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Abstract. In the supply chain, lead time uncertainty affects the ef-
fectiveness of planning. This paper discusses a lot sizing problem with
uncertain lead times modelled by intervals. First, we propose to evaluate
the impact of uncertainty on a given production plan by computing a
best and a worst production plan over all lead time scenarios. Then, a
method based on R∗

e is proposed for choosing a compromise production
plan. Some methods for solving the problems based on mixed integer pro-
gramming formulations are proposed. Finally, the results are illustrated
and discussed using an example.
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1 Introduction

In supply chain planning, effective replenishment is a crucial problem. Uncer-
tainty on lead times can be explained by variability in the supplier’s actual
workload (when a supplier furnishes several customers, its workload depends on
the lead time of all customer orders; if total demand exceeds production capac-
ity, lead time increases). There are many other external factors that increase the
uncertainty of lead times: outsourced production overseas may introduce some
randomness due to shipping perturbations, orders may not arrive on time due
to work stoppages, orders depend on weather, etc. [?].

There are two approaches in the literature that take into account uncertainty
of lead times. The first is based on the settings of Material Requirements Plan-
ning (MRP) systems, and the second is based on the optimization of lot sizing.
MRP is common in developing production plans in discrete parts manufacturing.
The main parameters are a lot size, a planned lead time and a safety stock. Inap-
propriate parameters can lead to overstocking or out-of-stock situations. In [?]
optimization of the planned lead time for the MRP system was proposed, when
the lead time uncertainty is represented by an interval. The paper [?] focuses
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on planned lead time and lot size and studies the impact of random lead time
in a single stage production system. The papers [?] and [?] concentrate on the
propagation and evaluation of uncertainty, when the uncertainty on lead time
is represented by a possibility distribution. The approach based on inventory
or lot-sizing problem integrates uncertainty directly into the optimization prob-
lem, and the decision relates directly to a quantity by period. In this context, the
problem can be decomposed into an approach accepting crossover of order [?], [?]
and the approach without crossover of order [?]. The crossover is justified when
each order can be delivered by different suppliers [?], while for one supplier the
crossover is not considered [?]. In [?] a robust min–max lot sizing problem with
discrete lead time scenarios with crossover has been recently considered. It has
been shown that robust lot sizing problem is NP-hard for discrete lead time sce-
narios. In [?] an iterative algorithm for robust min-max lot sizing problem was
proposed, with interval lead time uncertainty without crossover and possibility
of splitting the orders.

In this paper we consider a single-item lot sizing problem with lead times.
We seek a production plan that minimizes the total setup, production, inventory,
and backordering cost. We model the lead time uncertainty by using intervals.
Namely, for each period in which a production occurs, a minimum and a maxi-
mum value of lead time is provided. We discuss a model without crossover and
without the possibility of splitting the orders. Several approaches exist to take
uncertainty into account in optimization problems, depending on the knowledge
and behavior of decision maker (such as risk or opportunity loss attitude). In our
model, no additional information (such as probability or possibility distribution
for uncertain lead times) is provided. In this context, the min-max criterion is of-
ten used, i.e. a solution is computed under the assumption that a worst lead time
scenario will occur. This approach can model a risk-averse behavior, but can also
lead to very conservative decisions. Several criteria have been proposed to soften
the min-max one, such as the Hurwicz [?], Ordering Weighted Averaging [?], τ -
anchor [?], or R∗ [?]. In this paper we will use the R∗ criterion, since it satisfies
the dynamic consistency and the weak Pareto property in the bi-objective view
of optimistic/pessimistic criteria, while criteria such as the Hurwicz one, do not
satisfy them (see [?] for a deeper discussion).

This paper is organized as follows. In Section ?? we recall a formulation of
the deterministic lot-sizing problem with lead times on production quantities.
In Section ?? we propose a model of uncertainty for lead times. We introduce a
scenario set containing all possible lead time scenarios. We also propose a method
to choose a solution using theR∗ criterion. In Section ?? we show how to compute
a worst and a best lead time scenario in polynomial time, by solving a longest
(shortest) path problem in a layered network. In Sections ?? and ?? we show
some methods for computing a worst and a best production plan. These methods
are based on mixed integer programming formulations. Finally, in Section ??,
an algorithm for solving the problem with the R∗ criterion is proposed. This
algorithm is illustrated with an example.
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2 Deterministic Lot-Sizing Problem with Lead Times

