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Abstract. In this paper, we propose a new approach for detecting and removing
impulse noise. The method uses the new framework of cloud filtering for detect-
ing noise locations. This new framework use efficient mathematical tools to filter
with sets of filters rather than with a single one. Once a (very) noisy pixel is
detected, its illumination is estimated by an extension of the median filtering ap-
plied on the neighborhood defined by the cloud. Experiments on various images
demonstrate the capacity of the algorithm to identify noisy pixels (especially at
low noise rate) while well preserving image edges.

Keywords: Filtering · Multi-dimensional· Imprecise · Impulse noise · Gener-
alised p-boxes

1 Introduction

Removing impulse noise is a classical issue in image processing. This kind of noise
occurs in image acquisition when a pixel of the camera is defective, when an error
occurs during the analog to digital conversion or during image transmission through a
noisy channel. It only corrupts isolated pixels by altering their values. Let Ii, j be the
illumination value at location (i, j). This image is said to be corrupted by an impulse
with probability p if Ii, j = si, j with probability p and Ii, j = ei, j with probability (1− p),
si, j being the noise free illumination at location (i, j) and ei, j being a random value. p is
called the level of contamination. If ei, j can only take extreme values (usually {0,255}),
the impulse noise is called salt and pepper noise.

Usual linear filtering solutions tend to spread the corrupted values all over the im-
age and are inefficient to remove impulse noise. Hence, many non-linear solutions
have been proposed to remove impulse noise. A large number of these solutions are
based on median filtering and its extensions: standard median filter (SMF) [1]; centered
weighted median filter (CWMF) [2]; tri-state median filter (TSMF) [3] that combines
median filter and center-weighted median filter; adaptive filters such as adaptive center-
weighted median filter (ACWMF) or rank-order adaptive median filter (RAMF) [4].
Median based methods provide very good results at low noise rate. A strong limita-
tion of median approaches is that even uncorrupted pixels are processed, leading to
smooth edged images. The so-called switching strategy tries to overcome this limita-
tion. It consists in detecting and modifying only corrupted pixels. For example, in [5],
an Anderson-Darling test is used for detecting corrupted pixels whose noise free value



is estimated via a neural network. [6] proposes a fuzzy rule-based detection with a
classical median-based estimation of the noise-free value. A more parameter-free ap-
proach is proposed in [7]: corrupted pixels are detected using a ROAD3 statistics while
their noise free values are estimated by using an adaptive median filter. [8] proposes a
switching strategy called tri-linear filtering combining spatial, radiometric and ROAD
statistics. Switching strategies are more efficient for higher noise rates. However, as a
major drawback, the efficiency of most of those methods is lowered by the difficulty
of setting their different parameters (training of neural networks [5] and of fuzzy rules
base [6] or thresholds in [7] and [8]). For all methods, edges are not well preserved.

In this paper we propose a switching strategy based on cloudy filtering for the detec-
tion of corrupted pixels and on weighted median filter for the restoration of corrupted
values. This approach is easy to set and needs very few parameters. Section 2 intro-
duces the tools used to detect and filter impulse noise, while Section 3 describes the
method itself. Finally, Section 4 provides some experimentation that demonstrates the
good performances of the method and compares it to other approaches.

2 Cloud filtering

This section presents the tools used in the noise removal method. We first introduce the
filtering technique based on non-additive (cloudy) kernels used to detect noisy pixels
and then present the weighted median technique used to remove noise.

2.1 Non additive kernels

In digital signal processing, kernels are instrumental for defining a weighted neighbor-
hood around any sampled location. A (discrete) kernel is a function κi (i ∈ Z) usually
bounded unimodal centered and symmetric, which translates into the formal properties

∀i ∈ N,κi ≥ κi+1,

κi = κ−i

and
∃p such that for any i > p =⇒ κi = 0.

Usually, discrete kernels are obtained by discretizing a continuous kernel. In traditional
signal processing, kernel-based filtering is achieved by convolution, which can be seen
as an expectation operation based on a Lebesgue integral.

In previous papers, we have introduced a new way of defining a weighted neigh-
borhood by mean of non-additive (discrete) kernels. Roughly speaking, a non-additive
kernel offers a convenient way to define a convex set of summative kernels, i.e. ker-
nels that are positive functions with an integral equal to one, which in the discrete case
translates into the additional properties

κi ≥ 0 for any i and
∞

∑
i=1

κi = 1.

