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Abstract. Detrended Fluctuation Analysis (DFA) provides insights on
signal complexity which have shown to be relevant and effective for dis-
tinguishing healthy and non-healthy persons through different physio-
logical signals. This method is based on different steps involving linear
regression. This paper proposes an evidential linear regression model and
its application on DFA in order to take into account limitations of DFA
due to uncertainties associated with crisp linear regression estimates.
Three R packages that contains a DFA implementation has been com-
pared with the proposed method in experiments realised on sinusoidal
signals, noises and Hausdorff famous dataset that illustrates the interest
of the method.

Keywords: Complexity · Fractals · Uncertainty · Regression · Belief
functions.

1 Introduction

In fractal geometry, a fractal object appears exactly or approximately similar to
a part of itself at various scales, it is composed of sub-units [9]. By analogy, this
property of spatial self similarity has been extended to time series. Indeed, the
fractal concept can be applied not just to irregular geometric forms that lack a
characteristic scale of length, but also to certain complex processes that have no
single time scale [17, 19, 12]. In this case, the self-similarity is expressed in terms
of statistical properties (e.g., the mean and standard deviation of a time series
segment are scaled versions of the mean and standard deviation of the whole)
and the fractal object can then be viewed as a statistical fractal [13].

The presence of temporal fractal similarity can naturally be observed on
stochastic signals (fractional Gaussian noise (fGn), pink noise, ...) with hidden
properties also referred to as long-range correlations, long-range dependence or
long term memory. It is also one critical marker of physiological systems char-
acterised by their extraordinary complexity [2]. Indeed complexity is often as-
sociated with a certain level of coordination of a great number of interactions
in a multiple-component system [5]. The presence of temporal fractal properties
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are widespread in humans across heart rate variability [11], gait cycles of human
walking [20], brain activity, autonomic control, etc.

Among many existing methods to estimate the self-similarity in time series,
the detrended fluctuation analysis (DFA), introduced by Peng et al. [18], has
been preferred because of its adaptability to non-stationary signals. The DFA
computes the root mean square error of linear fits realised on signals windows
of increasing size and gives a single exponent as a result. However, several au-
thors have mentioned the need for complexity levels expressed by intervals rather
than single values. For example Goldberger [12] says that in an ideal world, the
property of self similarity holds on all scales whereas the real world, however,
necessarily imposes upper and lower bounds. Setty [22] mentions that standard
DFA cannot distinguish between multi-fractal and mono-fractal signals as it
gives a single exponent as a result. Bryce [3] indicates that DFA imparts serious
biases for short data sets, thus requiring caution in the interpretation of the
estimated value. Rojjo-Alvarez et al. highlighted high uncertainties about long
term correlations in DFA physiological interpretation. Moreover many arbitrary
choices have been proposed about the framing of fluctuations computation (slid-
ing windows, growing factor of windows length, etc.). This leads to different DFA
implementations with different and sometimes inconsistent results.

In order to address some of these limitations, this paper proposes a new soft
DFA model based on a new imprecise linear regression model which results in
an evidential representation of temporal complexity. Two kinds of uncertainties
related to the considered windows sizes are taken into account in the model.
First the uncertainty in the linear regression due to the dilemma between linear
fluctuations (residuals) and second, the number of points (reliability). From a
practical point of view, since many DFA designs (framing, fluctuations aggrega-
tion, etc.) and implementations have been proposed, in this paper the following
R packages are compared in terms of DFA behavior: nonlinearTseries1, DFA2

and casnet3.
The organisation of the rest of the paper is as follows. In Section 2 we recall

the necessary basis of the DFA for time series complexity estimation. Section 3
presents a soft approach of the DFA. Experiments and results are detailed in
Section 4 and finally we present our concluding remarks and perspectives.

