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Abstract. This study investigates the complexities of constructing causal
graphs within discretization constraints, focusing on the uncertainty of
causal link presence resulting from discretizing continuous variables. De-
spite discretization’s significant influence on causal graph estimation, it
may be necessary, prompting the introduction of a robust index to quan-
tify uncertainty under various discretization strategies. In real-world sce-
narios, the approach uses an evaluation index tailored to align with es-
timation characteristics, providing a practical assessment of uncertainty
in causal discovery. By examining simulation data and using the true
positive mean of causal link presence, the study assesses the impact of
discretization. The proposed index offers a realistic evaluation of uncer-
tainty in real-world studies without known truth. The overarching goal is
to improve the accuracy and reliability of causal graph discovery by sys-
tematically assessing the impact of discretization on Type I error rates.
The study explores different discretizations and their effects on indepen-
dence tests and inferred causal structures.
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1 Introduction

Over the last twenty years, the notion of causality has been increasingly in-
tegrated into machine learning methods to go beyond correlation [18] [15] and
provide explainability to predictive models [17]. One of the most common frame-
works for describing causal mechanisms is Structural Causal Models (SCMs) [16],
which consist of structural equations specifying the causal effects of each variable
and a causal graph consisting of a causal interpretation of a Bayesian network
[7]. Causal discovery relies on the estimation of a directed-acyclic graph (DAG)
representing the causal relationships among the variables. This graph is noted
G = (V, E), where V denotes the set of nodes, i.e., the set of variables involved
in the causal mechanism, and E denotes the set of edges representing the causal
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links between these variables. Many real-world problems lead to dealing with con-
tinuous variables, which requires the development of methods for constructing a
causal graph that considers these continuous quantities. While some methods can
deal directly with continuous variables (Gaussian hypothesis [9], some specific
heterogeneous data contexts [8]), various cases require the development of a first
step of discretization of continuous variables. For instance, with heterogeneous
(discrete and continuous) data, [12] suggests discretizing continuous variables
when most other variables are discrete, cautioning against potential negative ef-
fects on independence tests and inferred causal structures. In approaches using
(conditional) independence tests, such as estimating Mutual Information [10],[5],
a bin-based partitioning approach is employed. Various studies, like [13] and [11],
underscore the importance of discretization in addressing challenges associated
with conditional independence tests and mitigating bias introduced by latent
variables.

Using a discretization approach, which is necessary in some real-world cases,
brings the challenge of applying the most relevant discretization to build the
causal graph. Inherent uncertainty on the causal link discoveries arises when ap-
plying different discretization procedures. Therefore, it is necessary to assess the
relevance of a discretization in the objective to optimize it, with the constraint
that, in real-world application, the ground truth is unknown.

To address this, our study introduces an evaluation index to assess the relia-
bility of inferred causal relationships in real-world scenarios. The index imitates
the behavior of the true positive mean of causal link presence, using p-values
from conditional independence tests to evaluate inferred causal relationships
within a system that offers a practical and realistic evaluation of the impact of
discretization on causal discovery.

This index is beneficial for comparing multiple discretization strategies, help-
ing identify the optimal approach for causal graph construction. The aim is to
improve accuracy and reliability by selecting the most suitable strategy based
on data characteristics and the specific causal graph, focusing on evaluating
the impact of discretization on Type I error rates. We apply the index with an
optimization procedure using simulated data, demonstrating its effectiveness in
determining the best discretization of continuous variables.

2 Related Works

2.1 Constraints-based methods

The constraints-based methods perform causal discovery by exploiting the con-
ditional independence relationships in the data. These methods make the so-
called Causal Faithfulness Assumption, i.e., the reciprocal of Markov condition:
if A ⊥⊥ B|S in D, i.e., A and B are independent given S, then A and B are
d-separated by S in G. With the Markov and faithfulness assumptions, we have
a one-to-one correspondence between the d-separations in the graph and the
conditional independences in the data distribution. In this paper, we focus our
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Table 1: Confusion matrix
p′′A−B < α p′′A−B ≥ α

A−B truly present true positive false negative
A−B truly absent false positive true negative

approach in Pearl context [16] with PC algorithm [19] that starts by estimating
the non-oriented graph according to d-separation and then orienting the edges
based on the identification of V -structures [3], assuming that there are no un-
measured common causes and no selection variables.

