
Similarity Relations Based Numerical Algorithm
for Solving Maximin Problems ⋆

Mārtiņš Zeml̄ıtis[0000−0003−4697−0187] and Olga Grigorenko[0000−0003−3188−557X]

Department of Mathematics, University of Latvia,
3 Jelgavas Street, Riga, LV-1004, Latvia

martins.zemlitis@gmail.com and olga.grigorenko@lu.lv

https://www.lu.lv/

Abstract. In this paper, we address the maximin optimization problem
and introduce an algorithm to solve it. The core objective is to maxi-
mize a given function expressed as a minimum of the values of finite linear
functions. This paper introduces an algorithm for optimizing such func-
tions, taking into account that they are subject to gradient discontinuity.
To achieve this, we propose an optimization technique that combines the
effectiveness of the steepest descent method with a tailored strategy to
handle gradient disruptions. Our approach involves constructing a search
direction by forming a linear combination of gradients from neighboring
functions. The key innovation lies in the assignment of weights to these
gradients based on a defined similarity relation. This allows the algorithm
to adaptively weigh the contributions of different gradients, addressing
the challenges posed by gradient discontinuity.

Keywords: Maximin problem · Similarity relation · Sub gradient method

1 Introduction

In this paper, we address the maximin optimization problem and introduce an
algorithm to solve it. The optimization problem is formulated as follows:

max
x

F (x) , where F (x) = min{aT1 x + b1, . . . , a
T
nx + bn} (1)

or equivalently
max

x
min{aT1 x + b1, . . . , a

T
nx + bn, } (2)

where x, ai ∈ Rk, where i = 1, ..., n and b ∈ Rn,
Maximin problems find extensive applications in various practical scenarios.

One prominent application involves maximizing the minimum objective, such
as profit or revenue, across all potential scenarios. This approach is particularly
valuable in decision-making processes where ensuring a satisfactory outcome in
the worst-case scenario is crucial for strategic planning and risk management. We

⋆ This research is part of project PID2022-139248NB-I00 funded by
MCIN/AEI/10.13039/501100011033 and ”ERDF A way of making Europe”.

2 M. Zemlitis and O. Grigorenko

arrived at the maximin problem by solving a multicriteria linear programming
problem. In our previous work [9], we showed that solving multi-objective linear
programming problems, the problem is reduced to

max
y∈D

min{f1(y), . . . fn(y)}, (3)

where D is our search space, and the functions fi correspond to the vertices xi

of the search space D.
Consider the following example to illustrate the challenges that arise in solv-

ing the upper-defined problem:

max
x

min{−x1 + 6x2 − 5,−3x1 − 4x2 + 1, 5x1 + 3x2 + 6} (4)

The challenge at hand is devising a solution for the given problem, and a
key obstacle lies in the non-smooth nature of the objective function. In attempt-
ing to address the discontinuity in the gradient, an initial approach involved
implementing the Sub Gradient method [7], but the results proved to be unsat-
isfactory.

Fig. 1: Gradient plot of the example (4)

However, this experience inspired an alternative approach: instead of strictly
adhering to the individual gradients, we explored the concept of combining neigh-
boring gradients to formulate a composite search direction. This strategy can be
viewed as an effort to fix the impact of the gradient’s discontinuity.

If we were to use the subgradient method, we would follow the gradient up
to the intersection of planes that correspond to some functions fi, and along the
intersection until we reach the optimal solution, indicated by a red dot at Fig.1.
But here the question arose: why follow the gradient, if the algorithm is going to
make a turn as soon as it reaches the intersection, why not add another gradient
before the intersection, but with a weight. The weight depends on how close the
algorithm is to the intersection: the closer, the greater the weight. But this, in
turn, gave rise to the idea of using some similarity relation to construct weights.

Title Suppressed Due to Excessive Length 3

2 Preliminary

Definition 1. [2] A triangular norm (t-norm for short) is a binary operation
T on the unit interval [0, 1], i.e. a function T : [0, 1]2 → [0, 1] such that for all
x, y, z ∈ [0, 1] the following four axioms are satisfied:

– T (x, y) = T (y, x) (commutativity);
– T (x, T (y, z)) = T (T (x, y), z) (associativity);
– T (x, y) ≤ T (x, z) whenever y ≤ z (monotonicity);
– T (x, 1) = x (a boundary condition).

Definition 2. [2] A t-norm T is called Archimedean if and only if, for all pairs
(x, y) ∈ (0, 1)2, there is n ∈ N such that T (x, x, ..., x)

n times

< y.