2 Background

2.1 Detrended Fluctuation Analysis (DFA) overview

DFA [18] is a method for analysing scaling behaviour and testing for self sim-
ilarity in time series as it measures the dispersion of the residuals of linear
fluctuations regressed at different terms. The basic algorithm of DFA consists in
three steps [3] :

1 https://cran.r-project.org/web/packages/nonlinearTseries
2 https://cran.r-project.org/web/packages/DFA
3 https://rdrr.io/github/FredHasselman/casnet
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1. a raw time series x = (xi)i=1,...,N is first decentered and integrated such that

the resulting time series is X = (Xi)i=1,...,N =

(
i∑

j=1

(xj − x̄)

)
i=1,...,N

where

x̄ = 1
N

N∑
i=1

xi. The time series (Xi)i=1,...,N is then segmented into several

windows of increasing size n.
2. for each window size n, K windows nk = (Xk, ..., Xk+n) for k = 1, ...,K

are considered, for each of them X is locally fit to a linear regressor Xk,n

(eventually extended to a polynomial one) and the mean square residual
F (k, n) is defined such that:

F (k, n) =

√√√√ 1

n

k+n∑
j=k

[Xj −Xk,n
j ]2 (1)

3. finally for each window size n, the average square residual F (n) is computed
on all windows of size n:

F (n) =
1

K

K∑
k=1

F (k, n) (2)

The main DFA hypothesis is that the detrended fluctuation are supposed to
grow exponentially in regards to the window size, i.e., F (n) = C.nα where C is
constant and α is the complexity level of x. By considering the logarithm of both
terms we get logF (n) = logC+α log n. The coefficient α can then be estimated
through a linear regression of the log-fluctuations given the log-terms log(n). The
scaling exponent α can also be interpreted as an estimate of the Hurst exponent
[15] with value giving information about the series self-correlations:

– 0 < α < 0.5 means the process has a memory and it exhibits anti-correlations.
We have α ≈ 0.1 for random process called a blue noise whose power spectral
density increases proportionally to frequency f over a finite frequency range.

– α = 0.5 means the process is indistinguishable from a random process with no
memory and thus no correlation. We have α ≈ 0.5 for a random process called
a white noise whose power spectral density is constant at all frequencies f .

– 0.5 < α < 1 then the process has a memory, and it exhibits positive correla-
tions. We have α ≈ 1 for a random process called a pink noise whose power
spectral density is inversely proportional to the frequency f of the process.

– 1 < α < 2 means the process is non-stationary. We have α ≈ 1.5 for a
random process called a Brownian noise whose power spectral density is
inversely proportional to f2, meaning that it has a higher intensity at low
frequencies, even more so than pink noise.

2.2 Limitations of DFA

Many open questions remain about the DFA. At the methodological level DFA
is known to display significant curvature on log-log plots for short time windows
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which emphasises short-terms non-linearity (noise) [3]. Some studies show that
DFA yields a single Hurst exponent, and thus cannot distinguish between multi-
fractal and mono-fractal systems [22]. For short data sets previous studies show
sensitive impact of data size used on the Hurst exponent, thus requiring caution
in the interpretation of the estimated value [16]. Nevertheless, the fidelity of
DFA complexity estimation strongly depends on the windowing design and on
arbitrary choices in parameters tuning in an unclear manner. The choice of
averaging the signal fluctuations (see Eq. 2) necessarily implies a potentially
significant information loss. Finally, the DFA interpretation remains unclear and
partially reliable due to the difficulty of clearly demonstrating the underlying
physiological process. All these questions cause different types of uncertainty on
the DFA process.

3 Soft approach

The method presented in this section proposes an evidential extension of the
DFA that uses the residuals’ distribution of the fluctuations-terms to determine
an imprecise regression model.

3.1 Imprecise regression

Many imprecise or uncertain regression methods have been proposed in the lit-
erature. Some of them are related to the Bayesian framework [23] with prior
distribution on the regression parameters (generally provided by domain experts
which are not always available), others concern machine learning adaptations to
uncertain data [10, 4], others try to benefit from uncertainty modelling inside
models [1, 7] and still some others deal with models predictions uncertainty or
confidence quantification [21, 8]. Most of these approaches are neural-network
based and many of them involve likelihood extensions and estimations but only
a few are defined in the linear context.

In the DFA, the complexity α is computed as the slope of the linearly log-
regressed fluctuations. The standard DFA complexity is computed on precise
fluctuations without dealing with their associated uncertainty. The imprecise
linear regression model proposed in this paper considers the uncertainty inside
models and in output predictions.

3.2 Evidential linear regression

The idea of the imprecise regression model proposed in this paper is to use all the
regression residuals in order to soften the final regression steps of the DFA and
to output a complexity belief function. The focal elements of the output belief
mass are composed of complexity intervals. The regression model is defined in
the uni-variate context, from a set of points D = (xi, yi)i=1,...,n. The slope a and
the intercept b of the linear regression line y = ax + b are estimated from D,
generally according to a least squares minimisation of residuals.
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Fig. 1. Evidential linear regression on Iris dataset.