We are given a set [T ] = {1, . . . , T} of periods and a set [T+] = {T + 1, . . . , T+}
of future periods. We will also use the notation [T − 1] = {1, . . . , T − 1} and
[T+−1] = {T+1, . . . , T+−1}. For each future period t ∈ [T+], a demand dt ≥ 0
occurs. We are also given setup and production costs cSt , cPt for each period
t ∈ [T ], and inventory and backordering costs cI , cB , which are assumed to be
fixed in all future periods t ∈ [T+]. Let xxx = (xt)t∈[T ] be a production plan, where
xt ≥ 0 is the amount of production in period t ∈ [T ]. Let us denote by X the
set of feasible production plans. We assume that X is described by some linear
constraints on xxx. For example, the minimal capacity blt and the maximal capacity
but on production in period t ∈ [T ] can be imposed, which yields

X = {xxx ∈ RT+ : blt ≤ xt ≤ but , t ∈ [T ]}.

The production plan xxx generates a procurement (delivery) plan in the future
periods ooo = (ot)t∈[T+] by applying lead times LT (t) to xxx, i.e. ot+LT (t) = xt,
t ∈ [T ], t+LT (t) ∈ [T+]. The lead times L(t), t ∈ [T ], are positive integers. We
assume, like in [?] and [?], that production in period t ∈ [T ] cannot arrive after
the production in the next period (t+ 1) ∈ [T ], which can be expressed as

t+ LT (t) ≤ (t+ 1) + LT (t+ 1), t ∈ [T − 1]. (1)

If ot > dt, then an inventory cost occurs; if ot < dt, then a backordering
cost occurs in t ∈ [T+]. The problem is to find a feasible production plan that
minimizes the total setup, inventory, and backordering cost. Let us denote by
δi,t, i ∈ [T ], t ∈ [T+], a lead time parameter defined as follows:

δi,t =

{
1 if i+ LT (i) ≤ t
0 otherwise

(2)

If δi,t = 1, then the production (order placed) in period i ∈ [T ] has arrived by
period t ∈ [T+]. If δi,t = 0, then the production in period i has not yet arrived by
period t. The problem can be modeled by the following mixed integer program:

min
∑
t∈[T ]

(cSt yt + cPt xt) +
∑
t∈[T+]

(cIIt + cBBt) (3)

s.t. Bt − It = Dt −Ot t ∈ [T+] (4)

Ot =
∑
i∈[T ]

δi,txi t ∈ [T+] (5)

xt ≤Myt t ∈ [T ] (6)

Bt, It ≥ 0 t ∈ [T+] (7)

yt ∈ {0, 1} t ∈ [T ] (8)

xxx ∈ X ⊆ RT+, (9)
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where Dt =
∑
i∈[t] di the cumulative demand up to period t, It, Bt and Ot are

the inventory, backordering and the cumulative delivery quantity at period t,
respectively. Equation (??) is a flow conservation constraint, equation (??) com-
putes the cumulative delivery quantities in [T+] from the lead times and the
production quantities in [T ].

3 Lot-sizing problem with uncertain lead times

Let L̂T ≥ 1 be a common nominal lead time, which does not depend on pe-
riods in [T ]. For each period t ∈ [T ], deviations ζ+(t), ζ−(t) from L̂T are
specified. The values of ζ+(t), ζ−(t) are nonnegative integers. Hence LT (t) ∈
{LTmin(t), . . . , LTmax(t)}, t ∈ [T ], with LTmin(t) = L̂T − ζ−(t) and LTmax(t) =

L̂T + ζ+(t). We assume that t+ LTmin(t) > T and t+ LTmax(t) ≤ T+ for each
t ∈ [T ], so production at period t ∈ [T ] must arrive at some future period. We also
assume that 1 +LTmin(1) = T + 1, so the production at period 1 is ready at the
first future period. We will further assume that t+LTmin(t) ≤ (t+1)+LTmin(t+1)
and t + LTmax(t) ≤ (t + 1) + LTmax(t + 1) for each t ∈ [T − 1], which follows
from the assumption (??) about the lead times imposed in Section ??.