Definition 3. [2] An additive generator g : [0, 1] → [0,∞] of a t-norm T is a
strictly decreasing function which is also right-semicontinuous at 0 and satisfies
g(1) = 0 such that for all (x, y) ∈ [0, 1]2 we have

g(x) + g(y) ∈ Ran(g) ∪ [g(0),∞],

T (x, y) = g(−1)(g(x) + g(y)).

where Ran(g) is the range of g and g(−1) is the pseido-inverse of g.

Definition 4. A fuzzy binary relation E on a set X is called a fuzzy equiva-
lence relation with respect to a t-norm T if and only if three axioms are fulfilled
∀x, y, z ∈ X :

– E(x, x) = 1;

– E(x, y) = E(y, x);

– T (E(x, y), E(y, z)) ≤ E(x, z).

Theorem 1. [1] Let T be a continuous Archimedean t-norm with an additive
generator g. For any pseudo-metric d, the mapping

Ed(x, y) = g(−1)(min(d(x, y), g(0)))

is a T -equivalence.

For our numerical algorithm, we will use the additive generators described
above, and we will raise the metric to a power in order to analyze for what degree
the algorithm converges faster. The metric will be raised to a power to influence
how close we want to be to the object so that the equivalence remains close to
1. So we want to use something more general as a measure of similarity, since
for g(−1)(min(dp(x, y), g(0))) T -transitivity is not necessary fulfilled.

Definition 5. A fuzzy relation S on a linearly ordered set (R,⪯) is called a
fuzzy similarity relation if and only if three axioms are fulfilled ∀x, y, z ∈ R :

4 M. Zemlitis and O. Grigorenko

– S(x, x) = 1 ;

– S(x, y) = S(y, x);

– x ⪯ y ⪯ z ⇒ S(x, z) ≤ S(y, z) and S(x, z) ≤ S(x, y).

We want to distinguish the difference between similarity relation and fuzzy
equivalence relation, instead of the T -transitivity in Definition 4, we ask for the
relation to be compatible with the order ⪯ as it written in Definition 5.

Note, that in our algorithm we built fuzzy equivalence relations and fuzzy
similarity relations on set R.

For construction of examples, we use widely known fuzzy equivalence rela-
tions:

– EP (x, y) = e−d(x,y);

– EL(x, y) = max {1 − d(x, y), 0};

– EH(x, y) = 1
1+d(x,y)

and based on the same additive generators, adding the degree p to the distance,
we build fuzzy similarity relations:

– Sp
P (x, y) = e−dp(x,y)

– Sp
L(x, y) = max {1 − dp(x, y), 0}

– Sp
H(x, y) = 1

1+dp(x,y)

In this work we are observing p ∈ { 1
2 , 1, 2}. We only considered Product,

 Lukasiewicz and Hamacher t-norms for construction of similarity relation. We
took only most popular t-norms in order to minimize the degrees of freedom for
the numerical method.

3 Algorithm

This section is dedicated to presenting the algorithm we have developed to ad-
dress Problem (1), which constitutes the central focus and primary objective of
this paper.

Title Suppressed Due to Excessive Length 5

Algorithm 1 Proposed algorithm

x0 ← randomly initialized
2: while αk > ε do

∀i ∈ {1, . . . , n} and order : fi1(xk) < . . . < fin(xk)
4: v1 ← 1

v2 ← S(fi1 , fi2)
6: gk ←

(
v1∇fi1/∥∇fi1∥+ v2∇fi2/∥∇fi2∥

)
/
(
v1 + v2

)
αk ← Line Search(xk, gk) ▷ Find the step size

8: xk+1 ← xk + αkgk
end while

The algorithm initiates by selecting a random starting point x0. At each iter-
ation xk, the values fi(xk) are computed, and they are sorted in ascending order,
denoted as fi1(xk) < . . . < fin(xk). The weight v1 is set to 1, and the similarity
relation for the values fi1(xk) and fi2(xk) is calculated, determining the weight
v2 as v2 = S(fi1(xk), fi2(xk)). Subsequently, the direction gk is constructed as

gk =
(
v1∇fi1/∥∇fi1∥ + v2∇fi2/∥∇fi2∥

)
/
(
v1 + v2

)
.

To determine the step size αk, the Line Search algorithm is employed. This
involves maximizing the function φ(αk) = F (xk + αkgk) along the specified
direction gk concerning the step size. Given the current point xk and the search
direction gk, this maximization is carried out approximately, as computing the
exact step size may be computationally intensive. The Wolfe condition [8] is
utilized in each iteration to ensure that the chosen step size is adequate.