Evidential bands

Given a belief degree βk ∈ [0, 1], an evidential band is defined as the area
between 2 (top and bottom) lines parallel to the precise regression line computed
on the whole xy-scatter plot. These 2 lines are vertically set such that the band
contains a proportion βk of the closest points to the regression line (see Fig
1.A, B and C). From the evidential band, the slope interval [a−βk

, a+βk
] and the

intercept interval [b−βk
, b+βk

] can be computed respectively according to the 2 band
diagonals a−βk

and a+βk
and to the band top an bottom intercepts b−βk

and b+βk
(see

Fig 1.D). It can be noted in Fig 1.C that, inside the evidential band, the new
regression line is a corrected version of the initial one (after outliers removal).
This implies that the different evidential bands (corresponding to different belief
degrees) might not be parallels.

Imprecise regression model

From the above definition of evidential band, a global evidential linear re-
gression model can be derived by considering sets of evidential bands associated
with their belief degrees β = {β1, ..., βK} in order to define 2 mass functions
mβ

a and mβ
b related to the regression slope and intercept. The frame of discern-

ment R is then added to the masses focal elements as a safety component with a
mass assignment of 1

n+1 inspired by an evidential generative model proposed by
Dempster in [6]. Two mass functions mβ

a and mβ
b are finally defined according

to the belief degrees (β1, ..., βK) which are all associated with slope intervals
[a−βk

, a+βk
] and intercept intervals [b−βk

, b+βk
]. The degrees of belief β are finally

normalised into 2 mass functions mβ
a and mβ

b such that:
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mβ
a([a

−
β1
, a+β1

]) = β1

(n+1)
n .

K∑
k=1

βk

...
mβ

a([a
−
βK

, a+βK
]) = βK

(n+1)
n .

K∑
k=1

βK

mβ
a(R) = 1

n+1

(3)

and



mβ
b ([b

−
β1
, b+β1

]) = β1

(n+1)
n .

K∑
k=1

βk

...
mβ

b ([b
−
βK

, b+βK
]) = βK

(n+1)
n .

K∑
k=1

βk

mβ
b (R) = 1

n+1

(4)
The focal elements of mβ

a and mβ
b contain the different slope and intercept

intervals and the real line (for security). In our implementation4 we consider by
default a 3-dimensional uncertainty granularity: (β1, β2, β3) = (10%, 50%, 95%)
(as in Fig. 1.E). Those default values represent a light illustrative (3 values)
modelling choice covering almost the whole credibility ranges, but can be opti-
mised according to different criteria depending on the application context and
objectives. Depending on the desired expressiveness granularity of the evidential
complexity, different belief degree sets β can be used.

3.3 Soft DFA

Our first contribution in terms of DFA is to keep uncertainty information by
avoiding averaging signals fluctuations by term. In our custom precise DFA im-
plementation, we consider a fixed (10 by default) number of windows for each
signal size n. These windows are placed randomly on the signal and we use all
the linear residuals computed in them for the final regression step. A preliminary
analysis was done that showed no significative difference on standard DFA when
removing the fluctuations averaging step.

The idea of the soft DFA proposed in this paper is to apply our evidential
linear regression model on the log-fluctuations/terms data now enhanced. The
result of the soft DFA is thus composed of a belief mass on the signal complexity
level (Eq. 3). Our implementation of the proposed custom and soft DFA are
available in our github5.

In Fig. 2, the custom (left) and soft (middle and right) DFA results are
represented on the enriched log-fluctuations dataset. The belief bands do not
appear to be parallel which shows the ability of the soft DFA to use the residuals
distribution in order to correct the slope estimate.

4 Experiments

In order to compare the soft DFA proposed in this paper to existing usual DFA
implementations, 3 different complexity analysis contexts are considered in this
section. First, the complexity of simple sinusoidal signals and noises are studied
and finally some results of a previous study of Hausdorff et al. [14] are partially
replicated with different DFA implementations including our soft approach.
4 https://github.com/sutton-charani/possibilistic_linear_regression
5 https://github.com/sutton-charani/soft_DFA
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Fig. 2. Soft DFA on a Gaussian noise with belief levels β = (10%, 50%, 95%).