Let us introduce a lead time uncertainty set L ⊆ {0, 1}T × {0, 1}T+

, defined
by a system of the following constraints:

δi,t ≤ δi,t+1 i ∈ [T ], t ∈ [T+ − 1] (10)

δi+1,t ≤ δi,t i ∈ [T − 1], t ∈ [T+], (11)

δt,t+LTmin(t)−1 = 0 t ∈ [T ] : t+ LTmin(t)− 1 > T (12)

δt,t+LTmax(t) = 1 t ∈ [T ] (13)

δi,t ∈ {0, 1} i ∈ [T ], t ∈ [T+] (14)

Constraints (??) mean that if a production in period i ∈ [T ] is available
in t ∈ [T+], then it is also available in the subsequent period t + 1 ∈ [T+].
Constraints (??) mean that if a production in period i ∈ [T ] is not available
in t ∈ [T+], then production in the subsequent period i + 1 ∈ [T ] is also not
available in t. Finally, constraints (??) and (??) model the minimum and the
maximum lead time for each period t ∈ [T ]. Notice that L is a discrete uncer-
tainty set, which means that an order is delivered by the supplier if and only if
it is completed. Under the assumption that all periods t ∈ [T ] have a common

nominal lead time L̂T , we get L 6= ∅. Indeed, we obtain a feasible lead time
scenario by fixing δi,t = 1 if t ≥ i+ L̂T and δi,t = 0, otherwise for each i ∈ [T ],
t ∈ [T+]. Having a lead time scenario δδδ ∈ L, we can easily compute the lead
times L(i) = min{t− i : t ∈ [T+], δi,t = 1} for each i ∈ [T ].

Let us denote by C(xxx,δδδ) the cost of the production plan xxx ∈ X under the lead
time scenario δδδ ∈ L. Namely, C(xxx,δδδ) is the value of the objective function (??)
for a fixed xxx and δδδ (notice that (yt)t∈[T ], (It)t∈[T+] and (Bt)t∈[T+] are imposed
by xxx and δδδ). In the following, we are interested in computing an optimistic
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production plan xxxo and a pessimistic production plan xxxp, by solving the following
two optimization problems:

xxxo = arg min
xxx∈X

min
δδδ∈L
C(xxx,δδδ) (15)

xxxp = arg min
xxx∈X

max
δδδ∈L
C(xxx,δδδ) (16)

xxxo and xxxp are the two extreme strategies to face to the uncertainty. In order
to choose a solution taking into account a risk trade-off we can use a criterion
proposed in [?]. Namely, we consider the following R∗e problem. Given a threshold
value e ∈ R∪{+∞,−∞}, if maxδδδ∈L C(xxxp, δδδ) > e, then we choose the pessimistic
production plan xxxp. Otherwise, we solve

min min
δδδ∈L
C(xxx,δδδ)

s.t. max
δδδ∈L
C(xxx,δδδ) ≤ e

xxx ∈ X
(17)

Hence, we apply the optimistic strategy, but with a robust constraint ensuring
that the largest cost of production plan will not exceed e. The R∗ criterion
generalizes pessimistic and optimistic strategies. If e = −∞ then we choose xxxp,
if e = +∞ then we choose xxxo (model (??) reduces then to (??)). A motivation
to use the R∗ criterion can be found in [?]. The parameter e can be used in two
ways. In our context, it is the maximum acceptable cost of a production plan, or
it can be used in a sensitivity analysis. We discuss its use for sensitivity analysis
in Section ??.

4 Solving the Adversarial Problems

In this section, we consider the adversarial problem. Namely, we seek a best
and a worst lead time scenario δδδ ∈ L for a given production plan xxx ∈ X, i.e.,
scenarios which result in the largest and the smallest total cost of xxx. We start
with a characterization of all possible cumulative deliveries in a given period
t ∈ [T+]. Let us define I(t) = max{i ∈ [T ]|i+LTmax(i) ≤ t} and J(t) = max{i ∈
[T ]|i + LTmin(i) ≤ t}. Observe that the production in periods 1, . . . , I(t) must
arrive by t and the production in periods 1, . . . , J(t) may arrive by t. We fix
I(t) = 0 if i + LTmax(i) > t for each i ∈ [T ]. Observe that I(t) ≤ J(t) and
J(t) ≥ 1 for each t ∈ [T+], by the assumptions made in Section ??.

