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Abstract. This paper focuses on the development of two prediction
models for a solar photovoltaic system that is part of a multimachine
industrial manufacturing plant. These models are part of the set of mod-
els that form the digital twin of their physical counterparts, which will
be used to perform control and optimization strategies to maximize the
use of renewable energy sources within a Digital Twin (DT) architec-
ture. The first model is based on a fuzzy neural network and the second
one is a Gaussian regression model. The obtained models present a good
performance in the prediction of the nonlinear dynamic over the entire
operating range in the system.

1 Introduction

In recent years, renewable resources for the electricity generation has increased
like photovoltaic fields and on/off-shore wind farms used to meet consumer de-
mand. At the same time, the high price of energy is leading industries to adopt
these solutions to supply energy to their different manufacturing processes, thus
avoiding a total dependence on grid power. However, energy management within
the industry is not always optimal, often preventing the full benefits of renew-
able sources from being realized. For this reason, optimization strategies are
being implemented to maximize their use [6] and thus, make their installation
cost-effective.

Current technological advances allow the development of digital replicas (vir-
tual entities) of almost any product or system (physical entity) with a high level
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of detail, which is called Digital Twin (DT). The DT is a digital information con-
struction of a system based on its features. It is composed of a set of high-fidelity
or sufficient multiphysical models and simulators for each domain in which it is
developed (fit for purpose), that simulates a specific aspect of the system in a
single ecosystem. This allows multiscale tests and experiments to be performed
virtually, avoiding the cost of physically performing them [4].

Control and optimization processes often use reduced (surrogate) models of
highly nonlinear dynamical systems. For example, model-based predictive con-
trol employs various models (e.g., linear, nonlinear, grey-box, or black-box), as
solving the optimization problem with many differential equations or distributed
parameter models, with high accuracy, can be impractical, specially when the
problem has to be solved in a limited time. Therefore, real-time computation
requires reducing the model complexity to fit the purpose, saving unnecessary
computational burden. In this context, the proposed models provide system eval-
uation, optimization, and prediction capabilities for the DT; furthermore, these
models enable real-time decision-making and long-term planning to explore dif-
ferent scenarios quickly and easily once the DT is implemented.

AI techniques can be employed to develop these reduced models, which cap-
ture highly non-linear dynamics. One technique, neurofuzzy systems, has proven
the effectiveness of nonlinear systems modelling, e.g., the model of a solar Fresnel
plant in which the neurofuzzy model is based on an ANFIS network [10]; be-
sides, it has been applied in the design of classifiers and estimators [11, 12]. The
fuzzy neural network (ANFIS) combines the advantages of fuzzy logic (FL) and
artificial neural networks (ANN), uses the FL to represent knowledge in an in-
terpretable way and the learning capacity of an ANN to optimize its parameters
based on input-output data. Another technique that can be used in this con-
text is Gaussian Mixture Model (GMM) in conjunction with Gaussian Mixture
Regression (GMR). GMM is employed to identify sub-populations or nonlinear
patterns in the data, which can be beneficial for segmenting complex datasets
into simple, more modellable components. On the other hand, GMR is used to
perform non-linear regressions on data that exhibit a non-linear structure, al-
lowing the prediction of outputs from inputs [2]. Furthermore, these modelling
techniques have advantages, such as the ability to update and run quickly.

This work focuses on an industrial manufacturing plant (physical entity)
consisting of several computer numerical control (CNC) machines, a combined
heat and power (CHP) generator, two renewable energy sources for electricity
production and a battery bank for energy storage. The main purpose of this
plant is to maximize the use of renewable energy in the manufacturing process.
Given that the meteorological variables that can be predicted over the horizon
are scarce (wind speed and global irradiance) as well as the renewable energy
generation responds to a complex nonlinear model, it has been decided to use
the above techniques. Therefore, this paper focuses on developing two models for
the renewable energy system (solar). These models are part of the DT that will
be used to perform control and optimization strategies within a DT architecture
of the physical entity.
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The rest of the document is structured as follows. Section 2 shows the initial
treatment of the data for energy system. Section 3 presents the modeling of
reduced models, as well as the learning process and its structures. Section 4
presents the results of the simulations that compare the results of the neuro-
fuzzy and GMM/GMR models with the real values. Finally, the conclusions are
presented in Section 5.