3 Rank-Ordered Absolute Differences
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In practice, a non-additive kernel uses the fact that summative kernels are formally
equivalent to probability distributions, hence that working with a set M of summative
kernels is equivalent to work with sets of probabilities. As filtering with a summative
kernel κ amounts to compute expectations with respect to a kernel, filtering with a set
M of kernels then amounts to compute lower and upper expectations according to M .

Using this formal equivalence, we can denote by P(A) = ∑i∈A κi the additive mea-
sure (i.e., for any A,B with A∩B ̸= /0, P(A∪B) =P(A)+P(B)) induced by κ . Assuming
that we have a set I0, . . . , Ip of p values and a function κ defined over {0, . . . , p}, then
the ”expected” value of I with respect to p can be written

E(I) =
p

∑
i=0

(
I(i)− I(i−1)

)
P(A(i)) (1)

with 0 := I(−1) ≤ I(0) ≤ . . . ≤ I(p) and A(i) = {i, . . . , p}. Similarly, given a set M , we
can denote by

P(A) = inf
κ∈M

Pκ(A) and P(A) = sup
κ∈M

Pκ(A)

the upper and lower probabilities induced by M . In the same way, we can defined
lower/upper expectations of a function I as taking the infinimum/supermum of Equa-
tion (1) over M .

When M has some particular properties such as being induced by 2-monotone
lower probabilities4, that is when PM satisfies for any pair of events A,B the inequality

P(A∪B)+P(A∩B)≥ P(A)+P(B),

computing lower/upper expectations, i.e., filtering a signal with a non additive kernel
leads to replacing the Lebesgue integral by a Choquet integral [10]. One then simply has
to replace P(A(i)) by the lower probability P(A(i)) (resp. upper probability P(A(i))) in
Equation (1)) to obtain the lower expectation (resp. upper expectation). More formally,
this amounts to compute

E(I) =
p

∑
i=0

(
I(i)− I(i−1)

)
P(A(i)), (2)

E(I) =
p

∑
i=0

(
I(i)− I(i−1)

)
P(A(i)). (3)

The output of such a filtering is an interval-valued image, each interval containing all the
values that would have been obtained by filtering the input signal with each summative
kernel belonging to the set represented by the non-additive kernel. Among the different
non-additive kernels, cloudy kernels (the ones we are interested in for this paper) aim a
representing a family of summative kernels whose bandwidth is both lower and upper
bounded. It is composed of two comonotonic maxitive kernels (see [11] for a short in-
troduction on maxitive kernels), and are instrumental when interpreting interval-valued
fuzzy sets as uncertainty models [12]. The upper maxitive kernel π has a bandwidth

4 We refer to [9] for details.
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equal to ∆sup and the lower maxitive kernel η has a bandwidth equal to ∆in f (see Figure
2.1). As shown in [13], such a kernel defines a family of summative kernel denoted
M (η ,π) whose bandwidth is included in [∆in f ,∆sup]. The choice of the shape of the
kernel depends on the application, but a sub-optimal choice of shape has usually less
impact on the final result than a sub-optimal choice of bandwidth. In this paper we con-
sider symmetric unimodal centered clouds, and use them in a multivariate setting. Like
for additive kernels, discrete clouds are obtained by discretizing a continuous cloud.
The obtained discrete cloud should verify the following properties:

sup
i

πi = π0 = 1;

∀i, j ∈ N,πi = π−i,ηi = η−i;

πi < π j =⇒ ηi ≤ η j (comonotonicity) .

Discrete clouds must also satisfy an additional condition to induce a non-empty set
M [14] :

∀i ∈ N,ηi ≤ πi+1.

0

∆inf

∆sup

1

π

η

upper m
axitive kernel

lo
w

er maxitive kernel

Fig. 1. Discretized cloudy kernel

2.2 Filtering an image with a cloudy kernel

Most 2D kernels φi, j (i, j ∈ Z) used in image processing are isotropic and separable,
i.e. they are the product of two unidimensional kernels defined by the same generic
function: φi, j = κiκ j. In this paper we mainly consider symmetric unimodal centered
kernels which are extensively used in images processing. Within this context, extending
cloudy kernels to two dimensions is relatively straightforward. We propose such an
extension based on the construction proposed in [15] with an efficient algorithm to
perform the filtering. Let I be the N×M input image, with Ii, j being the intensity value
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of the pixel located at the ith row and the jth column. Filtering an image I with a cloudy
kernel results in an interval-valued image [I, I], i.e., interval valued intensities [Ii, j, Ii, j].

