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Abstract. The study presented in this paper addresses uncertainties that arise in 
spectral measurement and analysis. These uncertainties can be dealt by means of 
fuzzy classification, but on order to achieve high quality results, it is necessary 
to manage and compute them beforehand. Previous research has typically only 
addressed uncertainty per wavelength in spectra, without considering the total 
uncertainty across the spectrum and in the analysis. This paper presents a method 
for managing and calculating uncertainties throughout the entire process and in-
tegrating them into a fuzzy pattern classifier. The approach is based on the Guide 
to the Expression of Uncertainty in Measurement and extended by our own meth-
odology to manage uncertainty in spectra including the construction of a fuzzy 
pattern classifier. An example from UV/Vis spectroscopy illustrates the practical 
applicability of the methods presented. 
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1 Introduction 

In the natural sciences, analyzing and interpreting data involves dealing with meas-
urement uncertainties that can arise from various sources, such as instrument accuracy, 
environmental conditions, or human error. To draw sound conclusions from the data, it 
is crucial to provide a clear description or classification of these uncertainties. When 
evaluating spectra and other complex measurements, uncertainties can often be high 
due to the need to consider multiple variables and parameters. To address these uncer-
tainties, fuzzy classification techniques can be utilized. Fuzzy logic, introduced by Za-
deh [1], has been applied in various real-world applications, including monitoring, fault 
diagnosis, decision support, and control [2]. Most of these methods rely on a fuzzy 
membership function, which provides flexibility [3, 4]. Neuro-fuzzy systems, fuzzy re-
inforcement learning, and fuzzy pattern classification are successfully used in various 
areas such as signal processing applications and automation systems [5, 6], analysis of 
pollutants in water [7], neural statements, and medical diagnostics [3, 8]. However, 
many approaches use fixed parameters, such as 2 %, to describe the extent of functions 
and account for uncertainties without calculating the exact uncertainties. To ensure pre-
cision and accuracy, it is important to adopt an approach based on international stand-
ards, such as the international Guide to the Expression of Uncertainty in Measurement 
(GUM) [9], when calculating measurement uncertainties. This article first discusses the 
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calculation of measurement uncertainties based on the GUM guidelines to provide a 
solid basis for analysis. It then shows how these uncertainties can be integrated into a 
fuzzy classifier to provide robust and accurate data analysis. The paper is organized as 
follows: Sect. 2 describes other work on uncertainty management in spectral analysis. 
Sect. 3 presents the methodological approach with description or calculation of uncer-
tainties and the theoretical structure of a fuzzy classification. Sect. 4 illustrates the 
methodology with an example from UV/Vis spectroscopy, and Sect. 5 concludes with 
a short discussion and summary. 

2 Related Work 

Recording and evaluating spectra is a common practice in various fields. However, 
the uncertainty in this area has not been extensively researched. The research work 
managing uncertainties is widely scattered across various fields of application. For in-
stance, Reginatto managed the uncertainty of neutron energy spectra using Bayesian 
parameters [10]. However, the parameterized spectrum is assumed to be the sum of a 
Gaussian and a small, smooth background term. In the chapter “Uncertainties in Spec-
tral Color Measurement” by Gardner, the author considers the spectral measurement 
process and its uncertainty components that influence the calculated color values [11]. 
However, the author only considers the measurement process. There it is important to 
note that color measurements on a sample can vary due to different illumination and 
viewing conditions, as well as non-uniformities. Schinke et al. provide a guideline for 
implementing and evaluating spectral stray light corrections [12]. The uncertainty anal-
ysis is based on a Monte-Carlo approach. The corrected signal/standard uncertainty for 
each wavelength is the final result. González et al. also describe a methodology for 
evaluating uncertainties of UV spectra using Monte-Carlo [13]. Verma et al. quantified 
the uncertainties in metal K-edge X-ray absorption near-edge structure (XANES) spec-
tra using deep neural networks [14]. The analysis successfully predicted the spectra, 
but only recorded the extended standard uncertainty per wavelength or per energy, not 
over the entire spectrum, in all three cases mentioned. 