2 Data treatment

The techniques used in modelling are data-driven for its learning, validation,
and updating; therefore an initial process is necessary to homogenizing sampling
times, replace inconsistent data between samples by interpolation, removing out-
liers and filter each variable, as noted in [10]. Furthermore, variables that affect
the process must be carefully chosen.

The data to be processed are from a 210 kW photovoltaic installation on the
roof of the manufacturing plant, with a series-parallel configuration of 688 solar
panels and three SMA inverters that can reach an annual energy production
of approximately 160 MWh. Each solar module consists of 120 cells and the
total PV installation has a surface area of 1, 107 m2. In addition, the SCADA of
the photovoltaic plant collects data on the generated power, which is recorded
every minute. In particular, this work uses historical SCADA data from May to
August 2022, a total of 103 days.

2.1 Solar irradiance on a tilted surface

The photovoltaic modules in the installation have an angle of inclination (β =
15◦) that is used to calculate the actual irradiance that reaches the modules
based on the different irradiances measured by the pyranometers and the pyrhe-
liometer. This irradiance is called solar radiation on the tilted surface and can be
calculated with various models as described in more detail in [9]. These models
differ mainly in the way diffuse radiation is calculated. In this case, one of them
has been used, the isotropic sky model, which requires measurements of direct
global radiation (G), the diffuse radiation (Gd), and reflected radiation (Grefl)
which are provided by the instruments mentioned above. The total radiation on
a tilted surface is given by

GT = GbRb +Gd
1 + cos(β)

2
+G · ρg

1− cos(β)

2
(1)

where ρg is the reflectivity coefficient of the ground, G · ρg = Grefl and Rb

is the ratio of radiation over the tilted surface with respect to a reference plane.
For a detailed description of the isotropic sky model, refer to [1].

After calculating the irradiance on the tilted surface for each day with the
pre-treated data, this one is added as a variable to the final dataset for further
analysis and selection of the involved variables in the power generation process
presented in the next section.
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2.2 Correlation analysis of I/O variables

The correlation coefficient measures the association between variables; the most
commonly used is Pearson’s correlation coefficient, which is a linear correlation
coefficient (ρ) used in this work. The ρ values can be between [−1, 1], where
ρ = −1 stands for a complete negative correlation, ρ = 1 a complete posi-
tive correlation, and ρ = 0 indicates that the displayed variables over the axes
are uncorrelated. The correlation coefficient matrix obtained with 6 variables is
PV R ∈ ℜ6×6 for the photovoltaic installation.
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Fig. 1. Photovoltaic correlation coefficients matrix PV R.

Fig. 1 shows the correlation coefficient matrix of the renewable energy source.
The variables are then ordered according to the degree of correlation of each
input in relation to the desired output. This analysis indicates the variables that
most affect the model output with respect to a threshold, ρ ≥ 0.5.

Therefore, the input data used in the learning process to estimate the power
generated (PAC) by the renewable energy source (RES) for both methods are:
GT and Tamb. Which stand the irradiance on the tilted surface and ambient
temperature, respectively. Since the estimation of GT involves G, Gbn, Gd, those
are omitted as model inputs. Thus, these variables (GT , Tamb) are stored in a
matrix PvX ∈ ℜn×m, where n = 148320 is the number of samples and m = 2 is
the number of variables.

Fig. 2. Clustering of available data of the RES.
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The different scales of variables can affect the data-driven learning process
due to its nature, magnitude, and inconsistencies. This is solved by the normal-
ization process, as noted in [3]. Thereby, each variable m in the data matrix
PvX must be normalized to the range [0 1], given by

zi,j =
xi,j − xj,min

xj,max − xj,min
(2)

The new normalized variables are stored in the matrix PvZ and organized into
the sets: training, validation and testing as shown in Fig. 2.