Proposition 1. For each period t ∈ [T+]

Ot ∈


I(t)∑
i=1

xi,

I(t)+1∑
i=1

xi, . . . ,

J(t)∑
i=1

xi

 = Ot, (18)

where
∑I(t)
i=1 xi = 0 if I(t) = 0.
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Proof. Let δδδ ∈ L be a lead time scenario, which defines feasible lead times LT (i),
i ∈ [T ]. By (??), the cumulative delivery in period t ∈ [T+] equals

Ot =
∑

{i∈[T ]:i+LT (i)≤t}

xi.

Let i = min{i ∈ [T ] : i + LT (i) ≤ t} and i = max{i ∈ [T ] : i + LT (i) ≤ t}.
We set i = i = 0 if i + LT (i) > t for each t ∈ [T ]. It is easy to see that
I(t) ≤ i ≤ i ≤ J(t), where I(t) ≤ J(t). By the definition of L, i ∈ {0, 1}. Indeed,
if i > 1, then production from some period i > 1 arrived before production from
period 1. If i = 0, then I(t) = 0 and Ot =

∑0
i=1 xi = 0 ∈ Ot. If i = 1, then

Ot =
∑i
i=1 xi, where i ∈ {I(t), I(t) + 1, . . . , J(t)}. Therefore, Ot ∈ Ot and the

proposition follows.

fig1-eps-converted-to.pdf

Fig. 1. A sample network for T = 3, T+ = 9, xxx = (x1, x2, x3), L̂T = 4, LT (1) ∈
{3, 4, 5}, LT (2) = {4, 5}, LT (3) = {3, 4, 5, 6}. The bold path corresponds to lead times
LT (1) = 4, LT (2) = 5, LT (3) = 4.

Using Proposition ?? we can construct a layered digraph G(V,A) that rep-
resents all possible lead time scenarios. The set of nodes V is partitioned into
disjoint layers VT+1, . . . , VT+ that correspond to the future periods t ∈ [T+].
The nodes of the layer Vt correspond to all possible cumulative delivers in Ot,
described in Proposition ??. Namely, node vtU in layer Vt corresponds to period
t ∈ [T+] and U is the set of summation indices in (??), which yields the cumu-
lative delivery x(U) =

∑
i∈U xi at period t. An arc exists from vtW to vt+1

U if
W ⊆ U . We add a starting node s = vT∅ linked to all nodes of layer V1 and a des-

tination node t = vT
++1
∅ such that all the nodes in the last layer VT+ are linked to

it. The cost of arc (vtW , v
t+1
U ) is equal to max{cI(x(U)−Dt+1), cB(Dt+1−x(U))}.

A sample construction is shown in Figure ??. For example, in period 6 ∈ [T+],
we have I(6) = 1 (production in period 1 must be delivered by 6) and J(6) = 3
(productions in periods 1, 2, 3 can be delivered by 6). In what follows, layer V6
contains three nodes v6{1}, v

6
{1,2}, v

6
{1,2,3} that represent three possible cumulative

deliveries O6 = x1, O6 = x1 + x2, O6 = x1 + x2 + x3.
Each s − t path in G models a possible cumulative delivery plan OOO. For

example, the bold path shown in Figure ?? represents the cumulative delivery
planOOO such that O4 = 0, O5 = x1, O6 = x1, O7 = x1+x2+x3, O8 = x1+x2+x3,
O9 = x1 + x2 + x3. This plan corresponds to feasible lead times L(1) = 4,
L(2) = 5, and L(3) = 4. The length of this path is the total inventory and
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backordering cost ofOOO. Because the production and setup cost of xxx are fixed, the
shortest s−t path models the best lead time scenario, while the longest s−t path
models the worst lead time scenario for xxx. The graph G has O(T ·(T+−T )) nodes.
Hence, a best and a worst lead time scenarios can be computed in polynomial
time by using any algorithm for the shortest (longest) path problem in acyclic
digraphs (see, e.g. [?]).

5 Computing a Pessimistic Production Plan

In this section, we show a compact mixed integer programming formulation for
solving the problem (??), i.e for computing a pessimistic production plan xxxp. The
idea is to apply a dual reformulation for the longest path problem in the network
G = (V,A) constructed in the previous section. Let us define the variable vtU ≥ 0
for each node of G. The MIP formulation is as follows:

min vT
++1
∅ +

∑
t∈T

(cSt yt + cPt xt) (19)

s.t. vT∅ = 0 (20)

vt+1
U − vtW ≥ cI(x(U)−Dt+1) ∀(vtW , vt+1

U ) ∈ A (21)

vt+1
U − vtW ≥ cB(Dt+1 − x(U)) ∀(vtW , vt+1

U ) ∈ A (22)

xt ≤Myt ∀t ∈ [T ] (23)

yt ∈ {0, 1} ∀t ∈ [T ] (24)

vtU ≥ 0 ∀vtU ∈ V (25)

xxx ∈ X (26)

