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Abstract. Aggregation processes appear naturally in many fields of ap-
plication. The formalization of such processes has been a core topic for
researchers in the fuzzy set community for decades, mostly focusing on
the aggregation of elements of a bounded poset (typically a bounded real
interval). Recent work by the present authors has aimed at further gener-
alizing aggregation theory so it can accommodate aggregation processes
on more general structures such as multivariate data, ranking data and
string data. In this work, the aggregation of circular data is explored
and, in particular, two prominent examples of aggregation functions for
circular data (namely the circular mean and the circular median) are
presented within this revisited aggregation theory framework.
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1 Introduction

As brought to the attention in [11], the problem of combining several real values
into a single one can be traced back to Ancient Greece. Nevertheless, it is not
until the nineteenth century that Cauchy [5] introduces the first formal definition
of mean as an internal function, i.e., a function that is bounded from below by
the minimum and from above by the maximum. Two centuries later countless
papers and monographs on the topic have been written studying the more general
notion of aggregation function (see, e.g., [1, 10]). Aggregation functions are not
necessarily internal but still allow to combine several real values into a single
one.

At the same time, different scientific communities have addressed similar
aggregation-related tasks, while dealing with structures different from the set of
real numbers. For instance, from the very same aggregation theory community,
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aggregation on bounded partially ordered sets has been addressed [13]. Also,
the aggregation of multivariate data [9, 17] has been quite popular in the field
of statistics, whereas the aggregation of ranking data [21] has attracted the
attention of different fields such as that of social choice theory. Other examples of
structures on which aggregation has been studied are those of imagery data [14],
string data [18] and compositional data [20].

A general theory of aggregation on structures was already initiated back
in 1993 by Yager [24] based on the notion of penalty function. These penalty
functions largely attracted the attention of aggregation theorists in the context
of real numbers, see e.g. [2, 4], however the work of Yager was not really picked
up on different structures until recent works such as those by Gagolewski [8]
and Pérez-Fernández and De Baets [16]. The latter work paved the way towards
the development of a theory of aggregation on sets equipped with a betweenness
relation [19], besets for short.

The present work aims at positioning two prominent examples of aggregation
of circular data (namely the circular mean and the circular median) within the
framework of (penalty-based) aggregation on besets. It must be remarked that
the aggregation of circular data is an old acquaintance of statisticians, which have
routinely addressed aggregation of this type of data in the context of location
estimation for circular data [7, 15].

The remainder of the paper is structured as follows. Section 2 presents the
general framework for (penalty-based) aggregation on besets. The setting of
circular data is introduced in Section 3 by already proposing a natural between-
ness relation for this type of data. Section 4 positions the circular mean and the
circular median within the framework of penalty-based aggregation of besets,
whereas Section 5 shows that both these functions do not fulfill the definition
of an aggregation function for circular data. We end with some conclusions in
Section 6.

2 Aggregation on besets

A betweenness relation is a ternary relation that formalizes the notion of one
element being in between two other elements. Although different axiomatic def-
initions have been studied (see, e.g., [6, 12, 22]), we consider the one in [16] that
has already been considered successfully in the context of penalty-based data
aggregation.

Definition 1. A ternary relation B on a non-empty set X is called a between-
ness relation if it satisfies the following three properties:

(i) Symmetry in the end points: for any x, y, z ∈ X, it holds that

(x, y, z) ∈ B ⇔ (z, y, x) ∈ B .

(ii) Closure: for any x, y, z ∈ X, it holds that(
(x, y, z) ∈ B ∧ (x, z, y) ∈ B

)
⇔ y = z .
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(iii) End-point transitivity: for any o, x, y, z ∈ X, it holds that(
(o, x, y) ∈ B ∧ (o, y, z) ∈ B

)
⇒ (o, x, z) ∈ B .

A set X equipped with a betweenness relation B is called a beset and denoted by
(X,B).

The notion of set of bounds of a beset [19] generalizes the bounds of an
interval to more general structures.

