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Abstract. Stochastic orderings are a commonly used tool in probability
theory for comparing random variables or probability distributions. In a
recent publication we showed that stochastic orderings are, to some ex-
tent, in correspondence with voting procedures. For instance, we demon-
strated that the Borda count is equivalent to the comparison of expecta-
tions while the Condorcet method is equivalent to statistical preference.
This contribution establishes as well a correspondence between stochas-
tic orderings and methods used in the literature for ranking the elements
of a poset. Specifically, we show that some well-known methods used
in the literature for ranking the elements of a poset, namely the aver-
aged ranking, mutual rank probabilities and the maximal method, are
formally equivalent to comparing expectations, statistical preference and
multivariate probabilistic preference, respectively.

Keywords: Poset · Stochastic ordering · Averaged ranking · Mutual
rank probabilities · Maximal method.

1 Introduction

Stochastic orderings [2, 17] have been widely used in statistics for comparing
random variables. Many fields of application, specially that of Economics [13],
have successfully used those stochastic orderings in practical problems related
to investment decision making and portfolio selection [12]. Among the many
different stochastic orderings that can be found in the literature, we may men-
tion the comparison of expectations [16], or even the more general framework of
multi-utility representation orderings [10], which are based on comparing uni-
variate distributions; statistical preference [9], or precedence ordering [1], which
relies on the joint distribution of pairs of random variables; and probabilistic
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preference [14], which uses the joint distribution of all the random variables to
be compared.

From an apparently different perspective, fields as varied as Discrete Math-
ematics [11] and Chemistry [3, 8] have addressed the problem of selecting the
weak order that best represents a given partially ordered set. That weak order
is usually built using the information about the linear extensions of the poset
that are, roughly speaking, the total orders compatible with the poset. Notable
approaches in this domain include the averaged ranking [18], mutual rank prob-
abilities [7] and the maximal method [11].

In this work, we show that those two problems, i.e., comparing random vari-
ables and ranking elements of a poset, are actually closely related. In fact, what
we show throughout this contribution is that there exists a correspondence be-
tween the existing methods in both fields. It is worth noting that the present
paper builds upon the line of our previous contribution [15] in which stochastic
orderings and voting procedures used in the field of social choice were shown to
have many commonalities with each other.

The remainder of the contribution is organized as follows: after introducing
some preliminaries and fixing the notation used throughout the contribution in
Section 2, Section 3 explains the main methods used to create a ranking on
the elements of a poset and Section 4 introduces some of the main stochastic
orderings that can be found in the literature. With this background, we devote
Section 5 to establish a connection between both frameworks. We conclude the
paper in Section 6 with some final remarks and comments.

2 Preliminaries

In the present section we provide some preliminaries on the theory of partially
ordered sets [5]. A partially ordered set, or poset for short, is a pair (P,≤P )
formed by a set P and a reflexive, antisymmetric and transitive relation ≤P

on P . For the sake of simplicity, whenever no confusion is possible we will skip
the subindex P for the relation ≤P . Two elements x, y ∈ P are called comparable
when it either holds that x ≤ y or y ≤ x; otherwise they are called incomparable,
denoted by x ‖ y. If x ≤ y and x 6= y, we write x < y. Any subset P ′ ⊆ P defines
a poset (P ′,≤P ′), where ≤P ′ is the restriction of ≤ to P ′. The dual of a poset
(P,≤) is the poset (P,≥) such that x ≥ y if and only y ≤ x. A poset and its
dual are used interchangeably.

In a poset (P,≤), an element x ∈ P for which there does not exist another
element y ∈ P such that x ≤ y is called maximal, whereas an element x ∈ P
for which there does not exist another element y ∈ P such that y ≤ x is called
minimal. If there exists one unique maximal element it is called the top, whereas
if there exists one unique minimal element it is called the bottom. A poset may
only admit one top and one bottom and, in case both of them exist, the poset
is called bounded.

