that i = 2, α ∈ [0.2, 0.8). The normalisation condition is 2.4 +
0.9− 3α = 1 i.e. α = 0.76 ∈ [0.2, 0.8). So α = 0.76 is the solution and i0 = 2 and
we have ∀j ≥ 3, πj =

ρj

α and pj = 0; and ∀j,≤ 2 pj =
ρj−α
1−α and πj = 1.

We have ρi = 0.76πi + 0.24pi and the degrees of the classes y are calculated
using S0.76 and ⋆0.76 defined as follows

S0.76(x, y) =

{
min(1, x+ y − 0.76) if x > 0.76, y > 0.76

max(x, y) otherwise,

x ⋆0.76 y =

{
0.76 + (x−0.76)(y−0.76)

0.24 if x > 0.76 and y > 0.76
min(x, y) otherwise

We obtain the following degrees for the classes y1, y2 and y3: the degree for
y3 is 0.8, the degree for y2 is 0.2 and the degree for y1 is 0.91. The complete
elicitation of p and π is shown in Table 1. ◦
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Height

Age

y1

young ρ1 = 0.5

y2

mature ρ4 = 0.5

small ρ3 = 0.5

y1

large ρ2 = 0.5

Fig. 3. A completely uniform FDT

Example 5. We consider the FDT presented in Fig. 3. If α < 0.5, then the
normalisation condition is 4(0.5 − α) = 1 − α i.e., α = 1

3 . We have 1
3 < 0.5 so

α = 1
3 is accepted. For all i we have ρ > α so for all i, πi = 1 and pi =

0.5− 1
3

1− 1
3

= 1
4 .

So we have π1 = π2 = π3 = π4 = 1 and p1 = p2 = p3 = p4 = 1
4 with α = 1

3 .
We have ρi =

1
3πi+

2
3pi and the degrees of the different class y are calculated

using S
1
3 and ⋆ 1

3
defined as follows

S
1
3 (x, y) =

{
min(1, x+ y − 1

3 ) if x > 1
3 , y > 1

3

max(x, y) otherwise,

x ⋆ 1
3
y =

{
1
3 +

(x− 1
3 )(y−

1
3 )

2
3

if x > 1
3 and y > 1

3

min(x, y) otherwise

We obtain the degree 13
24 (> 0.5) for leaf y1, and the degree 3

8 (< 0.5) for leaf y2.
Even with uniform FDT, this does not lead to a uniform distribution of degrees
across all classes as y1 is present in a greater number of leaves than y2. ◦

From the above examples, it is clear that the larger the weights ρi in the fuzzy
decision tree, the closer we get to a possibilistic interpretation of the degrees
of membership. Another interpretation concerns the degrees calculated for the
leaves. These degrees are between those obtained with possibilistic trees and
those obtained with probabilistic trees.

5 Conclusion and future work

In this paper, a new approach is introduced to analyse the result of the clas-
sification with a FDT in order to increase its explainability. This approach is
based on the use of the hybrid probabilistic-possibilistic mixtures and provides
a new way to offer an explanation of the decision to the user and help her/him
to choose the best use of the classification result. Indeed, this approach offers
an interpretation of the result of the classification with a FDT as a probability
distribution, a possibility distribution, or a combination of the two. We focus
on an interpretation with the hybrid p-π mixture that is done globally, with the
consideration of the membership degrees of all edges as a whole.
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In future work, an interpretation of fuzzy labels as p-π mixtures will be
investigated. The question is then how to compute these fuzzy labels according
to the choice of the (t-conorm, t-norm) pair. Another perspective is a layered
approach where the interpretation is made separately at each node. The question
is then how to aggregate various α’s that might appear. A last perspective is to
define a family of partitions that itself satisfy the normalisation condition for a
given α as the Ruspini partition satisfy the probability normalisation.
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