The 2D cloudy kernel we propose is built from a 1D cloudy kernel [η ,π]. It defines
the set of all the 2D summative kernels φi, j = κiκ

′
j, with κ,κ ′ ∈M (η ,π). Let p be

the smallest integer such that ∀i ∈ N, i > p =⇒ πi = 0. Then, the 2D cloudy kernel
based on [η ,π] is composed of (p+1) nested sets of pixels (R0, . . . ,Rp) that are at same
city-block distance from the central pixel, and corresponds to equivalence regions (see
Figure 3). Within each set, the pixels are considered to have an equivalent role in the
aggregation process. The central pixel form the set R0. It is the pixel whose interval
valued intensity has to be estimated. Each set Rk (k = 0, ..., p) has a cloudy weight
of [ηRk ,πRk ] = [(ηk)

2,(πk)
2] and is associated to an interval-valued intensity [IRk

, IRk ]
defined by

IRk
= inf

(u,v)∈Rk
Iu,v and IRk = sup

(u,v)∈Rk

Iu,v.

As a more numerical and formal example, we can consider a matrix M of points
around a central pixel x0,y0, and denote by Rk = {xi,y j|max(|i|, | j|) = k} the rectangle
of points whose mannathan distance is k. Ii, j will then be the intensity of point xi,y j
of the matrix. Figure 2 describes such a matrix (up to k = 2) for which IR1

= 49 and
IR1 = 218 .

M =


153 108 26 33 73
178 124 49 69 92
220 174 80 130 147
188 218 90 120 76
130 142 108 95 60



Fig. 2. Intensity matrix and region R1 (dashed rectangle)

In practice, these values [(ηk)
2,(πk)

2] can be associated to the membership values
of an interval-valued fuzzy set interpreted as a probability set, regions Rk of the image
correspond to the focal elements of the induced credal set (as this latter is induced by
a belief function, see [14] for more details), and the values IRk

and IRk are simply the
infinimum and supremum values on these focal sets, that are needed to compute lower
and upper expectations through the Choquet integral.

Algorithm 1 describes the computation of [Ii, j, Ii, j] at each pixel (i, j) by a Cho-
quet integral. Within this algorithm, we define two fictive weights: [ηR−1 ,πR−1 ] = [1,1]
and [ηRp+1 ,πRp+1 ] = [0,0]. The multivariate [η ,π] on is built on Lines 2-3 ( Note that
π(Rk) = π2(xk) if marginal clouds are identical). Lines 4-5 just store minimal and max-
imal values in rectangles that will be used to compute filtered bounds. Lines 10 to 15
simply corresponds to the application of Equation (2) to Ik, while Lines 16 to 22 simply
corresponds to the application of Equation (3) to Ik. Note that the orderings () used for
the two operations may be different.
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∆sup

Fig. 3. Nested sets of a 2D cloudy kernel with p = 4

Algorithm 1 Computing [Ii, j, Ii, j] with the 2D cloudy kernel defined by the 1D cloudy
kernel [η ,π].
1: for k = 0 to p do
2: π(Rk)← π(xk)π(yk)
3: δ (Rk)← δ (xk)δ (yk)
4: Ik←min{Iu,v|(u,v) ∈ Rk}
5: Ik←max{Iu,v|(u,v) ∈ Rk}
6: end for
7: δ (R−1),π(R−1)← 1
8: δ (Rn+1),π(Rn+1)← 0
9: Order Ik such that I(0) ≤ . . .≤ I(p)

10: Ii, j← 0, A(0)←∪
p
k=0Rk

11: for k = 0 to p do
12: A(k+1)← A(k) \R(k) {A(p+1) = /0}
13: Compute P(A(k+1)) and P(A(k)) {P(A(p+1)) = 0}
14: Ii, j← Ii, j + I(k)(P(A(k))−P(A(k+1)))
15: end for
16: Order Ik such that I(0) ≤ . . .≤ I(p)
17: Ii, j← 0, A(0)←∪

p
k=0Rk

18: for k = 0 to p do
19: A(k+1)← A(k) \R(k) {A(p+1) = /0}
20: Compute P(A(k+1)) and P(A(k)) {P(A(p+1)) = 0}
21: Ii, j← Ii, j + I(k)(P(A(k))−P(A(k+1)))
22: end for