Given a poset (P,≤), an element x ∈ P is said to be covered by a different
element y ∈ P , denoted by xl y, if it holds that x < y and there does not exist
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another z ∈ P\{x, y} such that x < z < y. The covering relation l characterizes
the order relation ≤ and is typically used for graphically representing a poset,
resulting in the so-called Hasse diagram.

Example 1. Consider the poset (P,≤) where P = {x1, x2, x3, x4, x5, x6} and ≤
is determined by the covering relation

l = {(x3, x1), (x4, x1), (x5, x4), (x6, x2), (x6, x5)} .

The Hasse diagram is shown in Figure 1. There, a line between two elements
means that the element situated below is covered by the element situated above.
This diagram allows to understand the structure of the poset and, for example,
easily shows that x1, x2 are two maximal elements, while x3 and x6 are two
minimal elements.

x1 x2

x3 x4

x5

x6

Fig. 1. Hasse diagram for representing the poset in Example 1.

A chain is a poset in which all the elements are comparable. A poset (P,≤′)
is called an extension of (P,≤) if x ≤ y implies x ≤′ y. A linear extension of a
poset is an extension of the poset that is a chain. The set of all linear extensions
of a poset (P,≤) is denoted by E≤. As an example, Table 1 shows all nineteen
linear extensions of the poset given in Figure 1.

A weak order or total preorder is a pair (P,-) formed by a set P and a re-
flexive, complete and transitive binary relation - on P . Any weak order relation
- may be partitioned into two binary relations:

(i) the strict part ≺: defined by x ≺ y if x - y and y ��- x. The relation (≺ ∪ =),
simply denoted by � if no confusion can occur, is reflexive, transitive and
antisymmetric, i.e., � is an order relation.

(ii) the symmetric part ∼: defined by x ∼ y if x - y and y - x. The relation ∼
is reflexive, transitive and symmetric, i.e., ∼ is an equivalence relation.

A weak order (P,-) is called a complete extension of a poset (P,≤) if x ≤ y
implies x - y. Obviously, any linear extension of a poset is a complete extension.
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Table 1. Linear extensions of the poset represented in Figure 1.

e1: x3 < x6 < x2 < x5 < x4 < x1 e2: x3 < x6 < x5 < x2 < x4 < x1

e3: x3 < x6 < x5 < x4 < x1 < x2 e4: x3 < x6 < x5 < x4 < x2 < x1

e5: x6 < x2 < x3 < x5 < x4 < x1 e6: x6 < x2 < x5 < x3 < x4 < x1

e7: x6 < x2 < x5 < x4 < x3 < x1 e8: x6 < x3 < x2 < x5 < x4 < x1

e9: x6 < x3 < x5 < x2 < x4 < x1 e10: x6 < x3 < x5 < x4 < x1 < x2

e11: x6 < x3 < x5 < x4 < x2 < x1 e12: x6 < x5 < x2 < x3 < x4 < x1

e13: x6 < x5 < x2 < x4 < x3 < x1 e14: x6 < x5 < x3 < x2 < x4 < x1

e15: x6 < x5 < x3 < x4 < x1 < x2 e16: x6 < x5 < x3 < x4 < x2 < x1

e17: x6 < x5 < x4 < x2 < x3 < x1 e18: x6 < x5 < x4 < x3 < x1 < x2

e19: x6 < x5 < x4 < x3 < x2 < x1

3 Ranking elements of a poset

The problem of selecting the most natural complete extension of a given poset has
attracted the interest of the scientific community for decades (see, e.g., [4, 11]).
Given a poset (P,≤), three prominent methods for selecting a complete extension
(P,-) of (P,≤) are Averaged rankings [18], Mutual rank probabilities [7] and
Maximal method [11].