2.2 Edge-wise p-value

The problem of testing for the absence or presence of an edge in the skeleton has
been analyzed by Strobl et al. [20], where it is demonstrated how to construct
such a test. They address the inherent problem of the PC algorithm about the
need for more confidence level information for each edge. For two nodes, A and
B, the null hypothesis is defined by H0: the link between A and B noted A−B,
is absent, and its alternative H1: A − B is present. The authors assume a zero
Type II error rate under the condition of faithfulness.

In this case, assuming a zero Type II error rate means the method is expected
to miss no true causal of all true causal relationships in the data. However, it is
essential to note that in practical scenarios, achieving a zero Type II error rate
is usually unrealistic, and the authors acknowledge this by mentioning that the
assumption may not hold in real-world situations. This work explores strategies
to enhance reliability under this assumption and discusses potential heuristic
criteria to reduce the Type II error rate in the context of discrete data.

In this context, Strobl shows we can bound the p-value associated to H0 by
the quantity p′A−B = maxi=1,...,q′ pA⊥⊥B|Ri

where pA⊥⊥B|Ri
is the p-value returned

by the independence test between A and B conditionally to Ri, Ri ⊆ {Pa(A)\B}
or Ri ⊆ {Pa(B)\A} and q′ denotes the total number of such subsets, and Pa(A)
is the set of parent nodes of A. For practical estimation, Strobl also demonstrates
that we can further bound this quantity assuming zero type II error rate of
the conditional independence test, in other words, assuming that conditional
independence is always correctly rejected when it should. In this case, we get:

p′A−B ≤ max
i=1,...,q′′

pA⊥⊥B|Si
= p′′A−B , (1)

where q′′ denotes the number of conditional independence tests between A and
B during PC algorithm estimation, and Si the respective conditioning sets.

2.3 Multivariate Discretization

In the context of continuous variables, Bay [1] proposes a discretization strategy
by partitioning into n intervals and then merging adjacent intervals with similar
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multivariate distributions. The author proposes a shift from univariate discretiza-
tion, which considers a single variable at a time, to multivariate discretization to
take into account interactions between variables before deciding on discretized
intervals, potentially providing a more comprehensive and meaningful approach
for knowledge discovery. The method aims to automatically determine coherent
regions (by merging adjacent intervals based on similar distributions), identify
irrelevant attributes, and efficiently handle large databases for more meaningful
knowledge discovery. Testing the similarity of interval distributions using the
STUCCO test [2], which considers multivariate distributions, can preserve hid-
den patterns and ensure coherence among different variables, thereby preventing
the loss of valuable information in the process. This process is modified in our
approach to propose a causal discretization described in the next section.

3 Proposed approach

3.1 Definition of a causal relevance index

Our approach aligns with foundational assumptions from Strobl [20], using the
PC algorithm to learn a Directed Acyclic Graph (DAG) following the global di-
rected Markov property. We adopt causal sufficiency, d-separation faithfulness,
and a zero Type II error rate. The goal is to quantify uncertainty in constructing
causal graphs within discretization, focusing on leveraging p-values from condi-
tional independence tests. This addresses the impact of discretizing continuous
variables, including the necessity of tests like Conditional Mutual Information
(CMI) estimation with bin-based partitioning.

To control Type I error, we propose a robust index to compare discretiza-
tion strategies, guiding selection based on data characteristics and specific causal
graphs. This aims to enhance the accuracy and reliability of causal graph dis-
covery by evaluating the impact of discretization on Type I error rates.

In simulation data, we assess the discretization impact using the true positive
mean. In real-world studies, lacking a known truth, our proposed evaluation
index mimics the true positive mean’s behavior for practical assessment.

Our approach relies on the definition of an index reflecting the causal rele-
vance of a certain partition denoted D of the continuous multivariate data space
R|V|. We evaluate partition D through its associated estimation of a causal graph
G via the PC algorithm [4]. Our idea is to exploit the edge-wise p-value associ-
ated with each of the |V|2−|V|/2 possible edges. We build such an index by using
the following heuristic.