3 Methods 

This section presents a list of methods used, organized according to the topics cov-
ered in this paper. The computational basis for uncertainty detection and a possible 
approach to describe it for spectra are shown. The possible structure of a fuzzy classi-
fication with a membership function is then described. 

 
3.1 Uncertainty Management 

The identification of uncertainties in spectra can be divided into three main parts: 
Firstly, each individual intensity in the spectrum is examined to determine which vari-
ables or standard uncertainties influence it. Secondly, the total standard uncertainty 



across the spectrum is calculated. Finally, the standard uncertainties of the evaluation 
method are quantified, and the expanded uncertainty is calculated for all parts together. 
In Part 1, the individually recorded intensity points in the spectrum are mainly influ-
enced by the environmental conditions, the experimental setup, the excitation source, 
the spectrometer, and physical uncertainties. First, a model equation is set up with the 
measured variables Y and the influencing variables X. 
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The GUM describes the exact procedure for calculating the standard uncertainty uc for 
each influencing variable x. In some cases, a Monte-Carlo distribution can be used. It 
is crucial to note that most input variables in the spectrum are correlated, and therefore 
the combined standard uncertainty 𝑢𝑢𝑐𝑐2(𝑦𝑦𝑛𝑛) per intensity is calculated using a specific 
equation [9]. 
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If there is no correlation of the influencing variables, the combined standard uncertainty 
𝑢𝑢𝑐𝑐2(𝑦𝑦𝑛𝑛)  is calculated differently. 
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In Part 2, the standard uncertainties per intensity value are provided. As the spectrum 

cannot be represented by an analytical function, we use an area calculation and the 
Monte-Carlo method, as described in GUM Supplement 1 [15]. The Monte-Carlo anal-
ysis involves repeating the calculation of the deviations of the area, as outlined in Sec-
tion 2, with all input variables randomly varied in each iteration according to their prob-
ability distribution. For a large enough number of iterations, the uncertainty is derived 
directly from the distribution of the Monte-Carlo results, which vary depending on the 
influencing variables. To calculate the area 𝐹𝐹𝑢𝑢𝑐𝑐 between the standard uncertainties over 
the x-axis range (λ-range), follow these steps. 
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The Monte-Carlo method is utilized to determine the standard uncertainty of the 
complete spectrum. The values of the target variable 𝐹𝐹 = 𝑓𝑓(𝑥𝑥1𝑟𝑟 , … , 𝑥𝑥𝑛𝑛𝑛𝑛) for r = 1, …, 
m are calculated using the realizations obtained in this way. The values are then sorted 
in ascending order to obtain their empirical distribution function. The standard uncer-
tainty 𝑢𝑢𝑦𝑦(𝐹𝐹) is calculated as follows: 
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Where 𝑦𝑦𝑟𝑟 is the r-th value of the target variable and 𝑦𝑦� is the average of the target 

variable. After this calculation, the combined standard uncertainty of the complete 
spectrum is available. The calculation presented here represents an average method. If 
a worst-case method is required, the highest standard uncertainty could be employed in 
this instance.  
In Part 3, the standard uncertainty of the evaluation method for the spectra is calculated. 
To evaluate the spectra with the fuzzy classification, feature extraction is necessary. 
We propose generating a mathematical description of the spectra and using it for eval-
uation. To begin, a reference spectrum is calculated for a known concentration by using 
a mathematical description. This involves iteratively determining the Gaussian param-
eters (a, b, and c) for Gaussian functions g by identifying the local maxima within the 
absorption spectrum A or the difference spectrum yDiff. The iterative process always 
recalculates the difference spectrum by subtracting the newly calculated functions from 
the Gaussian functions of the absorption spectrum or the previously calculated differ-
ence spectrum. 
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The Gaussian parameters for the difference spectrum yDiff,i are determined iteratively by 
subtracting the calculated Gaussian functions from the absorption spectrum until there 
are no more maxima or the difference between the spectra is almost zero. 
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The absorption spectrum is mathematically described by an overall function Aref,i, which 
is composed of Gaussian functions. The resulting Gaussian parameters are then used in 
the Gaussian functions. 
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The reference spectrum is fitted to other spectra to calculate the R2 and z-parameters. 
R2 is used to determine if the existing spectrum matches the calculated spectrum. The 
z-parameter indicates the drift over the entire spectrum, with higher values indicating 
higher concentrations or energy of the influencing medium. These two features will be 