3.1 Averaged rankings

Next we consider the linear extensions e ∈ E≤ and the order relation they de-
termine, denoted by ≤e. We define the position Pose(x) of an element x in a
linear extension e = (P,≤e) as the number of elements in P that are ranked at
a position that is better (or equal) than that of x in the chain determined by ≤e,
i.e., Pose(x) = |{z ∈ P | x ≤e z}|, where |A| denotes the cardinality of a finite
set A. The average position av(x) of x in a poset (P,≤) is defined as

av(x) =
1

|E≤|
∑
e∈E≤

Pose(x) .

The averaged ranking approach [3, 18] selects as the complete extension (P,-av)
of (P,≤) the weak order defined as x -av y if av(x) ≤ av(y). We also consider
the notation x ≺av y when av(x) < av(y) and x ∼av y when av(x) = av(y).

Example 2. Consider the poset defined in Figure 1 and the linear extensions of
Table 1. The following table enumerates the positions of each one of the elements:

Position 1st 2nd 3rd 4th 5th 6th
x1 15 4 0 0 0 0
x2 4 4 4 4 3 0
x3 0 3 4 4 4 4
x4 0 8 8 3 0 0
x5 0 0 3 8 8 0
x6 0 0 0 0 4 15
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We compute the averaged ranking of each element, obtaining the following values:

av(x1) = 23
19 , av(x2) = 55

19 , av(x3) = 97
19 .

av(x4) = 71
19 , av(x5) = 100

19 , av(x6) = 129
19 .

Thus, we conclude that:

x6 ≺av x5 ≺av x3 ≺av x4 ≺av x2 ≺av x1 .

It is worth mentioning that the weak order obtained in this example is a total
order. However, this is not always the case for the averaged ranking because two
elements may have the same average position, as can be seen in the forthcoming
Example 4.

3.2 Mutual rank probabilities

Given a poset (P,≤), we define the mutual rank probability py<x of x ∈ P over a
different element y ∈ P as the proportion of linear extensions of (P,≤) in which

y < x, that is, py<x =
|{e∈E≤|y≤ex}|

|E≤| . The method of mutual rank probabilities [8]

selects as the complete extension (P,-mr) of (P,≤) the binary relation defined
as x -mr y if py<x ≤ 1

2 . Note that the relation -mr is not necessarily transitive
and, therefore, its transitive closure -′mr needs to be considered if the aim is to
obtain a complete extension of (P,≤). Again, we use the notation x ≺mr y or
x ≺′mr y and x ∼mr y or x ∼′mr y for the strict and symmetric parts of -mr and
-′mr, respectively.

Example 3. Consider the poset defined in Figure 1 and the linear extensions of
Table 1. The mutual rank probabilities py<x, where x is the element in the row
and y is the element in the column, are as follows:

py<x x1 x2 x3 x4 x5 x6

x1 0 15
19 1 1 1 1

x2
4
19 0 13

19
9
19

14
19 1

x3 0 6
19 0 5

19
10
19

15
19

x4 0 10
19

14
19 0 1 1

x5 0 5
19

9
19 0 0 1

x6 0 0 4
19 0 0 0

Thus, we conclude that:

x6 ≺mr x5 ≺mr x3 ≺mr x2 ≺mr x4 ≺mr x1 .

Note that -mr already is transitive, but as will be shown in the following example,
this is not always the case.
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Example 4. As mentioned above, the main problem of this method is its lack of
transitivity [7], as can be seen in the poset defined in Figure 2. In such example,
already presented in [7], x1, x2, x3 are preferred to x4, x5, x6, x7, x8, x9 (xi ≺mr

xj, with i ∈ {4, 5, 6, 7, 8, 9} and j ∈ {1, 2, 3}), and x1, x2, x3, x4, x5, x6 are pre-
ferred to x7, x8, x9 (xi ≺mr xj, with i ∈ {7, 8, 9} and j ∈ {1, 2, 3, 4, 5, 6}). How-
ever, there are three cycles: the first one is formed by x1, x2, x3 (x1 ≺mr x2 ≺mr

x3 ≺mr x1), the second one is formed by x4, x5, x6 (x4 ≺mr x5 ≺mr x6 ≺mr x4)
and the third one is formed by x7, x8, x9 (x7 ≺mr x8 ≺mr x9 ≺mr x7). Therefore,
the method of mutual rank probabilities does not rank all the elements in the
poset, it does not even provide a transitive relation.

x1 x2 x3

x4 x5 x6

x7 x8 x9

Fig. 2. Hasse diagram of a poset with cyclical statistical preference relation.