Algorithm 2 Computing P(A).
1: P(A)← 0
2: while A ̸= /0 do
3: k←min{k|Rk ∈ A}, i← k , A← A\Rk
4: while Rk+1 ∈ A do
5: k← k+1, A← A\Rk
6: end while
7: j← k
8: P(A)← P(A)+max{0,η(Ri−1)−π(R j+1)}
9: end while
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Algorithm 2 describes the computation of the lower probability P(A) of a subset
A ⊆ {R0, ...,Rp}. The upper probability can be obtained by the dual relation P(A) =
1− P(Ac), where Ac is the complement of A in {R0, ...,Rp}. For example, if A =
{R1,R2,R4,R5,R6} then P(A)=max{0,δ (R0)−π(R3)}+max{0,δ (R3)−π(R7)} (note
that the ordering used is the original one, not the re-ordering used in Lines 9 or 16 of
Algorithm 1).

Example 1. Let us consider the case n = 4 (e.g., we take regions of 4 pixels around
the central one). Fictitious unordered and ordered values I are summarised in the table
below:

I0 I1 I2 I3 I4
80 31 73 47 63
I(4) I(0) I(3) I(1) I(2)

and we have

– A(0) = ∪4
i=0Ri→ P(A(0)) = 1

– A(1) = {R0,R2,R3,R4} → P(A(1)) = max{0,δ (R−1)− π(R1)}+max{0,δ (R1)−
π(R5)}

– A(2)= {R0,R2,R4}→P(A(2))=max{0,δ (R−1)−π(R1)}+max{0,δ (R1)−π(R3)}+
max{0,δ (R3)−π(R5)}

– A(3) = {R0,R2}→ P(A(3)) = max{0,δ (R−1)−π(R1)}+max{0,δ (R1)−π(R3)}
– A(4) = {R0}→ P(A(4)) = max{0,δ (R−1)−π(R1)}

2.3 Weighted median

The final element we need to formalise our noise removal procedure is the one of me-
dian extended to the fuzzy case.

The weighted empirical median of a fuzzy subset of an image I is a very simple and
straightforward generalization of the crisp empirical median. Let E be a fuzzy subset
of the pixels defined by the membership function µE

i, j. Computing the weighted median
intensity value of the subset E consists in finding a value γ such that ∀ε > 0:

∑
i, j/Ii, j<(γ−ε)

µ
E
i, j ≤

|E|
2

and ∑
i, j/Ii, j<(γ+ε)

µ
E
i, j ≥

|E|
2
,

with |E| = ∑i, j µE
i, j. It can be easily computed by sorting all the intensity values of

the pixels (i, j) such that µE
i, j > 0 and computing the cumulative function F(γ) =

∑i, j/Ii, j<γ µE
i, j for every sorted intensity values.

3 Cloud kernel based impulse noise detection and removal

The method we propose is achieved in three steps:

– the first step consists in filtering the noisy image with a 2D cloudy kernel con-
structed from a triangular 1D cloudy kernel;
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– the second step consists in detecting the corrupted pixels: a pixel is considered
corrupted if its intensity value Ii, j in the original image is either above the upper
filtered value Ii, j or below the lower filtered value Ii, j. This procedure is illustrated
in Figure 4 on a 1D signal: the corrupted signal is plotted in black while the upper
(resp. lower) filtered signal is plotted in blue (resp. red). Impulse noise is detected
when the black curve gets out of the envelope created by the upper and lower fil-
tered signals. Note that the filtering has a very interesting property: the upper and
lower filtered values tends to get closer at the impulse noise location, making the
detection easier;

original 
signal

upper 
filtered
signal

lower
filtered
signal

Fig. 4. 1D illustration of noise detection with cloud filter.

– the third step consists in replacing the noisy pixel by computing the weighted me-
dian by considering the fuzzy set E obtained by translating the membership func-
tion µu,v (u,v ∈ Z) defined by µu,v = min(πu,πv) to the location (i, j). Repeating
these steps iteratively can improve the filtering.