used to construct the fuzzy classifier. To calculate the standard uncertainty, we once 
again utilize the Monte-Carlo method and calculate the distribution of the respective 
parameters using m random numbers in each case. As the evaluation method is not 
correlated with the recording of the spectra, we can calculate the combined standard 
uncertainty using simple error propagation, as shown in equation (3). After that the 
characteristics are available with a total combined standard uncertainty. The expanded 
uncertainty U can be calculated, which specifies a range around the measurement result 
that can be expected to cover a large proportion of the distribution of values that can be 
assigned to the measured variable Y. 

𝑈𝑈 = 𝑘𝑘 ∙ 𝑢𝑢𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺 (10) 
At the end of the uncertainty management, the features are presented with an ex-

panded measurement uncertainty and can be integrated into the fuzzy pattern classifier. 

3.2 Modelling of Fuzzy Classifications 

In fuzzy classification, a clear distinction is made between a learning phase and a work-
ing phase. The learning phase involves creating a fuzzy classification model in a mul-
tidimensional feature space. Object data sets are initially divided into distinct groups 
based on their features. This classification can be achieved through cluster analysis or 
an expert-based approach. These distinct groups are then transformed into fuzzy 
groups. This section describes the use of a fuzzy pattern classification method, specifi-
cally the fuzzy pattern classification method developed by Bocklisch and colleagues 
[16, 17]. The AIZERMAN membership function is used to describe each group in the 
one- or multidimensional feature space. This function is a highly flexible parametric 
potential function type. This potential function was selected for its capacity to facilitate 
flexible modelling and to accommodate a range of phenomena, including asymmetric 
data distribution. 
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The unimodal function has a maximum membership value at point x0, which is also 
known as the representative value of the set. Each of the left and right branches of the 
function has a set of parameters b, c, and d. The extent of the fuzzy set, which describes 
the uncertainty of the measurement, is given by cl > 0 and cr > 0. The fuzziness is 
parameterized by bl and br ∈ [0,1], as well as dl and dr ∈ [2, ∞]. The objects are unified 
into one-dimensional sets and then transformed into multidimensional fuzzy pattern 
classes using an N-fold compensatory Hamacher cut operator [18]. 
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During the subsequent work phase, the fuzzy pattern classifier reads unknown objects 
resulting from the learning phase. Membership values are then calculated for each class 
to determine the assignment of the objects with the highest membership value.  

4 Example 

Absorption spectra recorded using UV/Vis spectroscopy are used as an example. The 
exact experimental setup and the recording process of the spectra are described in Gob-
lirsch et al [19]. A total of 30 water and 30 compound spectra were recorded. The water 
was obtained from distilled water, and the substance spectra were recorded using the 
standard Rhodamine B (Merck, Darmstadt, Germany) at a concentration of 1 mg L–1. 

 
4.1 Calculation and Management of Uncertainties for Intensity Values, 

Spectrum, and Characteristics 

In Part 1, Figure 1 displays all variables that affect the recording of individual intensi-
ties. The aperture calculation is wavelength-dependent, which is why the standard un-
certainty for the absorption value is calculated for each wavelength. For instance, the 
calculation for the wavelength 374.77 nm is described here. The calculation for other 
wavelengths follows the same procedure, but with different input values. 