Let define Da the variable of the observing data and the test to assess the
absence of an edge in the skeleton of a connected undirected graph as: H0 : A−B
is absent and H1 : A − B is present. In an ideal situation, we want to evaluate
P (H1|Da) and compare it to an acceptance threshold β to accept H1 or not.
However, in practice, this probability is not observed. By using the assumptions
and the method described in section 2.2, we estimate P (Da|H0) by p′′A−B in
Equation 1 and compare it to the threshold α to reject H0 or not. By the Bayes
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theorem, we obtain the link between these quantities:

P (H1|Da) = 1− P (H0|Da) = 1− p′′A−B

P (H0)

P (Da)
. (2)

In Equation 2, P (H0) and P (Da) are unknown and can be defined as a prior
with the following constraints so that the acceptance thresholds β and α match
each other:

P (H1|Da) = β when p′′A−B = α, P (H1|Da) = 1 when p′′A−B = 0 , (3)
P (H0|Da) = 1− β when p′′A−B = 1 , P (H0|Da) = 1 when p′′A−B = 1 .

Without more information on P (H0), P (H1) and P (Da), we derive a linear trans-
formation to compute P (H1|Da) and P (H0|Da) from the only known quantity
p′′A,B and that enforces the constraints given in Equation 3:

P (H1|Da) ≈ 1− 1− β

α
p′′A−B ,

P (H0|Da) ≈ 1− β

1− α
(1− p′′A−B) .

Considering (|V|2−|V|)/2 possible edges, with the strong assumption that P (H1|Da)
is correctly calibrated for all nodes {A,B}, we can approximate the mean num-
ber of True Positive causal links by:

TP

Nedges
≈ 2

(|V|2 − |V|)
[

∑
{A,B}∈V

P (H1|Da)] (4)

= 1− 2

(|V|2 − |V|)
[

∑
{A,B}∈V

1− β

α
p′′A−B ]

Finally, the constraint ∀p′′A−B , P (H0|Da)+P (H1|Da) = 1 is ensured if β = 1−α.
Injecting this constraint in Equation 4 gives the definition of our proposed causal
relevance index (cri) that we build to evaluate the causal relevance of a causal
graph G:

cri(G) = 1− 2

|V|2 − |V|
∑

{A,B}∈V

p′′A−B . (5)

This index has to be maximized to obtain the most relevant graph G, i.e.
we consider the ideally causally relevant discretization to be the one for which
the best conditions for detection are met. Table 1 reminds us that depending on
the value of p′′A−B , and the true status of the edge, we can consider four scenar-
ios. Furthermore, decreasing p′′A−B mechanically reduces false positive. In other
words, maximizing link discovery reduces to jointly minimizing the set of edges-
wise p-values. Let us note that our approach relies strongly on the assumption of
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zero type II error rate of the conditional independence test used in the PC algo-
rithm as in [20]. Without this assumption, the detection of false positives cannot
be controlled. By construction, our index aims to quantify precision (TP) in the
edge discovery task, which quantifies the causal graph uncertainty. We then use
it to quantify the impact of discretization on the causal graph relevance. Note
that discretization does not change the graph dimension (number of variables),
but our index is sufficiently general to quantify uncertainty in other use cases
with varying numbers of variables.

3.2 Optimization procedure

The search for the most causally relevant partition from the initial continuous
data is described in the following. Our procedure structure is inspired by Bay’s
multivariate discretization, except that in our case, the criterion for merging
intervals is based on the cri index derived in Equation 5. The proposed approach
operates as follows:

1. Finely partition all continuous attributes into m intervals using a random
discretization.

2. Estimate G and compute cri(G) from this initial data partition.
3. Select the two adjacent intervals (of any variable) with the minimum com-

bined supports.
4. Temporarily merge these two intervals, estimate G′, and compute cri(G′)

from the resulting data.
5. If merging these two intervals makes the causal graph more relevant, i.e.,

cri(G′) − cri(G) > 0, then the merging is adopted, and G takes G′ value.
Otherwise, set a definitive border between the two intervals.

6. If there are no more candidate intervals, stop. Otherwise, return to step 3.

By pursuing this procedure, we will progressively increase the causal relevance
of the partition as we can only increase the causal relevance index cri at each
interval merging. However, optimization may be halted due to local maximums.
We, therefore, perform several optimization trajectories starting from different
random initial partitions and keep the graph that provides the highest cri.