4 Experimentations

In this section we compare our method with different well known algorithms: SMF,
CWMF, trilateral filter, and a ROAD-based detector presented in [7]. Tests have been
carried out on 5 classical images: ”Lena”, ”boat”, ”peppers”, ”cameraman” and ”Bar-
bara”. Each image has been corrupted 20 times by an impulse noise with different level
of contamination (p varies from 0 to 0.9). These tests have been extensively repeated
to provide significant statistics. The settings of state-of-art methods were defined as the
authors suggested in their publications. The settings for our method are: ∆in f = 1.8 and
∆sup = 3. The filtering process is iterated 3 times to improve its efficiency. We propose
a quantitative and qualitative comparison of the methods.

We first start with the more qualitative comparison of the methods. Figure 5 shows
two images of Lena, the first one without any noise, the second one with a noise where
p = 0.2 (so 20% of noised pixels). A qualitative comparison is proposed in Figure 6.
It can be seen on the two zoomed parts that our method better preserve high frequency
details than other approaches, while efficiently removing noisy pixels.
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(a) (b)

Fig. 5. Barbara’s (a) Original image, (b) corrupted with 20% of pixels contaminated with random
noise.

We propose to quantitatively compare the methods by using three criteria: the PSNR
defined as

PSNR = 10∗ log(255/
m

∑
i=0

n

∑
j=0

(I(i, j)− Î(i, j))2,

the MAE defined as

MAE
m

∑
i=0

n

∑
j=0
|I(i, j)− Î(i, j)|

and SSIM (see [16]) measures. Table 1 presents the mean PSNR, MAE and SSIM for
each algorithm over a large amount of experimentations on various images. According
to those criteria, our method provides the overall best results for a contamination level
under 50%. Over 70%, SMF algorithm works better.

ROAD Cloud SMF CWMF Trilateral
p PSNR MAE SSIM PSNR MAE SSIM PSNR MAE SSIM PSNR MAE SSIM PSNR MAE SSIM

0.1 79.52 2.66 0.98 82.61 1.39 0.99 71.11 3.88 0.95 75.52 2.63 0.97 79.70 2.38 0.99
0.2 77.23 3.01 0.97 78.51 1.82 0.98 69.89 4.13 0.95 73.45 2.94 0.96 75.98 2.78 0.98
0.3 74.70 3.44 0.96 74.94 2.33 0.97 68.84 4.37 0.94 71.62 3.29 0.96 72.17 3.34 0.96
0.4 71.35 4.06 0.94 70.63 3.08 0.95 67.50 4.66 0.93 69.64 3.70 0.95 67.88 4.19 0.93
0.5 67.79 4.94 0.89 66.43 4.18 0.90 66.36 5.02 0.92 67.71 4.27 0.94 63.55 5.43 0.87
0.6 63.65 6.28 0.82 62.36 5.74 0.83 65.14 5.48 0.91 65.48 5.08 0.91 59.01 7.32 0.79
0.7 59.82 8.06 0.74 58.29 7.95 0.75 63.67 6.16 0.88 62.98 6.28 0.86 54.99 9.76 0.71
0.8 56.07 10.43 0.65 54.47 10.80 0.66 61.29 7.34 0.82 59.63 8.13 0.78 51.12 13.09 0.62
0.9 52.63 13.43 0.56 51.03 14.30 0.57 58.76 9.15 0.73 56.36 10.70 0.69 47.72 17.16 0.54
Table 1. Comparison of mean PSNR, MAE and SSIM measures for different contamination levels
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) a zoomed part of Barbara’s noisy picture. Zoomed part filtered with SMF (b), CWMF
(c), Trilateral (d), ROAD-based (e), and Cloud-based filter (f).

5 Conclusion and discussion

In this paper, a new switching strategy based on cloud filtering is presented to remove
impulse noise on images. This technique provides stable results with different kind of
images without changing any settings. Experiments have shown that our algorithm can
efficiently preserve image edges while removing impulse noise. However, since this
method has been designed to detect isolated impulse noise, its performance decreases
when the contamination rate is higher than 50%, as the amount of clustered noisy pixels
inrease rapidly after reaching this threshold. Different improvements can be considered,
as, for example, building a more specific 2D cloud by considering equivalence sets
based on other distances (e.g., Euclidean) than the city block distance, that may possibly
also make more sense for continuous images. A generalization to color images can also
be considered.
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