Definition 2. Given a beset (X,B), a non-empty subset S of X is called a
set of bounds of (X,B) if, for any y ∈ S and any x, z ∈ X\S, it holds that
(x, y, z) 6∈ B. We thus refer to (X,B, S) as a bounded beset.

A betweenness relation on a certain space X induces a natural betweenness
relation on the product space Xn.

Definition 3. Given a betweenness relation B on a set X and n ∈ N, the prod-
uct betweenness relation on Xn induced by B is the ternary relation B(n) defined
as

B(n) =
{

(x,y, z) ∈ (Xn)3 |(∀i ∈ {1, . . . , n})((xi, yi, zi) ∈ B)
}
.

Aggregation functions [1, 10] can thus be defined on more general structures
than the real line by using betweenness relations and, more specifically, bounded
besets (see, [19]).

Definition 4. Consider a bounded beset (X,B, S) and n ∈ N. A function A :
Xn → X is called an (n-ary) aggregation function on (X,B, S) if

(i) it satisfies the boundary conditions, i.e., A(o, . . . , o) = o, for any o ∈ S;
(ii) it is monotone, i.e., for any o ∈ S and any x,y ∈ Xn, the fact that(

(o, . . . , o),x,y
)
∈ B(n) implies that

(
A(o, . . . , o), A(x), A(y)

)
∈ B.

In a similar line of thought, a generalization of the definition of penalty-
function [2, 4] was proposed in [16]. Intuitively, a penalty function is a function
that assigns a penalty to a given element according to how much it disagrees
with a list of elements to be aggregated.

Definition 5. Consider n ∈ N, a set X and a betweenness relation B on Xn.
A function P : X ×Xn → R+ is called a penalty function (compatible with B)
if the following four properties hold:

(P1) P (y; x) ≥ 0, for any y ∈ X and any x ∈ Xn;
(P2) P (y; x) = 0 if and only if x = (y, . . . , y);
(P3) The set of minimizers of P (·; x) is non-empty, for any x ∈ Xn.
(P4) P (y; x) ≤ P (y; x′), for any y ∈ X and any x,x′ ∈ Xn such that ((y, . . . , y),

x,x′) ∈ B.

The ultimate use of a penalty function is to define a penalty-based (aggre-
gation) function where the result of the aggregation is defined to be the element
that results in the smallest penalty given the list of elements to be aggregated.
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Definition 6. Consider n ∈ N, a set X, a betweenness relation B on Xn and a
penalty function P : X ×Xn → R+ compatible with B. The function f : Xn →
P(X) defined by

f(x) = arg min
y∈X

P (y; x) ,

for any x ∈ Xn, is called the penalty-based function associated with P .

Note that the codomain of the penalty-based function above is the powerset
P(X) of X. If the goal is that there exists a unique aggregated element, the
definition above should read “The function f : Xn → X defined by

f(x) ∈ arg min
y∈X

P (y; x) ,

for any x ∈ Xn”.

3 A betweenness relation for circular data

Let D = [0, 2π[ denote the set of circular data points, i.e., the set of angles
measured in radians. As usual when dealing with circular data, all arithmetic
operations are performed modulo 2π.

A natural betweenness relation on D assures that y is in between x and z if
y lies on the shortest arc between x and z.

Proposition 1. The ternary relation BD on D, defined as

BD = {(x, y, z) ∈ D3 |
(

sin(z − x) · sin(y − x) ≥ 0
)
∧
(

cos(z − x) ≤ cos(y − x)
)
}

= {(x, y, z) ∈ D3 |
(
0 ≤ y − x ≤ z − x ≤ π

)
∨
(
π ≤ z − x ≤ y − x ≤ 2π

)
} ,

is a betweenness relation on D.

Proof. (i) Symmetry in the end points. Let (x, y, z) ∈ BD. We distinguish two
cases:

– 0 ≤ y−x ≤ z−x ≤ π: It follows that π ≤ x− z ≤ y− z ≤ 2π, which implies
that (z, y, x) ∈ BD.