4 Problem modelling

We aim to build an elementary model of the considered problem of multivariate
discretization for causal discovery. We assume that the continuous variables de-
rive from a discrete underlying causal phenomenon. This assumption allows us
to acknowledge the perfect multivariate discretization as well as the true causal
graph matching the simulated data in our experiments and thus carry out some
investigations on the ability of our defined index cri to reflect the true positive
mean and the proposed method to recover the true causal graph.

Consider a set of |V| random variables V1, . . . , V|V| defined on [0, 1]|V|, for
which the causal graph G is known and such that the relationships between
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the variables are reduced to partially determined functions on intervals. For two
variables Vi and Vj , i, j ∈ {1, . . . , |V|}, such that Vi → Vj , we consider the joint
realization (vi, vj) of (Vi, Vj) is in the form:

( v1 ∈ IaV1
=⇒ v2 ∈ IbV2

) ∧ ( v1 /∈ IaV1
=⇒ v2 ∈ [0, 1]), (6)

where IaV1
and IbV2

are intervals in [0, 1]. We restrict the study of the problem to
the five classical causal graph structures represented in Figure 1.

Fig. 1: Structures under study

(a) Chain

V1

V2

V3

(b) Fork

V1

V2 V3

(c) V -structure

V1

V2 V3

(d) Mediator

V1

V2

V3

(e) Diamond

V1

V2 V3

V4

4.1 Simulations

Our simulation procedure consists in generating the triplet, composed by a
ground truth multivariate discretization, its corresponding true causal graph,
and a sample of corresponding continuous multivariate data of size n. We ob-
tain these three elements by successively completing the values of the n joint
realizations of the |V| variables:

1. Choose a causal graph G from the considered structures.
2. For each level 1 variable, i.e. nodes that are effects of no nodes, independently

generate n realizations of U([0, 1]).
3. For each unprocessed edge coming from nodes with no missing realizations

(on the first pass, these are level 1 nodes), randomly create a non-empty Ia
interval of the cause and an Ib interval of the effect. For each realization of the
cause falling in Ia, generate3 the effect realisation by a uniform distribution
on the Ib interval, U(Ib)

4. For nodes where all causes have been taken into account, complete the miss-
ing z joint realizations by generating z realizations from U([0, 1]).

5. Return to step 3 for as long as some node realisations are still missing.
3 It is possible that the effects of one cause will overwrite those of another. To deal

with this, we randomly select one of the realizations from each cause. If the two
cause variables are independent, the expected apparition value of such conflict is 1/4,
since we picked at random the effect to consider, the causal condition is ignored with
a probability 1/8.
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4.2 Example of simulation (V -structure)

We provide details on the generation procedure for a simulation of the prob-
lem with the V -structure. First, the variables V2 and V3 (level 1 variables) are
generated by a uniform distribution U([0, 1]). Then, we simulate the links cor-
responding to the two edges coming to V1. We generate the intervals shown in
Table 2. Then, we apply the conditions. For the first condition, for all realizations
of V2 in [0.761, 0.939], we generate a joint realization for V1 by U([0.417, 0.512]).
We proceed similarly for the second condition. If the two conditions may apply,
we randomly select one condition with equiprobability. At this stage, the vector
of V1 variable is partially completed. We complete the missing realizations of V1

(which correspond to the cases V2 /∈ [0.761, 0.939] and V3 /∈ [0.34, 0.421]) by a
U([0, 1]).

Table 2: Explicit causal links for the considered example of V -structure and, for
the detailed chosen trajectory (Figure 2), rate r of realizations subject to the
condition.

causal link condition r

V2 → V1 v2 ∈ [0.761, 0.939] =⇒ v1 ∈ [0.417, 0.512] 0.17
V3 → V1 v3 ∈ [0.34, 0.421] =⇒ v1 ∈ [0.334, 0.351] 0.11

5 Experiments

Since we are only considering the presence or absence of the causal links, not
their orientation, we chose to evaluate the performances with the rate of true
positives, i.e., proportion of true links in all found links, and true negatives,
i.e., proportions of not found links in all absent links. In our experiments, we
considered the following conditional independence testing:

– Fisher z-transformation Conditional Independence test (ZCI) [9]: designed
for gaussian data, tests for zero partial correlation via Fisher’s z-transformation.