Once the step size is determined, the next iteration point xk+1 is calculated
accordingly, advancing the optimization process:

xk+1 = xk + αkgk.

Algorithm 2 Line search

1: c← 0.5
2: α← 1/∥gk∥
3: ρ← 0.8
4: while F (xk + αgk) ≤ F (xk) + cgk · ∇fi1 do ▷ Wolfe condition [8]
5: α← α · ρ
6: end while
7: return α

The constants ρ and c in the algorithm were chosen empirically. Specifically,
the value for c is chosen from the interval [10−4, 0.5], ensuring a substantial
increase in the function value. The initial step size α is set as 1

|gk| to avoid

excessively small increments in the early interactions, given that |gk| ≤ 1. It is

6 M. Zemlitis and O. Grigorenko

important to note that, as the primary focus of this work does not involve an
investigation into these specific values, they were retained in their empirically
determined form, as they satisfactorily fulfilled the intended purpose.

3.1 Convergence of the algorithm

Having presented the algorithm, our next goal is to show its effectiveness. Thus,
in this section, we aim to demonstrate the convergence of the algorithm by
establishing that, with each subsequent iteration, the objective function, which
is subject to maximization, consistently increases.

To show this, we look at the gradient of the function min
i
{fi(xk)} and the

level curve. Given that the gradient is perpendicular to the level curve and
indicates the direction of the steepest ascent, our objective is to formulate the
search direction gk in a manner that ensures the angle between the gradient and
this direction is less than 90 degrees.

Fig. 2: The figure illustrates the positioning of the gradient at xk, the level curve,
and the search direction.

From the definition of the cosine of the angle (ω) between two vectors in a
Euclidean space:

cosω =
ab

∥a∥∥b∥
we have

gk · ∇fi1
∥gk∥∥∇fi1∥

≥ gk · ∇fi1
∥∇fi1∥

> 0,

which gives us v1 + v2 cosφ1,2 > 0, where φ1,2 is the angle between ∇fi1 and
∇fi2 .

Title Suppressed Due to Excessive Length 7

Consequently, because v1 ≥ v2 ≥ 0, the inequality holds true except when
the cosine is -1 and the weights are equal. Except for this specific scenario, when
provided with the direction gk, a suitable step size is determined, guaranteeing
F (xk+1) > F (xk). Otherwise, given the direction, the function does not increase,
the algorithm will terminate.

3.2 Numerical examples

We have presented an algorithm and provided rationale for its effectiveness,
outlining the constraints on the weights necessary for the algorithm to operate
successfully. In this section we want to explore, how different similarity relations,
which are used to construct v2, affect the convergence of the algorithm and to find
which similarity relation would fit the algorithm the best. For each example, we
made 1000 attempts of optimizing the problem. For each attempt, we randomly
selected the starting point using the uniform distribution. We set the tolerance
for the step size αk to 10−8. In case the algorithm failed to converge in 1000
iterations, we would stop it. In the following examples, the algorithm did reach
the optimal solution within 1000 iterations for every starting position. Lets look
at the examples.

F1(x) = min(f1(x), f2(x), f3(x)) F2(x) = min(f1(x), f2(x), f3(x), f4(x), f5(x))

f1(x) = −x1 + 6x2 − 5 f1(x) = 0.49x1 + 0.12x2 + 7.93

f2(x) = −3x1 − 4x2 + 1 f2(x) = 0.3x1 − 0.08x2 + 8.26

f3(x) = 5x1 + 3x2 + 6 f3(x) = 0.39x1 + 0.33x2 + 8.34

f4(x) = −0.3x1 + 0.016x2 + 8.448

f5(x) = −0.191x1 − 0.192x2 + 8.469

Fig. 3: Plot of F1(x) (Left) and Plot of F2(x) (Right)

8 M. Zemlitis and O. Grigorenko

p = 1 p = 2 p = 1
2

Sp
p 30.57 23.77 98.93

Sp
L 32.06 23.37 130.16

Sp
h 28.90 23.92 88.39

Table 1: Average number of iterations
for Example 1.

p = 1 p = 2 p = 1
2

Sp
p 20.82 21.01 39.79

Sp
L 20.86 21.03 42.72

Sp
h 20.84 21.02 38.87

Table 2: Average number of iterations
for Example 2.