The transitive closure of -mr leads to:

x9 ∼′mr x8 ∼′mr x7 ≺′mr x6 ∼′mr x5 ∼′mr x4 ≺′mr x3 ∼′mr x2 ∼′mr x1 .

Additionally, this example also shows that the weak order provided by the aver-
aged ranking is not a total order in general, even though it is a total pre-order,
since straightforward computations show that

x9 ∼av x8 ∼av x7 ≺av x6 ∼av x5 ∼av x4 ≺av x3 ∼av x2 ∼av x1 .

3.3 Maximal method

Given a poset (P,≤), the maximal method [11] proceeds in an iterative manner
as follows. Let M1 be the set of maximal elements of ≤ in P , M2 be the set
of maximal elements of ≤ restricted to P\M1 and, iterating while possible, let
Mi be the set of maximal elements in the restriction of ≤ to P\ ∪i−1j=1 Mj. The
maximal method selects as the complete extension (P,-max) of (P,≤) the weak
order defined as x -max y if x ∈ Mi and y ∈ Mj for i ≥ j. The notation
x ≺max y is used when i > j and x ∼max y when i = j.
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Example 5. Consider the poset defined in Figure 1. It follows that M1 = {x1, x2},
M2 = {x3, x4}, M3 = {x5} and M4 = {x6}. Thus, we conclude that:

x6 ≺max x5 ≺max x4 ∼max x3 ≺max x2 ∼max x1 .

Note that one could define an analogous method based on the minimal ele-
ments.

4 Stochastic orderings

Stochastic orderings [2, 17] are methods for the comparison of random variables.
In the following, we present three popular options that have been extensively used
in the literature: expected value [16], statistical preference [9] and probabilistic
preference [14].

In this section we use X,Y, Z or X1, X2, X3, . . . for denoting random vari-
ables defined on the same probability space, where π is the probability measure.
As well, we use X % Y for denoting the preference relation determined by a
stochastic ordering (X is preferred to Y ), X � Y to denote its strict preference
relation (meaning that X is strictly preferred to Y ) and X ∼ Y for denoting its
associated indifference relation (meaning that X and Y are equally preferred).

4.1 Expected value

Possibly, the most well-known stochastic ordering is that of expected value [16]:
a random variable X is said to be preferred to a random variable Y with respect
to expected value, denoted by X %EV Y , if it holds that E(X) ≥ E(Y ).

Example 6. Consider the example provided in [9] in which the numbers from 1 to
18 are distributed over the faces of three dice as follows: D1 = {1, 3, 4, 15, 16, 17},
D2 = {2, 10, 11, 12, 13, 14} and D3 = {5, 6, 7, 8, 9, 18}. The objective is to com-
pare the associated random variables X1, X2 and X3, assuming a uniform distri-
bution over D1, D2 and D3, respectively. It holds that E(X1) = 28

3 , E(X2) = 31
3

and E(X3) = 53
6 . Thus, X2 �EV X1 �EV X3.