3 Photovoltaic surrogate models

The large volume of data and the models complexity used in DT technology can
create significant computational demands. One solution to alleviate this burden
is the implementation of reduced-order models. Reduced-order models are a
technique to simplify complex models by quickly capturing essential features
of the phenomena. Often, it is not necessary to compute all details of a full-
order model to meet real-time constraints. These models are especially useful
in situations where computational time is a critical factor, such as in real-time
decision making (e.g., [3, 10]). In addition, reduced-order models can also be
used to optimize and control complex systems, as they allow for a compact
representation of systems and their behavior. This can help improve the efficiency
and performance of systems, reducing analysis and simulation time and costs [4].

Fig. 3. Subrrogate models: Neurofuzzy and Gaussian Mixture Regression to predict
the active power of a photovoltaic plant

3.1 Neurofuzzy Model

An artificial intelligence (AI) technique is employed to combine the advantages
of fuzzy logic (FL) and artificial neural networks (ANN) in the design of the PV
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prediction model. This method is based on an adaptive neuro-fuzzy inference
system (ANFIS), which was introduced in [7]. It can construct an input-output
map based on human knowledge in the form of fuzzy “if-then” rules, enabling
the handling of imprecise input data (uncertainty).

The fuzzy neural network uses the training and validation data sets in the
learning process to capture the dynamic behavior (nonlinear) of the power gen-
erated for the PV system. In this process, the ANFIS looks at the normalized
RMSE (nRMS) of the training and validation sets to not overfit only the first
set, which would cause inappropriate values for the obtained FIS. In this way, it
searches for a middle ground where learning is general in both groups according
to [3].

The subtractive clustering (SC) method is initially applied in ANFIS learn-
ing, which estimates the number of clusters per input that defines the number of
membership functions (MFs) to compose its fuzzy set and the number of rules.
Additionally, it estimates the initial parameters of these membership functions.
A hybrid learning method combining least squares and gradient descent is then
applied [10]. In this process, a gradient descent to determine the mean (cij) and
standard deviation (σij) of Gaussian MFs denoted as antecedent parameters and
least squares to estimate the coefficients (g0j , gij) of each first-order polynomial
function referred to as consequent linear parameters at each epoch or sweep.

In this case, a cluster influence range of 0.7 and 250 epochs was used, which
generated a fuzzy set per input (A1j , B2j) consisting of two Gaussian MFs
and two rules (j). The nRMSE index obtained in the learning process for the
ANFIS present small errors, nRMSETrn = 0.038 and nRMSEChk = 0.040 on
the training and validation sets, respectively.

Table 1. Obtained parameters during the learning process

Antecedent Parameters
MFs

Inputs (x) GT Tamb

A1j B2j

j σ1j c1j σ2j c2j
1 0.4355 -0.1361 0.3338 0.5201
2 0.3209 0.4441 0.3327 0.4329

Consequent Parameters

P̂AC,j

j g1j g2j g0j
1 -0.6053 0.1841 -0.3279
2 0.7298 0.0505 0.5723

Once the ANFIS training is completed, a fuzzy inference system (FIS) is
obtained. The FIS can be considered a gray box model [8], as the rules that define
the behavior of the system can be extracted from it. The FIS that predicted the
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active power generated by the photovoltaic installation contains 2 rules of type
Takagi-Sugeno (TS):

Rule 1 :

IF GT is A11 and Tamb is B21 ,

THEN : P̂AC,1(x) = g01 + g11GT + g21Tamb

Rule 2 :

IF GT is A12 and Tamb is B22 ,

THEN : P̂AC,2(x) = g02 + g12GT + g22Tamb

Each rule has antecedent and consequent parameters. Both parameters were
adapted in the learning process and are shown in the Table 1. The output of
each rule is a linear combination of input variables added to a constant term
(P̂AC,j). The final output of the FIS is the weighted average of each output of
the rule, where, (w̄) is the ratio of the jth rule’s firing strength to the sum of all
rules’ firing strengths.

P̂AC =
∑
j

w̄jP̂AC,j (3)

3.2 Learning based on GMM/GMR

An alternative way to estimate the real output (PAC) is using an unsupervised
learning algorithm like GMM and its regressor GMR. GMM is a probabilistic al-
gorithm used to organize the data into clustersK, which is based on the weighted
sum of probability density function P(xn

i , x
n
o ;µk, σk, πk). The underlying idea is

to adjust a finite set of Gaussian distributions defined by mean and covariance
(i.e. clusters) to a nonlinear system. From the dataset, inputs xi and output xo

are established to feed the model; therefore, a mean and covariance for every
Gaussian distribution can be defined as

µk =

[
µxi

k

µxo

k

]
, Σk =

[
Σxi

k Σxixo

k

Σxoxi

k Σxo

k

]
.