 

Fig. 1. Cause-effect diagram for measuring the spectrum with all influencing variables. 

The absorption A is calculated using equation (13), 

𝐴𝐴 = 𝐼𝐼0 − 𝐼𝐼 (13) 
with 𝐼𝐼0 representing the intensity values of water absorption and I representing the in-
tensity of substance absorption. The mean values x and standard uncertainties u (here 
calculated like the standard deviation, see type A calculation in the GUM) of the 30 
recorded measurements can be calculated using standard equations and are given in the 
following table for a wavelength of 374.77 nm. 

Signal YSample y
- Stability
- Drift

- Scattered light
- Temperature drift
- Resolution

- Positioning of the cell
- Flow-through cuvette
- Optical fibers
- Collimators
- Quartz glasses

- Electromagnetic
radiation

- Incidence of
light

- Temperature

- Average
calculation for
water and
substance
absorption

- Noise



Table 1. Overview of the mean values and standard uncertainties of the measured spectra 

Average of the water 
intensity values (xI0) 

Standard uncertainty 
of water intensity 

values (uI0) 

Average of the sub-
stance intensity val-

ues (xI) 

Standard uncertainty 
of the intensity val-

ues (uI) 
8145.8 0.8539 % 7735.5 0.4270 % 

 
The uncertainties of the experimental setup affect both I0 and I equally and are there-

fore reduced by the absorption calculation. However, other factors that vary with each 
measurement cannot be similarly reduced. The influence of ambient conditions is 
highly dependent on the situation, which is constantly changing, and difficult to quan-
tify. For instance, temperature has a significant impact on the measurement, particularly 
on the spectrometer. The following section provides a detailed explanation or calcula-
tion of this uncertainty. Other environmental conditions are not considered at this point 
and will be addressed later in the fuzzy classifier. It is important to note that scattered 
light has a significant impact on spectroscopy. Scattered light refers to light that is de-
flected by particles in the water sample in various directions instead of passing directly 
through the sample. The data sheet of the spectrometer specifies a standard uncertainty 
of 1 % for this. The instrument's ability to resolve fine details in the spectrum is meas-
ured by its resolution, which is specified as 1.5 nm in the data sheet. To calculate the 
uncertainty, we generated a normal distribution for the wavelength using the Monte-
Carlo method with 1000 random numbers (refer to Figure 2). The standard uncertainty 
for the intensity value at the wavelength 374.77 nm is 0.1327 %. Figure 2b shows the 
calculated standard uncertainties for the other intensity values. 

 
Fig. 2. a) Distribution of the resolution of the spectrometer calculated with Monte-Carlo as an 
example for the value at 374.77 nm and b) calculated standard uncertainties over the complete 
spectrum for the resolution using Monte-Carlo. 

The influence of temperature on the spectrometer is of considerable importance, as 
higher temperatures can lead to an overall higher intensity of the measured signals. In 
order to study the effect of temperature on the spectrometer, measurements were taken 
over a period of 8 hours in a temperature chamber that can be used to maintain a con-
stant temperature. First, the temperature was set at 10 degrees and a spectrum was rec-
orded every 2 minutes. The measurement process was then repeated for temperatures 
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of 20, 30, and 40 degrees. For the 374.77 nm wavelength, there is a clear relationship 
between temperature and intensity. The deviation per degree gives a standard uncer-
tainty of 4.95 % per 1 degree. The temperature was measured when the spectra were 
recorded and varies between 28.60 and 28.80 degrees. In total, there is a temperature 
difference of 0.2 degrees during the measurement, so the standard uncertainty during 
the measurement is 0.9915 %. 