– Kernel Conditional Independence test (KCI) [6,21]: based on normalized
cross-covariance operators on reproducing kernel Hilbert spaces.

– Stochastic complexity-based Conditional Independence criterium (SCI) [14]:
conditional mutual information is used as a measure for conditional inde-
pendence and approximated using stochastic complexity.

– Mutual information conditional independence test (MCI) [5]: an information-
theoretic distance measure designed for discrete data.

The experiments were carried out in the R language and made publicly avail-
able4.

4 https://github.com/lucieK-J/CausalDiscretization.git. The experiments
were carried out on a MacBookPro18.4 with a total of 10 cores and 64 GB of
memory.

https://github.com/lucieK-J/CausalDiscretization.git


Title Suppressed Due to Excessive Length 9

 

 

D
+

6
0

b

D
+

5
8

b

D
+

5
6

b

D
+

5
4

b

D
+

5
2

b

D
+

5
0

b

D
+

4
8

b

D
+

4
6

b

D
+

4
4

b

D
+

4
2

b

D
+

4
0

b

D
+

3
8

b

D
+

3
6

b

D
+

3
4

b

D
+

3
2

b

D
+

3
0

b

D
+

2
8

b

D
+

2
6

b

D
+

2
4

b

D
+

2
2

b

D
+

2
0

b

D
+

1
8

b

D
+

1
6

b

D
+

1
4

b

D
+

1
2

b

D
+

1
0

b

D
+

8
b

D
+

6
b

D
+

4
b

D
+

2
b

D
*

D
−

2
b

D
−

4
b

D
−

6
b

D
−

8
b

0
.0

0
0

.2
5

0
.5

0
0

.7
5

1
.0

0

cri

TP

TN
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0.90 confidence intervals over 100 distributions.
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case of truly present edge.
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,

case of truly absent edge.

Fig. 2: For the V -structure and the MCI test: degradation of the optimal dis-
cretization (D∗) by removing i borders (D − ib) or adding i borders (D + ib).

5.1 Study of the cri behaviour

Let us now conduct an experimental study to verify the behavior of our index
cri with respect to the quality of the discretization in terms of causal relevance.
For this, we choose to degrade the optimal partition denoted D∗ in a bilateral
way, on the one hand by successively and randomly removing borders, and on
the other hand by successively adding borders randomly to a randomly chosen
node variable in V.

Setting n = 100, and considering the same conditions as in our previous ex-
ample (Table 2), we chose to present one such trajectory of degradation in Figure
2. Since the obtained cri, true positive, and true negative depend on the data
distribution, we perform a sensitivity analysis in sub-figure 2a. For illustrating
our index construction from the edge-wise level, we include the edge-wise p-value
estimate (defined in (1)) in the sub-figures 2b-2d for one data distribution.

Note that we stop calculating the index if a variable becomes constant due to
the suppression of too many borders. On a global view, we observe that our index



10 Lucie Kunitomo-Jacquin, Aurore Lomet, and Geoffrey Daniel

reflects the true positive mean trend and that the optimal discretization obtains
the highest index value. We can also comment that cri correctly captures the
uncertainty arising from the data distribution, as the sensitivity analysis shows a
matching trend between true positive and cri confidence intervals. On the edge-
by-edge level, we can see that the optimal partition D∗ corresponds to low values
of the edge-wise p-value estimate regardless of the status of the edge (present or
absent). Note that the estimated edge-wise p-values are below α for D∗ if the
edges are truly present and below if truly absent.

5.2 Results

We present the results of causal graph estimations via the PC algorithm (α =
0.01) over n = 100 observations for the five structures in terms of average true
positive and true negative in Table 3. Results are averaged over 500 simulations
for each structure. We have carried out the tests considering three situations for
the discretization: baselines, our proposed approach (causal discretization), and
perfect discretization given.