4.2 Statistical preference

Another usual stochastic ordering is that of statistical preference [9]. This stochas-
tic ordering is based on the notion of pairwise winning probabilities, formalized by
means of a probabilistic relation Q that measures the degree to which a random
variable X is greater than another random variable Y . The pairwise winning
probability of a random variable X over another random variable Y , denoted by
Q(X,Y ), is defined as follows:

Q(X,Y ) = π(X > Y ) +
1

2
π(X = Y ) .
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X is said to be statistically preferred to Y , denoted by X %SP Y , if Q(X,Y ) ≥
Q(Y,X). Note that, since Q(X,Y ) +Q(Y,X) = 1, Q(X,Y ) ≥ Q(Y,X) is equiv-
alent to Q(X,Y ) ≥ 1

2 . The main drawback of this stochastic ordering is its lack
of transitivity [6], as one may find three random variables X, Y and Z such that
X �SP Y , Y �SP Z and Z �SP X.

Example 7. Continue with the random variables in Example 6. It holds that
Q(X1, X2) = 5

9 , Q(X2, X3) = 25
36 and Q(X3, X1) = 7

12 . It follows that X1 �SP

X2, X2 �SP X3 and X3 �SP X1.

4.3 Probabilistic preference

As an alternative to statistical preference that circumvents its lack of transitivity,
the notion of probabilistic preference was recently introduced [14]. This stochastic
ordering is based on the notion of multivariate winning probability of a random
variable X in a finite set of distinct random variables A, which represents the
probability of X being the preferred random variable in A, defined as follows:

ΠA(X) =
∑

Y⊆A\{X}

1

1 + |Y|
π
((
∀Z ∈ Y

)(
∀W ∈ A\({X} ∪ Y)

)(
X = Z > W

))
.

It follows that
∑

X∈AΠA(X) = 1. Interestingly, in case A = {X,Y }, the mul-
tivariate winning probability of X in {X,Y } reduces to the pairwise winning
probability of X over Y , i.e., Π{X,Y }(X) = Q(X,Y ). This is to be understood as
follows: if only two random variables are being compared, then both Π{X,Y }(X)
and Q(X,Y ) may be used interchangeably; however, if more than two random
variables are being compared, then only ΠA(X) should be used as it fairly con-
siders all relationships within A.

When π(X = Y ) = 0 for any pair of random variables in A, the multivariate
winning probability simplifies to:

ΠA(X) = π
(
(∀Y ∈ A \ {X})(X > Y )

)
,

that is, ΠA(X) is the probability of X taking a larger value than all the other
random variables in A.

Since it is possible that many random variables X ∈ A will be such that
ΠA(X) = 0, we could consider the following procedure for obtaining a weak order
on A. We define A1 to be the set of random variables X ∈ A such that ΠA(X) >
0, A2 to be the set of random variables X ∈ A\A1 such that ΠA\A1

(X) > 0,

and, iterating while possible, Ai to be the set of random variables X ∈ A\∪i−1j=1Aj

such that ΠA\∪i−1
j=1Aj

(X) > 0. A random variable X is said to be probabilistically

preferred to another random variable Y (given a finite set of distinct random
variables A with X,Y ∈ A), denoted by X %PP Y , if it either holds that there
exists i such that X,Y ∈ Ai and ΠA\∪i−1

j=1Aj
(X) ≥ ΠA\∪i−1

j=1Aj
(Y ) or X ∈ Ai

and Y ∈ Aj for i > j.
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Example 8. Continue with the random variables in Example 6 and consider the
set of random variables A = {X1, X2, X3}. It holds that ΠA(X1) = 0.4167,
ΠA(X2) = 0.3472 and ΠA(X3) = 0.2361. Since A1 = {X1, X2, X3}, it holds
that X1 �PP X2 �PP X3.

5 A correspondence between methods for ranking
elements of a poset and stochastic orderings

Given a poset (P,≤), we may define the probability space (E≤,P(E≤),U), where
U denotes the (discrete) uniform distribution on a finite set. Note that any ele-
ment a ∈ P defines a random variable Xa : E≤ → {1, 2, . . . , |P |} indicating the
position of the element a in each linear extension (1 being associated with the
top and |P | with the bottom of the chain). We define A≤ = {Xx1 , . . . , Xx|P |} to
be the set of all such random variables. Obviously, the random variables in A≤
are not independent.