– π ≤ z−x ≤ y−x ≤ 2π: It follows that 0 ≤ y− z ≤ x− z ≤ π, which implies
that (z, y, x) ∈ BD.

(ii) Closure. (x, y, z) ∈ BD and (x, z, y) ∈ BD is equivalent to sin(z−x) · sin(y−
x) ≥ 0 and cos(z − x) = cos(y − x), which at the same time is equivalent to
y = z.
(iii) End-point transitivity. Let (o, x, y) ∈ BD and (o, y, z) ∈ BD. We distinguish
two cases:

– 0 ≤ y − o ≤ z − o ≤ π: Since it also holds that (o, x, y) ∈ BD, it necessarily
holds that 0 ≤ x − o ≤ y − o ≤ z − o ≤ π, which ultimately implies that
(o, x, z) ∈ BD.
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– π ≤ z− o ≤ y− o ≤ 2π: Since it also holds that (o, x, y) ∈ BD, it necessarily
holds that π ≤ z − o ≤ y − o ≤ x − o ≤ 2π, which ultimately implies that
(o, x, z) ∈ BD. �

Proposition 2. Let BD be the betweenness relation on D introduced in Propo-
sition 1. It holds that (x, y, z) ∈ BD implies that:

(i) (0, y − x, z − x) ∈ BD;
(ii) (−x,−y,−z) ∈ BD;

(iii) (x+ a, y + a, z + a) ∈ BD.

Proof. (i) follows immediately by definition. (ii) follows from the fact that sin
is an odd function and cos is an even function. (iii) follows from the cancellation
of the addends a when substracting any two among x+ a, y + a and z + a. �

Figure 1 illustrates the betweenness relation BD. The elements in the red
area are in between o = 0 and x = π

3 .

•o

•x

Fig. 1. Graphical representation of BD.
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4 Penalty-based aggregation of circular data

In the context of circular data, x is not the arithmetic mean (which is not well
defined for circular data). In this setting, the circular mean x of the angles
x = (x1, . . . , xn) is defined as:

x =



arctan(S/C) , if C > 0 ,

arctan(S/C) + π , if C < 0 ,
π
2 , if C < 0 and S > 0 ,

−π2 , if C < 0 and S < 0 ,

undefined , if C = 0 = S ,

where C = 1
n

∑n
i=1 cos(xi) and S = 1

n

∑n
i=1 sin(xi).

It is known that the circular mean is the unique minimizer of the function
(of y):

P1(y; x) =
1

n

n∑
i=1

(1− cos(xi − y)) .

The following result proves that the function P1 is a penalty function in the
sense of Definition 6 and that, therefore, the circular mean is a penalty-based
function in the sense of Definition 5.

Proposition 3. Consider n ∈ N, D and the betweenness relation (BD)(n) on
Dn. The function P1 : D × Dn → R+ is a penalty function compatible with
(BD)(n) and the circular mean · : Dn → D is a penalty-based function associated
with P1.

Proof. (P1) follows from the fact that cos(x) ∈ [−1, 1] for any x ∈ D. (P2)
follows from the fact that P1(y; x) = 0 is equivalent to cos(xi−y) = 1 for any i ∈
{1, . . . , n}, which also is equivalent to y = xi for any i ∈ {1, . . . , n}. (P3) follows
from the fact that P1(·; x) is a continuous function on the compact set D. (P4)
Let y ∈ D, x,x′ ∈ Dn be such that ((y, . . . , y),x,x′) ∈ (BD)(n). By definition of
(BD)(n), it follows that cos(x′i − y) ≤ cos(xi − y) for any i ∈ {1, . . . , n}, which
eventually implies that P1(y; x) ≤ P1(y,x′). �

The circular median x̃ of the angles x = (x1, . . . , xn) is defined as an angle
that minimizes (in y)

P2(y; x) =
1

n

n∑
i=1

(π − |π − |xi − y||) =
1

n

n∑
i=1

min(xi − y, 2π − xi + y) .