For a fixed xxx ∈ X, the value of vT
++1
∅ is the length of the longest path in

G. This length represents the total inventory and backordering cost under the
worst lead time scenario. Hence, the objective function of the model expresses
the total cost of xxx under the worst lead time scenario in L. If all the setup costs
cSt = 0, t ∈ [T ], then we get a linear programming problem. In this case, the
problem can be solved in polynomial time.

Proposition 2. If cSt = 0 for each t ∈ [T ], the a pessimistic production plan xxxp

can be found in polynomial time.

6 Computing an Optimistic Production Plan

The computation of the optimistic production plan xxxo, i.e. solving the prob-
lem (??) can be more complex. We will propose a compact MIP model for this
problem, which is based on a minimum cost flow formulation with binary vari-
ables on some arcs. Let us build a network G′ = (V ′, A′) as follows. The set of
nodes V ′ = {u1, . . . , uT , vT+1, . . . , vT+ , s}. Node s has supply

∑
i∈[T+] di, node



8 R. Guillaume et al.

vi has demand di, i ∈ [T+], and nodes ui, i ∈ [T ], have supply/demand equal
to 0. The set of arcs A includes arcs (s, ui), i ∈ [T ], with costs cPi , arcs (ui, vj) if
j ∈ Pi = {i+LTmin(i), . . . , i+LTmax(i)} with costs 0, arcs (vi, vi+1), i ∈ [T+−1]
with costs cI and arcs (vi+1, vi), i ∈ [T+−1] with costs cB . A sample construction
is shown in Figure ??.

v4 v5 v6 v7 v8 v9

u1
u2 u3

s

−d4 −d5 −d6 −d7
−d8 −d9

d1 + d2 + · · ·+ d9

cI

c
B

c
P

1
c
P

2

c
P

3

cI

c
B

cI

c
B

cI

c
B

cI

c
B

Fig. 2. A sample network for T = 3, T+ = 9,, L̂T = 4, LT (1) ∈ {3, 4, 5}, LT (2) =
{2, 3, 4}, LT (3) = {3, 4, 5, 6}. The bold dashed arcs correspond to lead times LT (1) = 4,
LT (2) = 4, LT (3) = 5 .

Let f(u, v) ≥ 0 be a flow on arc (u, v) ∈ A′ and c(u, v) be the cost of
(u, v) ∈ A′. The problem can be solved by using the following mixed integer
programming formulation:
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min
∑

(u,v)∈A′

c(u, v) · f(u, v) +
∑
t∈[T ]

cSt yi (27)

s.t.
∑
j∈Pi

ρi,j = 1 ∀i ∈ [T ] (28)

ρi,j + ρi+1,k ≤ 1 ∀j ∈ Pi, k ∈ Pi+1 : k < j (29)

f(s, ui) = xt ∀t ∈ [T ] (30)

f(ui, vj) ≤ δi,jM ∀i ∈ [T ], j ∈ Pi (31)

xt ≤Myt t ∈ [T ] (32)

Flow mass balance constraints (33)

yt ∈ {0, 1} t ∈ [T ] (34)

ρi,j ∈ {0, 1} i ∈ [T ], j ∈ Pi (35)

xxx ∈ X (36)

Binary variables ρi,j model feasible lead times. Namely, ρi,j = 1 if production
in period i ∈ [T ] arrives in period j ∈ Pi. Constraints (??) ensure that the
production in i ∈ [T ] arrives in exactly one of the possible periods in Pi ⊆
[T+]. Constraints (??) ensure that production in period i cannot arrive after
production in period i+ 1. In the example in Figure ??, we have P1 = {4, 5, 6},
P2 = {4, 5, 6}. Therefore, to avoid incorrect lead times we add constraints δ1,5 +
δ2,4 ≤ 1, δ1,6 + δ2,4 ≤ 1 and δ1,6 + δ2,5 ≤ 1. Constraints (??) fix the flow
on arcs (s, ui) equal to the production xi, i ∈ [T ]. Constraints (??) ensure
that production xi arrives at the correct period j ∈ [T+]. Constraints (??) are
standard mass balance flow constraints for network G (see, e.g. [?]).