According to the data sheet, the drift of the lamps has an influence or standard un-
certainty of 0.25 %. Regarding stability, the data sheet states a standard uncertainty of 
0.1 %. To achieve an optimal signal-to-noise ratio, an average of 10 spectra is formed 
during the absorbance measurement. The standard deviation was calculated for each 
intensity value of 10 individually recorded spectra to determine the resulting standard 
uncertainty. This is done for both water and substance absorption (see figure 3a and 
3b). For the wavelength 374.7721 nm, the standard uncertainty is 1.8944 % for water 
absorption and 1.1157 % for substance absorption. To determine the noise, the spec-
trum was first considered after the appropriate filter and the standard uncertainty was 
calculated as 0.05 %.  

 
Fig. 3. Standard uncertainties caused by the average calculation when a) recording the water 
spectra and b) when recording the substance spectra. 

Since the pure water absorption correlates with the intensity absorption of the sub-
stance, the combined standard uncertainty must be calculated according to equation (2). 
Figure 4a shows the final calculated spectrum with the combined standard uncertainty 
per intensity. The combined standard uncertainty has been increased only for the plot 
by a factor of 3 with plus and minus values for clarity. For comparison, the exact plus 
and minus combined standard uncertainty for each intensity value is shown in Figure 
4b. 



 
Fig. 4. Combined standard uncertainty a) in the absorption spectrum with optical magnification 
by 3 and b) independent of the absorption values. 

For part 2, the recording of the standard uncertainty for the whole spectrum, the area 
between the combined standard uncertainties per intensity value over the wavelength 
range is 11814.37 and was determined according to equation (4). The Monte-Carlo 
method is used to calculate the standard uncertainty of the entire spectrum more accu-
rately. For this purpose, 10,000 random realizations of the input variables are selected. 
According to the normal distributions chosen for the input variables, the m realizations 
were performed on a computer. The values of the output variable 𝐹𝐹 = 𝑓𝑓(𝑥𝑥1𝑟𝑟 , … , 𝑥𝑥𝑛𝑛𝑛𝑛) 
for 𝑟𝑟 = 1, … ,𝑚𝑚 are calculated from the realizations obtained in this way. By sorting the 
values in ascending order, their empirical distribution function is obtained. The stand-
ard uncertainty 𝑢𝑢𝑦𝑦(𝐹𝐹) is calculated according to equation (5). The distribution for the 
spectrum calculated here using the Monte-Carlo method is shown in Figure 5. These 
calculations result in a combined standard uncertainty for the entire spectrum of 
±2.9481 %. 

Fig. 5. Probability density of the area of standard uncertainties over the spectrum calculated by 
the Monte-Carlo Method. 

In part 3, the standard uncertainties are recorded for each feature in the evaluation 
method. The reference spectrum is fitted with an R2 of 0.9992 and has a z-parameter of 
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0.9892. Accordingly, the standard uncertainties of the reference spectrum are for R2 = 
0.008 % and for the z-parameter = 0.108, which corresponds to 1.09 %. The reference 
spectrum is now fitted to other spectra to calculate the R2 and z-parameters. To obtain 
the average uncertainty, 30 absorption spectra were fitted and the corresponding R2 and 
z parameters were calculated. To determine the standard uncertainty, the Monte-Carlo 
method was used again, and the distribution of each parameter was calculated using 
10,000 random numbers (see figure 6). The overall result is a standard uncertainty of 
0.0012 % for R2 and a standard uncertainty of 0.6534 % for the z-parameter. 

Fig. 6. Probability density of a) the R2 and b) the z-parameter calculated by the Monte-Carlo 
method for evaluating the spectra. 