Note that this minimizer may not be unique. If n is odd, then the circular median
is an angle in x such that (i) dn2 e of the angles in x lie on the arc [x̃, x̃ + π[; and
(ii) the majority of the angles in x are closer to x̃ than to x̃ + π.

The following result proves that the function P2 is a penalty function in the
sense of Definition 6 and that, therefore, the circular median is a penalty-based
function in the sense of Definition 5.
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Proposition 4. Consider n ∈ N, D and the betweenness relation (BD)(n) on
Dn. The function P2 : D × Dn → R+ is a penalty function compatible with
(BD)(n) and the circular median ·̃ : Dn → P(D) is a penalty-based function
associated with P2.

Proof. (P1) follows from the fact that we are considering internal arithmetic
operations on D. (P2) follows from the fact that P2(y; x) = 0 is equivalent to
|π−|xi−y|| = π for any i ∈ {1, . . . , n}, which also is equivalent to y = xi for any
i ∈ {1, . . . , n}. (P3) follows from the fact that P2(·; x) is a continuous function
on the compact set D. (P4) Let y ∈ D, x,x′ ∈ Dn be such that ((y, . . . , y),
x,x′) ∈ (BD)(n). By definition of (BD)(n), it follows that 0 ≤ xi−y ≤ x′i−y ≤ π
or π ≤ x′i−y ≤ xi−y ≤ 2π for any i ∈ {1, . . . , n}, which eventually implies that
(π − |π − |xi − y||) ≤ (π − |π − |x′i − y||) for any i ∈ {1, . . . , n}. Ultimately, the
latter implies that P2(y; x) ≤ P2(y,x′). �

5 Aggregation functions for circular data

In this section, we firstly prove that the circular mean is not an aggregation
function for circular data in the sense of Definition 4.

Proposition 5. Consider the bounded beset (D, BD,D) and n ∈ N. The circular
mean · : Dn → D is not an aggregation function on (D, BD,D).

Proof. Even though the circular mean satisfies the boundary conditions (as a
result of property (P2) of a penalty function), the monotonicity property does
not hold. If n = 2, consider o = (0, 0), x = (π8 ,

7π
4 ) and y = (π4 ,

7π
4 ). It follows

that
(
o,x,y

)
∈ B(n), however o = y = 0 6= x. The same example can be

considered if n > 2 by considering o′ = (0, . . . , 0), x′ = (π8 ,
7π
4 , 0, . . . , 0) and

x′ = (π4 ,
7π
4 , 0, . . . , 0). �

Secondly, we prove that the circular median is not an aggregation function
for circular data in the sense of Definition 4.

Proposition 6. Consider the bounded beset (D, BD,D) and n ∈ N. The circular
median ·̃ : Dn → P(D) is not an aggregation function on (D, BD,D).

Proof. Even though the circular median satisfies the boundary conditions
(as a result of property (P2) of a penalty function), the monotonicity property
does not hold. Consider o = (0, 0, 0, 0, 0), x = (0.1, 3.13, 3.14, 6, 6.2) and y =
(3.12, 3.13, 3.14, 3.15, 3.16). It follows that

(
o,x,y

)
∈ B(n), however õ = 0, x̃ = 6

and ỹ = 3.14. �

6 Conclusions

It has been shown that the circular mean and the circular median can be ac-
commodated within the framework of penalty-based data aggregation developed
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in [16]. Unfortunately, even though these two prominent functions for the aggre-
gation of circular data satisfy the boundary conditions and are actually idem-
potent (as a result of property (P2) of a penalty function), it is shown that they
are not aggregation functions on (D, BD,D) in the sense of Definition 4.

It remains as a future study subject to explore weaker properties than mono-
tonicity that could accommodate the mean and circular medians for the aggre-
gation of circular data. This direction will further extend current research in the
context of aggregation of real numbers in which weaker types of monotonicity
were explored, such as weak monotonicity [23] and directional monotonicity [3].
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