For each feasible choice of ρi,j , the corresponding flow f(u, v) models a deliv-
ery plan with the total production, inventory and backordering cost equal to the
cost of the flow. Adding the setup costs, we get the total cost of production plan
xxx. Hence, an optimal solution to (??)-(??) represents the cheapest (optimistic)
production plan under the beast lead time scenario. Observe that computing xxxo

requires binary variables even if all setup costs are equal to 0.

7 Computing an R∗
e Production Plan

In this section, we propose a method of solving the R∗e problem. We will use the
compact MIP formulations constructed in Section ?? and Section ??. We start
by solving the formulation (??)-(??). We do not have to solve it to optimality.
It is enough to find a production plan xxx′ feasible to (??)-(??), satisfying the
constraint

vT
++1
∅ +

∑
t∈T

(cSt yt + cPt x
′
t) ≤ e

If no such a solution exists, then w choose the pessimistic plan xxxp by solving
(??)-(??) to optimality. Otherwise, we solve the MIP formulation (??)-(??) that
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is equivalent to (??). To speed up computations, we can fix x′x′x′ as a starting
solution in the solver.

min
∑

(u,v)∈A′

c(u, v) · f(u, v) +
∑
t∈[T ]

cSt yi (37)

s.t. vT
++1
∅ +

∑
t∈T

(cSt yt + cPt xt) ≤ e (38)

Constraints (??)− (??) (39)

Constraints (??)− (??) (40)

xt ≤Myt t ∈ [T ] (41)

yt ∈ {0, 1} t ∈ [T ] (42)

ρi,j ∈ {0, 1} i ∈ [T ], j ∈ Pi (43)

xxx ∈ X (44)

Notice that using a similar idea, we can build a model with the Hurwicz
criterion (see, e.g [?]). The objective function is then a convex combination
of (??) and the left-hand side of (??) with constraints (??)-(??).

Example 1 Consider a planning problem with horizon T = 5, T+ = 7 and X =∏
t∈[T ][0, b

u
t ], where bbbu = (30, 20, 15, 30, 30), ddd = (10, 15, 30, 15, 20), LTLTLTmin =

(1, 1, 1, 1, 1, 1), LTLTLTmax = (1, 2, 3, 2, 2, 2), and the costs cI = 1, cB = 2 cSt =
10, cPt = 1.5,∀t ∈ [T ]. Figure ??(a) shows the best cost of production plan,

Fig. 3. Compromised solutions

depending on parameter e, which corresponds to the Pareto front (PF) with pes-
simistic/optimistic criteria. As expected, we can see that if we increase the ro-
bustness of a plan, we decrease the possibility of having a low cost. We can note
that this PF is not convex, so using the Hurwicz criterion, which is a convex
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combination of the pessimistic/optimistic criteria, cannot lead to a compromised
solution obtained by using R∗e approach. Figure ??(b) shows the set of solutions
depending on e. The x-axis is the deviation from the optimal cost with optimistic

criteria (minδδδ∈L C(xxxe,δδδ)
minδδδ∈L C(xxxo,δδδ)) and y-axis is the deviation from the optimal cost with

pessimistic strategy (maxδδδ∈L C(xxxe,δδδ)
maxδδδ∈L C(xxxp,δδδ)).

Fig. 4. Optimal solutions evolution

Figure ?? shows the production quantity xxx depending on e. On the left we have
a pessimistic solution xxxp and on the right an optimistic solution xxxo. We can see
that production in some periods can be zero in more pessimistic solutions while
production in all periods is nonzero for more optimistic solutions. We note that
optimism is taken into account either by a progressive transfer between periods,
for example at the beginning between periods 5 and 1, or by breaks due to the
setup cost, for example when we start producing in period 2.

8 Conclusions

In this paper, we have studied the problem of production planning in a context of
uncertain lead times. To find a production plan we have applied the R∗ criterion
and we have proposed an algorithm to solve the problem. We have shown that
the adversarial problems (i.e. computing a best and a worst lead time scenarios
for a given production plan) can be solved in polynomial time and a particular
case of solving the robust pessimistic problem is also polynomially solvable. In
future research, we would like to study the complexity of computing an optimistic
production plan. Moreover, we have assumed that production orders cannot be
split. One perspective is to study the problem in the case where splitting the
orders is allowed.