F3(x) = min(f1(x), f2(x), f3(x), f4(x)) F4(x) = min(f1(x), f2(x), f3(x), f4(x), f5(x))

f1(x) = x1 + 1 f1(x) =
√

3x1 + x2 + 1

f2(x) = −x1 + 1 f2(x) = −
√

3x1 + x2 + 1

f3(x) = −x2 + 1 f3(x) = x2 +
3

4

f4(x) = x2 + 1 f4(x) = x1 −
√

3

2
x2 + 2

f5(x) = x1 −
√

3

2
x2 + 2

Fig. 4: Plot of F3(x) (Left) and Plot of F4(x) (Right)

In Examples 3 and 4, it is evident that the selection of similarity relations
does not influence the number of iterations. However, in Examples 1 and 2, the
choice of the similarity relation does impact the iteration count. Specifically,
opting for p = 2 can result in improved performance in terms of the number of
iterations.

Title Suppressed Due to Excessive Length 9

p = 1 p = 2 p = 1
2

Sp
p 25.31 26.19 25.20

Sp
L 24.03 26.01 25.35

Sp
h 25.58 26.35 25.31

Table 3: Average number of iterations
for Example 3.

p = 1 p = 2 p = 1
2

Sp
p 20.80 20.95 20.42

Sp
L 20.97 21.13 20.65

Sp
h 20.78 20.81 20.41

Table 4: Average number of iterations
for Example 4.

Lets look at the first example. We chose a starting point from which the
algorithm did work poorly and one, from which the algorithm worked good in
terms of number of iterations. We tested how changing the power p changes the
convergence rate from these points.

(a) Example 1 starting at (3.96,−1.23) (b) Example 1 starting at (1.77, 3.28)

Fig. 5: Number of iterations depending on power p, when using e−d(x,y)p

We can see that the number of iterations does depend on the starting point,
and this dependency is amplified by choosing p = 1 or p = 1

2 . It should be
mentioned, that this also depends on the example, as doing the same process
in Example 3 does not lead to significant changes in number of iterations when
taking different p values.

It appears that there is no significant rise in the number of iterations when
larger values of p are considered. Consequently, at this juncture, we can assert
that the selection of similarity relations is example-dependent. However, adopt-
ing p = 2 may result in enhanced performance based on our observations.

10 M. Zemlitis and O. Grigorenko

4 Conclusion

In our work we proposed an algorithm that involves similarity measure for solving
maximin problems. The method resembles sub gradient method but with some
improvements.

The main issue with sub gradient method is not descent method. In some
iterations it might lead to a decrease of the function value. In our method,
we showed that we always can get an increase in function value. In return, this
allows us to use adaptive step size instead of constant step length one. The other
issue when working with sub gradient methods is that it lacks an algorithm for
choosing an optimal sub gradient from sub differential. In most sources, the
choice of sub gradient is not viewed. In our case, the choice of weights is simple,
given a similarity relation, that gives optimal results in our case.

We tested different similarity relations and compared, how different choice of
similarity measure would affect the average number of iterations for our method,
to solve the optimization problem.

While our experiments did not definitively identify the most effective sim-
ilarity relation, we observed that elevating the distance to the power p = 2
consistently resulted in fewer iterations compared to using p = 1

2 , where the lat-
ter can lead to the large number of iterations depending on example and starting
point.

In future we want to observe more general case, where we observe non-linear,
smooth functions. It is important to note that the optimality of the proposed
algorithm is not contingent on the linearity of functions.

References

1. De Baets, B., Mesiar, R.: Pseudo-metrics and T -quivalences. J. Fuzzy Math 5, 471–
481 (1997)

2. Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Acad. Publ. Dodrecht
(2000)

3. Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions (Ency-
clopedia of Mathematics and its Applications). Cambridge University Press, UK
(2009)

4. Zadeh, L.A.: Similarity relations and fuzzy orderings. Inform. Sci. 3, 177-200 (1971)
5. Zadeh, L.A.: Fuzzy Sets. Information and Control 1, 338–353 (1965)
6. Zimmermann, H.-J.: Fuzzy programming and linear programming with several ob-

jective functions. Fuzzy Sets and Systems 1, 45–55 (1978)
7. Bertsekas, P.-D.:Supplementary Chapter 6 on Convex Optimization Algorithms.

Athena Sientific , 286 –315 (2014)
8. Nocedal, J., Wright, S. J. : Numerical Optimization, Springer, 30 – 66 (2006)
9. Zeml̄ıtis M., Grigorenko O.: Fuzzy Equivalence Based Numerical Algorithm for Solv-

ing Multi-objective Linear Programming Problems. FSTA 2024, Slovakia, Liptovský
Ján, p 33