To calculate the combined standard uncertainty from the standard uncertainties of 
the spectrum, reference spectrum and feature extraction, error propagation is used 
again. The features R2 were calculated as 0.9989 and z-Parameter as 0.9935 as expected 
values. The reference spectrum correlates with the feature extraction because the refer-
ence spectrum is used for the feature extraction and therefore must be calculated ac-
cording to Equation (2). This results in a combined standard uncertainty 
𝑢𝑢𝑐𝑐𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑅𝑅2) of 0.1267 % for the evaluation of R2 and a combined standard un-
certainty ucAuswertung(z) of 1.9481 % for the evaluation of the z parameter. These must 
now be offset against the standard uncertainty of the spectrum. This time there is no 
correlation, so the error propagation according to equation (3) can be performed for 
each parameter. This gives a combined standard uncertainty of 𝑢𝑢𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺 (𝑅𝑅2) is 2.9508 % 
for the feature R2 and a combined standard uncertainty of 𝑢𝑢𝑐𝑐𝐺𝐺𝐺𝐺𝐺𝐺 (𝑧𝑧) is 3.5336 % for the 
feature z parameter. To calculate the expanded uncertainty, equation (10) is used and a 
factor of 2 is selected for k so that the value of the measurement variable normally lies 
within the assigned coverage interval with a probability of approximately 95 %. The 
overall result is now the expanded uncertainty for the feature R2 with 𝑈𝑈𝑅𝑅2  is 5.9016 % 
and the feature z-parameter with 𝑈𝑈𝑧𝑧 is 7.0672 %.  
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4.2 Structure of the Fuzzy Pattern Classifier 

The calculated expanded uncertainties can now be integrated into the fuzzy classifica-
tion. For better description and comparison, an additional data set with 30 rhodamine 
B spectra at a concentration of 0.5 mg L–1 was recorded. In a first step, the two feature 
parameters R2 and z are calculated from all spectra and grouped. This is followed by a 
fuzzy description and classification, where the calculated measurement uncertainty can 
be integrated for each feature. The structure of the fuzzy pattern classifier is as de-
scribed above and explained in detail in [3, 20]. In the example, single linkage cluster-
ing and normalized (a = 1), symmetric membership functions with bl/r = 0.5, dl/r = 2 
were used to model fuzzy objects. These parameters are frequently recommended in 
the literature for the construction of normalized multivariate membership functions, as 
they have been empirically demonstrated to be a reasonable choice in practice. Figure 
7 shows the final fuzzy pattern classifier.  

 

Fig. 7. Two-dimensional fuzzy pattern classifier including the calculated uncertainties. 

This classifier now forms the basis for the work phase in which unknown data can 
be read in and assigned to a class. Incorporating uncertainties or vagueness enables a 
more realistic and flexible description of the data. 

5 Discussion and Conclusion 

The presented method showed how the uncertainties of spectra can be recorded and 
calculated for fuzzy classification. The calculations were based on the guidelines of the 
GUM. Because measured Spectra are recorded as discrete values and not as analytical 
functions, the Monte-Carlo method was used. This allowed uncertainties to be 
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expressed even for complex spectra. The calculation of uncertainties according to the 
GUM guidelines undoubtedly represents an important step in managing and quantify-
ing uncertainties in spectrum analysis. However, it should be noted that this method 
may not fully account for all influences, especially those due to environmental condi-
tions. In addition, a simplification was made in summarizing the uncertainties across 
the spectrum by calculating the area over all standard uncertainties, although these may 
differ across the spectral range. Despite these limitations, the calculated expanded un-
certainty has been successfully integrated into a fuzzy classification. This integration 
of the calculated uncertainties allows a better and more realistic consideration of the 
real spectra in the evaluation and thus contributes to more reliable results. However, it 
remains important to further refine the uncertainty calculation methods and to align the 
classes more explicitly with the calculated uncertainties to allow a more precise char-
acterization of the measurement uncertainties. The method was tested using absorption 
spectra as an example, and the expanded measurement uncertainty for the entire spec-
trum and the evaluation method were successfully calculated. This expanded uncer-
tainty was then integrated into a fuzzy pattern classifier, which allows spectra to be 
evaluated considering the uncertainties. This approach opens new possibilities for the 
precise and reliable evaluation of spectra in various application areas. 
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