In this section, we prove that there exists a correspondence between the three
methods for rankings elements of a poset described in Section 3 and the three
stochastic orderings described in Section 4.

5.1 Averaged rankings and expected value

In the following, we show the similarities between the method of averaged rank-
ings for ranking the elements of a poset and the stochastic ordering of expected
value. For this aim we just need to realize that the position Pose(y) of an element
y in the linear extension e coincides with Xy(e).

Theorem 1. Let (P,≤) be a poset. There exists a correspondence between the
weak order -av on P provided by the method of averaged rankings and the weak
order %EV on A≤ provided by expected value.

Proof. It suffices to see that, for any y ∈ P , it holds that

av(y) =
1

|E≤|
∑
e∈E≤

Pose(y) =
1

|E≤|
∑
e∈E≤

Xy(e) = E(Xy) .

Therefore, it holds that the position of y in -av coincides with that of Xy in
%EV. �

5.2 Mutual rank probabilities and statistical preference

In the following, we show the similarities between the method of mutual rank
probabilities for ranking the elements of a poset and the stochastic ordering of
statistical preference. For this aim we just need to realize that the mutual rank
probability py<x of x over y coincides with Q(Xx, Xy).
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Theorem 2. Let (P,≤) be a poset. There exists a correspondence between the
binary relation -mr on P provided by the method of mutual rank probabilities
and the binary relation %SP on A≤ provided by statistical preference.

Proof. It suffices to see that, for any distinct x, y ∈ P , it holds that

py<x =
|{e ∈ E≤ | y ≤e x}|

|E≤|
=

∑
e∈E≤ 1(Xx(e) > Xy(e))

|E≤|
= π(Xy < Xx) = Q(Xx, Xy) ,

since Xx and Xy are distinct if x and y are distinct. Finally, it holds that py<x ≤
1
2 if and only if Q(Xx, Xy) ≤ 1

2 , and, thus, x -mr y if and only if Xy %SP Xx.
�

5.3 Maximal method and probabilistic preference

Finally, we show the similarities between the maximal method for ranking the
elements of a poset and the stochastic ordering provided by probabilistic prefer-
ence. For this aim we just need to realize that the sets Mi and Ai coincide for
any i.

Theorem 3. Let (P,≤) be a poset. There exists a correspondence between a
linear extension of the weak order -max on P provided by the maximal method
and the weak order %PP on A≤ provided by probabilistic preference.

Proof. It suffices to see that

M1 = {a ∈ P | (6 ∃b ∈ P )(a ≤ b)}
= {a ∈ P | (∃e ∈ E≤)(Pose(a) = 1)}
= {a ∈ P | π

(
(∀W ∈ A\{Xa})(Xa > W )

)
> 0}

= {a ∈ P | ΠA(Xa) > 0} = A1 .

Similarly, one could prove that Mi = Ai, for any i. Since a ∈ Mi if and only if
Xa ∈ Ai, it follows that %PP is a complete extension of -max. �

6 Conclusion

In the present paper we have shown how three popular methods for ranking the
elements of a poset (namely averaged rankings, mutual rank probabilities and
maximal method) are very closely related to three popular stochastic orderings
(namely expected value, statistical preference and probabilistic preference). This
work brings up some parallelisms between the interests of fields as varied as
Discrete Mathematics and Statistics.

In fact, this connection we have established allows to use any stochastic or-
dering as a method for ranking elements of a poset. Somewhat surprisingly, this
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connection may have an important application in Chemistry, where the need of
establishing a weak order in a poset naturally appears (see for example [3, 4, 7,
8]).

The next step in this investigation should be to unify this paper with our
previous contribution [15] where we established a connection between voting pro-
cedures and stochastic orderings. This would allow us to conclude that finding
the winner in an election, weakly ordering the elements of a poset and order-
ing random variables are closely related mathematical problems. In addition, it
would be worth performing experimental studies on real or simulated data for
comparing the methods.
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