Irradiance of a tilted surface GT and ambient temperature Tamb for a single
data-point are denoted as xn

i and the power generated PAC for a single data-
point is denoted as xn

o .Thus, the probability that a data-point fits into a specific
cluster is given by:

P(xn
i , x

n
o ;µk, σk, πk) =

K∑
k=1

πkP(xn
i , x

n
o |k) (4)

where πk is the prior probability and P(xn
i , x

n
o |k) is the probability density

function (PDF). In order to know the parameters (πk, µk, σk) for every Gaussian
distribution, K-means algorithm [2] is used to initialize such parameters and EM
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algorithm [5] to optimize them. Thereby, GMM learns the optimal parameters
from the dataset.

A power generated estimate P̂AC is calculated with GMR. Optimal parame-
ters (πk, µk, σk) coming from GMM and the inputs xi are employed to yield an
estimate (see Fig. 3). The regressor is defined as

P̂AC =

K∑
k=1

γk(xi)(µ
xo

k +Σxoxi

k (Σxi

k )−1(xi − µxi

k )) (5)

where γk is described in [2] as a nonlinear weighting term to measure the
influence of each Gaussian distribution.

γk(xi) :=
πkP(xn

i |k)∑K
i=1 πiP(xn

i |i)
∈ R[0,1] (6)

3.3 Digital Twinning

Synchronization/twinning between a physical and its virtual asset is an essential
feature of the DT Model. It allows the digital twin to reflect the state and be-
havior of its physical counterpart and thus, achieve interaction and convergence
between both entities. The act of synchronizing the states of a physical and its
virtual entity [4], where all virtual parameters reflect the same values as the
physical parameters, is referred to as digital twinning. However, the synchroniza-
tion/twinning between the two entities is subject to a twinning rate, which is
the time required (near real-time or real-time) for the bidirectional exchange of
information between the physical entity and its virtual counterpart to operate
simultaneously.

Furthermore, the convergence between the physical and virtual twin through-
out its lifecycle depends on the granularity of the models that compose it. Since
physical parameters and properties change over time, these models must be
adapted/updated so that the digital twin can reflect the current state of its
physical counterpart. In this context, the twinning time of a given digital twin is
the updating rate of its constituent models. Hence, knowing the twinning time
of a given model is essential to defining the twinning rate of the virtual entity,
as noted in [4, 10].

Table 2. Twinning time

Models NF GMR

ttw(min) 2.79 0.023
ttw/sample (ms) 13.68 0.011

ttw/day(s) 1.97 0.016

To compare the NF and GMR models updating performance, twinning of
both models is run with operational data whose sampling time (Ts) is of 1
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minute, inherent in the historical data. Both models use the same 85 days of
actual data operation, which results in 122400 samples, while the number of daily
samples is 1440. The performance indexes for twinning are the total twinning
time (ttw), which is the total time that it takes to update the model, the twining
time per sample, ttw/sample, and twinning time per day of operation, ttw/day.

Table 2 presents the twinning time results of each model, highlighting that
the elapsed time to estimate the generated power in GMM/GMR is shorter than
NF. However, both models can be daily updated at night due to the reduced
twinning time to estimate.

4 Simulations and results of the two approaches

The validation process compares the output of NF and GMR with the validation
data set corresponding to the photovoltaic installation, the validation setup runs
for 18 days: from July 25th to 31th and August 1th to 11th. These validation set
are not used in the learning process of NF and GMM/GMR.

Fig. 4. Validation results. Real data (red line), NF model (blue line) and GMM/GMR
model (green line), outputs. Blue and gray shaded areas depict the standard deviation
with 95% confidence interval of each model.