4.1 Basics signals

DFA on a sinusoidal signal In this experiment the properties of 3 determin-
istic sinusoidal signals are studied through DFA analysis.

Fig. 3. DFA applied respectively to the signal s1 for 4 periods (column 1), the signal
s1 limited to one period (column 2), the signals s2 (column 3) then s3 (column 4)

The figure 3 presents the results first for a simple sinusoidal signal s1(t) =
sin (2πf1t) for 4 periods (column 1) then limited to one period (column 2), for
the sum of 2 sinusoids s2(t) = sin(2πf1t) + sin(2πf3t) (column 3) and finally
for the sum of 3 sinusoids s3(t) =

∑3
i=1 sin (2πfit) (column 4) with f1 = 10Hz,
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f2 = 100Hz, and f3 = 1000Hz. For the various signals, the second row of
the figure 3 shows the residuals of the regression function of window size on a
logarithmic scale. The last row presents the results of the soft DFA model using
a three belief levels: β = (β1, β2, β3) = (0.1, 0.55, 0.95).

By observing the results of the DFA applied on s1 for 4 periods (row 2,
column 1), we can see that the residuals are quasi linear up to the size window
log(term) = 7 then a discontinuity is observed. Hence, the precise regression (in
red) does not accurately reflect the behavior of DFA and appears biased and
unreliable. Conversely when considering only a single period (column 2), the
DFA exhibits a quasi-linear behavior and we notice that the soft DFA model fits
the residual curve. This result highlights the linearity of the sinusoidal signal
log-fluctuations when limited to one period.

For the additive combination of sinusoids (signals s2 and s3), the signals
log-fluctuations are clearly non-linear. For the signal s3, the soft DFA with a
confidence level of 0.95 encompasses all residuals and may allows to define a
reliable but imprecise degree of fractal complexity unlike the signal s2 whose
short terms log-fluctuations appear to grow slower than long terms ones. Table
1 presents the value of α for the precise DFA (column 2) and the imprecise range
of α values (columns 3,4,5) for the soft DFA model observed in the third row of
the figure 3.

Confidence intervals
0.1 0.5 0.95

Signal precise α αmin αmax m αmin αmax m αmin αmax m

s1 for 4 period 1.07 0.98 1.14 0.0644 0.70 1.23 0.322 0.36 1.24 0.612
s1 1 period 1.84 1.81 1.88 0.0644 1.77 1.94 0.322 1.62 2.09 0.612

s2 1.19 1.15 1.22 0.0644 1.05 1.35 0.322 0.86 1.44 0.612
s3 1.05 1.03 1.07 0.0644 0.93 1.14 0.322 0.84 1.29 0.612

Table 1. Values of α for the precise and the soft DFA models applied to s1, s2, s3 and
observed on the figure 3, third line

Noises Since the fractal complexity levels of a signal can be interpreted as
noise components weights (see Subsection 2.1), and since DFA presents known
limitations on small signal [3], different white, pink and brown small signals of
different sizes n have been simulated and analysed with different R implemen-
tations including the precise (custom) and soft DFA methods proposed in this
paper.

In Fig. 4, we observe important complexity biases for the DFA and casnet
packages. Indeed, the light blue line (DFA package) appears shifted from the
target interpretation α values (0.5, 1 and 1.5 respectively for white, pink and
brown noises) especially for white and brown noise. The light green line (casnet
package) shows α overestimates mainly for white noise (this package requires a
minimum of 70 points to compute α). The nonlinearTimeseries package and our
custom DFA implementation show no significant biases, even for short signals.
The root mean squared errors (RMSE) have been computed for each implemen-
tation in regards to the target α values (see Table 2). For the soft DFA approach
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Fig. 4. DFA (α) sensitivity to simulated noises size (n).

the RMSE was computed on the resulting α pignistic expectation. The best α
estimates (RMSE=0.27) was obtained with our custom DFA implementation (no
fluctuation averaging and 10 uniformely random framings). The nonlinearTime-
series package provided the second best α estimates with an RMSE of 0.33. The
lightening of our proposed custom DFA does not seem to cause interpretation
biases or reliability decrease. The soft DFA observed RMSE was of 0.43 which
suggests that the pignistic transform might not be the best decision rule in the
DFA context. The casnet and DFA estimates show high errors (RMSE=0.63 and
0.8) probably due to previously mentioned biases which highlights the critical
impact of the DFA preprocessing (framing, etc.)

nonlinearTimeseries DFA casnet custom soft DFA
0.33 0.80 0.63 0.27 0.43

Table 2. RMSE of α estimates of noises complexity

The soft DFA (Section 3.3) was applied on the previously described 3 noise
signals and it can be seen in Fig. 4 that the evidential bands width decrease when
the signal length increases. This is coherent with the desired property of DFA
reliability negatively correlated with signals length as the amount of available
information increases the confidence one can have about a DFA.