Table 3: Average true positive and true negative rates with n = 100 on 500
simulations. Negative true rates are not defined for the mediator due to no
absent edge in this structure.

chain fork V -structure mediator diamond
TP TN TP TN TP TN TP TN TP TN

Baselines
no discretisation ZCI 0.21 0.96 0.21 0.98 0.19 0.99 0.20 NA 0.20 0.981

KCI 0.47 0.99 0.48 0.99 0.45 0.99 0.44 NA 0.44 0.99
Equal frequency
discretization

SCI 0.36 1 0.37 0.99 0.30 1 0.30 NA 0.31 1
MCI 0.45 0.99 0.47 0.99 0.40 1 0.42 NA 0.40 1

Causal discretization SCI 0.48 0.99 0.49 0.98 0.45 1 0.42 NA 0.35 1
MCI 0.56 0.95 0.62 0.93 0.51 0.92 0.46 NA 0.43 0.99

Perfect discretization given SCI 0.83 0.99 0.87 0.97 0.84 0.98 0.73 NA 0.66 1
MCI 0.74 1 0.79 1 0.79 1 0.39 NA 0.39 1

For baselines, two configurations are considered: estimating the graph from
non-discretized data using ZCI and KCI tests, and applying equal frequency
discretization with specified bin numbers. The causal graphs are estimated us-
ing SCI and MCI for both the equal frequency discretization and the proposed
method. The proposed method uses SCI and MCI in both discretization and
causal graph estimation, running 30 random initializations with 10 initial bins
for each simulation. For perfect discretization, the causal graph is estimated
using SCI and MCI tests.

Empirically, the zero type II error hypothesis is generally respected, resulting
in high true negative rates. ZCI struggles with detecting causal links in continu-
ous data baselines due to its assumption of Gaussian data, while KCI performs
better, highlighting the drawbacks of arbitrary discretization. Knowing the ideal
discretization generally yields the best results, emphasizing the importance of
intelligent discretization.
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Our causal discretization with the MCI test often outperforms the ideal dis-
cretization in true positive mean, particularly in mediator and diamond struc-
tures. This approach highlights causal links even with limited examples in in-
tervals, especially for structures with more edges. A separate study confirms the
relevance of ideal discretization for larger sample sizes.

Our method outperforms equal-frequency discretization in discrete data tests
(MCI or SCI) in true positive mean across all structures. The best results are seen
with perfect discretization, indicating potential for further improvement. MCI
detects more causal links than SCI but with a lower true negative rate. However,
when perfect discretization is known, SCI surpasses MCI in identifying causal
links, which may be due to SCI challenges in calibrating p-values affecting our
index calculation.

6 Conclusion

In causal discovery, data discretization can be a major issue, as it has a con-
siderable impact on the relevance of the results. However, this discretization is
indispensable, for instance, when using tests that require the data to be used
in bins as the proxy variable approach or when the application requires a dis-
cretization. To assess the impact of the discretization on the causal discovery, we
proposed a causal relevance index approaching the true positive mean of causal
links estimated via the PC algorithm. We performed a sensitivity analysis of our
proposed index, which showed that it correctly captures the data uncertainty to
reflect the true positive rate. Moreover, we proposed an approach that seeks for
the more causally relevant multivariate partition based on this index.

We have tested on simulations several approaches for causal discovery with
and without discretization. Our results show that the proposed index reflects the
actual true positive mean. We also show that our optimization procedure tends
to approach the "upper bound" given by the perfect partitioning of the data,
which is usually unknown in real-world problems. However, there is still room
for improvement. The results also indicate the impact of p-values calibration on
every approach. Also, the false discovery rate leans on the Type II error rate
of the independence tests. We recommend using a well-calibrated conditional
independence test to search for the partition. Once the partition is identified,
one could use another and more efficient test for the causal discovery phase.

One limitation of our work is that each iteration requires the estimation of a
causal graph with the PC algorithm. In future work, we plan to reduce the deriv-
ing complexity by considering an alternative search procedure using stochastic
optimization. Another perspective to improve our approach is to investigate the
possibilities to optimize simultaneously both the true positive and the true neg-
ative rate and free ourselves from the zero type II errors hypothesis, which is
rarely respected in practice. To do this, we could benefit from Strob’s work,
which proposes a modification of the PC Algorithm to control the false positive
rate despite non-zero Type II error rates using the bounded p-values and the
Benjamini-Yekutieli procedure.
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