Hence, four error indexes were used to compare the output of both models
with the actual predicted output data: the arithmetic error mean (Ē), the stan-
dard error deviation (σE), Root Mean Square Error (RMSE), and the coefficient
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of determination 4 R2. The error indices are given by Equations (7)

Ē =

∑N
i=1(xi,j − x̂i,j)

N
(7a)

σE =

√∑N
i=1(Ei,j − Ē)2

N
(7b)

RMSE =

√∑N
i=1(xi,j − x̂i,j)2

N
(7c)

R2 = 1− xi,j − x̂i,j

xi,j − x̄i,j
(7d)

where N = 25920 stands for the number of samples in the validation set, xi,j is
the real output and x̂i,j is the output of the predicted variable obtained by each
model and x̄i,j is the mean of the observed data.

Only one specific day of the total validation set is shown. This day includes
data on the power generated during half of the day when the sky is clear (cloud-
less) (08:00 am - 14:00), while the second half of the day (from 14:00 onwards), is
cloudy, as it can be seen in Fig. 4. On the other hand, most of the days, the real
data are within the 95% confidence interval (2σ) of both models. It points out
that both models are mostly fitted to real data and are considered acceptably
accurate in that region. However, during peak power generation between 13:00
and 15:00 hours, the real data is outside the GMM/GMR confidence interval, in-
dicating that the model is not adequately capturing the variability of the actual
data in that region.

The validation indexes for the entire validation set can be found in Table 3.
In addition, the table includes the average run time for each sample (tv/sample),
per day (tv/day) and the total (tv/total) evaluation time. It can be seen that
NF and GMM/GMR can estimate the real value of active power with a degree
of error, as shown in the Table 3.

Validation metrics indicate that the NF model have good accuracy and cap-
ture the nonlinear dynamics over the entire operating range (day and night).
Based on the mean error, it can be deduced that in both cases the models sub-
estimate the active power, as Ē is negative. The RMSE for the NF is 4.725 kW ,
whereas for the GMM/GMR is 5.406 kW , represent approximately 2.5% of the
power, considering that the photovoltaic system has a nominal operating power
of 210 kW .

Furthermore, the linear regression between the estimated and real active
power of the output gives the coefficients of determination R2 = 0.996 for the
NF model and R2 = 0.995 for the GMM/GMR model. This indicates that the
models explain more than 99% of the variation in the output through the inputs.

4 R2 is a number between 0 and 1, that measures how well a statistical model predicts
an outcome. If R2 = 0, the model does not describe the outputs, if 0 < R2 < 1, the
model partially predicts the outputs, and if R2 = 1 the the model perfectly predicts
the outputs.
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Table 3. Overall performance indices

Validation index

Model Output NF GMR

Ē [kW] -0.924 -1.312
σE [kW] 4.634 5.244
RMSE [kW] 4.725 5.406
R2 0.996 0.995

tv/sample (us) 1.956 0.876
tv/days (ms) 2.817 1.261
tv/total (s) 0.0507 0.0227

Therefore, it can be said that the obtained models show a good fit with the data,
a high ability to explain the variability in the output variable through the input
variable, and that both are good at making predictions.

According to Table 3, the time to estimate a day is under 3 millisecond,
being faster GMM/GMR than NF; nevertheless, both models are sufficiently
fast to estimate data in a real-time situation as samples are taken every minute.

5 Conclusion

This work has developed two prediction models for a photovoltaic field. The
first, an ANFIS-based predictive models, which at the end of the learning result
in a FIS with two rules. The second one, based on statistical and probabilistic
methods GMM/GMR. GMM is used to model the distribution of the data, while
GMR is used to perform regressions on data that are generated by a mixture
of Gaussian distributions. The neurofuzzy model obtained showed good perfor-
mance in non-linear dynamics predictions throughout the operating range in the
systems. It has been shown that both the neurofuzzy model and the GMM/GMR
perform well and capture the dynamics of the systems. In addition, the time re-
quired to update the models is relatively low. Furthermore, the execution time
per sample is less than 1 millisecond in both cases.

In both cases the GMM/GMR has shorter update and run times. But when
it comes to predicting the output, during peak power generation, the actual
data is outside the GMR confidence interval, indicating that the model is not
adequately capturing the variability of the actual data in that region. In either
case, these models can be used in control and optimization problems that require
a solution in a limited time. Future work may explore improving the modeling
methodology presented in a combination of genetic algorithms and also using
the models to perform predictive control strategies.
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