4.2 Hausdorff results replication

One of the first and most famous work on DFA was proposed by Hausdorff et al.
in 2002 (Fig 3 and 4 of [14]) where humain gait rhythm was analysed through the
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DFA perspective. The authors showed among other things that gait complex-
ity was higher for very young children than for teenagers which highlights the
physiological neuro-plasticity loss during human aging. The dataset was made
available by the authors. In this section we tried to replicate this result by mea-
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Fig. 5. Hausdorff results replication with precise and soft DFA.

suring the correlation between children ages and their gait complexity (α). With
the 4 precise implementations considered in this paper (R packages nonlinearT-
series, DFA and casnet, and our custom implementation), the corresponding
scatter plots and regression lines wererepresented in the left part of Fig. 5 as
well as the associated Pearson correlation coefficients and their p-values (Pear-
son correlation test) at the top of each plot. On the right part of Fig. 5 the same
representation is proposed for the soft DFA with evidential bands computed for
each points and a regression line corresponding to the pignistic expectation (the
correlation coefficient and the associated p-values are computed according to this
precise complexity estimator) computed from the soft DFA evidential bands.

It is noticeable that the nonlinearTseries and DFA package result in a posi-
tive (and significant) correlation between children ages and their gait complex-
ities. This is in contradiction with Hausdorff results (Fig 3 and 4 of [14]) and
common knowledge. Indeed, the fractal complexity of human physiological sig-
nals is known to decrease with age or diseases. In this context, this highlights
a non-reproducibility issue with DFA studies. Our custom (precise) DFA im-
plementation shows a positive but non-significant correlation between ages and
complexity, which attenuates the contradictory aspect of Hausdorff’s study. The
casnet package was the only one that showed a negative correlation which is in
accordance with Hausdorff’s results but this package showed significant biases
for white noise signals (see previous subsection).

The soft DFA (right part of Fig. 5) showed variable evidential bands widths
which highlights variable uncertainty levels among children gaits complexities.
The correlation computed between children ages and the pignistic expectation
of evidential complexities was positive but moderately significant (p-value =
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0.06). The use of soft DFA seems to attenuate the contradiction between DFA
implementations thanks to uncertainty modelling of regression residuals.

5 Conclusion and perspective

This paper proposes an evidential extension of the DFA that benefits from statis-
tical uncertainties during the final log-regression of the fluctuations-terms data.
To do so, an evidential linear regression model was proposed. This imprecise lin-
ear regression model computes evidential slopes and intercepts from the residuals
computed from precise univariate data (xi, yi)i=1,...,n through a geometrical ap-
proach.

The first contribution of this paper is to lighten some of the DFA steps by
considering, for each term, a small number of windows (10 by default) which are
randomly picked in the raw signal and to use all of them in the final log-regression
step (custom DFA). Three R packages (nonlinearTseries, DFA and casnet) that
contains DFA implementations have been compared between themselves and
with our custom DFA implementation. Experiments on sinusoidal signals show
the need for a soft approach to capture the signals degree of fractality and the
experiments on simulated noise signals show that nonlinearTseries was the only
consistent R implementation with DFA theorical background. Our custom im-
plementation got similar results to nonlinearTseries package. This highlights the
uselessness of several DFA steps, enabling DFA computation times decrease. An
attempt to replicate some of Hausdorff results highlighted DFA reproducibility
issues that were attenuated with our proposed soft DFA.

In future works, the evidential linear regression models proposed in this pa-
per could be extended to the multivariate context by considering n-dimensional
extensions of evidential bands. In terms of DFA, the evidential linear regression
proposed in this paper could be applied during each fluctuation computation. To
do so, an evidential regression model that handle evidential needs to be defined
in order to regress the resulting evidential fluctuations. The use of multifractals
could help considering a probabilistic fractal complexity which could be com-
pared to our soft DFA one.
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